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The Ising Model

Describes ferromagnetic interactions of T T T
magnetic spins. T T
Each spin: either an upward (+1) or T

downward (—1) state.

® A magnetic spin

o, = {-1,1} T Upward state

H (O’ ) = Z Jii jOi0j Z h;o; Downward state

Converges to the Iowest energy state. H(o)

An Ising machine solves combinatorial \/\/\/\/\
b e -

optimization problems with a polynomial time.
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Energy of an Ising model (Hamiltonian):
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Solving MCPs using the Ising Machine

The Max-cut problem (MCP): the vertices are partitioned in a weighted graph to two
independent subsets such that the sum of edges between the subsets is maximized.

H(O') = _Zi,j]ijo-io-j Where]i]’ = _Wl]

| .

cut=14+1=2

H(o)=—(1%X0y0,+1X%X00,+...) =6
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Solving MCPs using the Ising Machine

The Max-cut problem (MCP): the vertices are partitioned in a weighted graph to two
independent subsets such that the sum of edges between the subsets is maximized.

H(o) = — X ;]ijoio;
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where J;; = —w;;.

cut=1+4=5

H(o) =— (1 X 0104 +4 X 0y03+...)
=0




Solving MCPs using the Ising Machine

The Max-cut problem (MCP): the vertices are partitioned in a weighted graph to two
independent subsets such that the sum of edges between the subsets is maximized.
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Solving MCPs using the Ising Machine

The Max-cut problem (MCP): the vertices are partitioned in a weighted graph to two

independent subsets such that the sum of edges between the subsets is maximized.

H(o) = — X ;]ijoio;

4 . 4
! . _ ] ral
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where J;; = —w;;.

H(o) = -6

cut = 8
Max-cut found!



Solving MCPs using Simulated Bifurcation

* Good news: Emulating the adiabatic evolution of oscillator networks,
simulated bifurcation (SB) realizes parallel update of the spin states, unlike
simulated annealing (SA).

Simulated bifurcation (SB)

Xit = AoYits

Vie = —1a9 — a(t)}x; + coJxi¢

x; is replaced with its sign and y; is initialized to O if |x;| > 1.

x;¢ and y; . are the position and momentum of oscillator s;, respectively. | describes the interaction between s; and s ;. a
and ¢, are constants. a(t) is a linear function. x; ; and y; , are derivatives of x;, and y; , respectively.

* Bad news: Solving differential equations is not easy, especially when the
matrices are




Stochastic Computing (SC)

* Good news: In SC, values are represented and processed as random bit streams of Os
and 1s; simple logic gates/counters can perform arithmetic operations.

Binary Stochastic number Stochastic Probability Binary
number — . : number
: generators (SNGS) circuits estimators (PEs)
inputs outputs

A stochastic computing system.

. pl - 0.5:
Binary number | | A 0110
register o 0110. .. D
> —>
= 0.25:

Random number | | o p, = 0.5: pﬂ(?)zloo
generator (RNG) 1100... h

A unipolar stochastic multiplier.

An SNG.
é 11
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0110... P=
- counter

A probability estimator.
N;: the number of 1s.
N, the number of all bits.




Dynamic Stochastic Computing (DSC)

* Good news: In DSC, signals are sampled as random bit streams of Os and 1s; each bit
encodes a (changing) value or probability of the signal.

Specifically, we use dynamic stochastic sequences (DSS’s) in DSC.

Dynamic stochastic sequence

1.00 WAk d Ak Wt Ak A AR AR B W W d i o dohAA dobioh TobAA ek tokr Tk

Digital signal TN NN
0754 . - -

DSC encoding the signal \//
0.50 - A>B >
0.25 - Random number | | B e

generator (RNG)
0.00 4 oAk W A A Ak ARk AR A
0.0 0.2 0.4 0.6 0.8 1.0
A DSNG.

For each sampling point, E[ X ;] = X;
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Dynamic Stochastic Computing (Cont’d)

* Good news: In DSC, signals are sampled as random bit streams of Os and 1s; each bit
encodes a (changing) value or probability of the signal.

Ordinary differential equation (ODE) In our previous work (DAC’'17 [1]), DSC was used to solve ODEs.
di; (t) = f(t) A Stochastic Integrator (Sl):
t
R Random number .
Euler method Vi = Z,fl ~  generator (RNG)
1 > — Y/[i]
in Xaltl =]+ Up/down counter #
hf (©) Xpli]l— - A |yl
— ' >
h t
instead i = 2 F; F;: DSS encoding f (t) ylil= y®)lezhi = [Xa(t) = X4 (1)]
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* Formulation and circuit design
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Formulation of SB

e

Xie = aoYit = f(Ve)is

Vie = —{ag —a(®)}x;r + coJ X = g(X¢)i
A linear /
function Semi-implicit Euler integration

x; ¢ and y; . are the position and momentum of oscillator s;, respectively.

Viev1 = YVie T N9 (Xp);
Xit+1 = Xie T Nf (Ver1)i

Xit+1 = Xjo T n° Z?:o Z{;o g(xx)i




A Stochastic Computing SB Cell
Xits1 = Xio +1° Z§'=o Z{;:o g (xr);

Convert a binary g(x;); to a DSS) Yit+1 = Vit T ng(xt)i

_Gir %,.,:I Xit+1 = Xie T Nf (Ver1)i
8(x)i . Gs | \E’ Yiisi X

, SSNG [T Gn |+ AN

---------

The Stochastic Computing SB Cell (SC-SBC):
Aimed for higher area efficiency.
(SSI: Sequential Stochastic Integrator)
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A Binary-Stochastic Computing SB Cell

Xigs1 = X0 + 1% Xico Lieo 9 (X

Vie+1 = Vit T N9 (Xe); »X

/’ Xit+1 = Xi¢e TN (Ver1)i
Yi,t+1 Xi
Femmmmy it+1

g(x‘)f_) Yir+l BRI

BEI [SSNG | Y 1 s

---------- Tl ssT >

8(%t)i >SS yies 07|- L Xm
m —>—r 7 xio

The Binary-Stochastic Computing SB Cell (BSC-SBC):
Aimed for higher performance.
(BEI: binary Euler integrator)
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Application: Max-Cut Problems (MCPs)

B Experimental Setup
e  Algorithms: bSB, dSB, SC-SBM (n= 0.125,0.25,0.5), BSC-SBM (n= 0.125,0.25,0.5).
*  Benchmark: the K2000 benchmark
* Timesteps: T, = 1000, T, = 10000
B Evaluation:
* The statistics of cut values from 100 trials:
Ave: the average of cut values; Max: the maximum of cut values; Min: the minimum of cut values.

A larger Ave, Max and Min indicate a higher performance, given by a higher likelihood to jump out of the

local optima, and thus a higher stability.
* Probability-to-target (F,) and Step-to-target (S,)




Performance Evaluation

B The proposed SSBM: higher Ave and Min values

are obtained with n =0.5
0.125, 0.25.

Evaluated by Ave and Min, when nn = 0.5, the BSC-

than with n =

SBM performs better than the SC-SBM when T, =
1000; the SC-SBM performs better than the BSC-
SBM when T, = 10000.

It shows the advantages of BSC-SBM in a short

search, and SC-SBM in a long search.

22
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Cut Values

Cut Values

33200 Wls
33000 ] |
] | | N r D
32800 - < | |
_ ] | | \ ' D N
32600 - | c | |
| | AR b
32400 | < | | | I
Max Min
(a) T, = 1000
33300 | |
Ep NG|
33250 - |
33200 N\ ! dFNRRC
e 1
33150 | | |
SN (BN i =N 0
33100 | 8 i '
] N P D hY
33050 - SINES = . I
33000 - i - § - N
Ave Max Min
(b) T, = 10000
mEmm bSBM B SC-SBM (n=0.125) I BSC-SBM (n=0.125)
——— SC-SBM (n=0.25) BSC-SBM (n=0.25)

SC-SBM (n=0.5)

BSC-SBM (n=0.5)

* bSBM: ballistic simulated bifurcation machine;
dSBM: discrete simulated bifurcation machine.




Performance Evaluation (Cont’'d)

B ForT; = 1000, the SSBMs can achieve a higher Pqyg 5o, value than dSBM. Moreover, the proposed BSC-SBM
performs similarly to bSBM.

B ForT, = 10000, it is difficult for bSBM to reach Pqyq g9, Of the best-known cut value due to the lack of ability
to jump out of the local minima, and a better solution can be obtained by dSBM and SSBMs.

B It shows that SSBMs find a better solution than dSBM in a short search and have a lower probability of being

stuck at the local minima than bSBM in a long search.

The Values of Pg and Sg for the Max-cut Problems on K2000 Benchmark

Vaules of Py SB Machines
and S, with T bSBM dSBM SC-SBM | BSC-SBM

P A 4% A 22%

Ts = 1000 99 5% 38% % 6% %
S99 507 7633 112811 74426 18534
Pyg g 0 6% 4% 2%

Te = 10000 -

5 S99 87, - 744265 1128110 2279481

* K2000: 2000 nodes, 1999000 edges, a complete graph, edge weight w;; € {—1,+1}, best-known cut value: 33337.




Hardware Evaluation

Experimental Setup

Ising Machines: D-wave [3], JSSC’21 [8], JSSC’15 [14], ISSCC’21 [15], CICC’21 [16], JSSC’22 [17], vs. SC-SBM,

BSC-SBM
Simulation results for SC-SBM and BSC-SBM are obtained by using the Synopsys Design Compiler.
A CMOS 40 nm technology is applied with a supply voltage of 1.0 V and a temperature of 25°C.

Evaluation
Computing Method; Technology; # Spin; Topology; # Spin Interactions; Coefficient Bit-Width; Spin Type
Power per Spin; Area per Spin; Frequency; # Spin Update Cycles

Normalized Power per Spin, Normalized Area per Spin

TO SYSTEMS
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Hardware Efficiency

 The dense connectivity between spins leads to an increase in area and power.
 The spins in SC-SBM and BSC-SBM require 1.5X and 1.3X more power per spin than [8], respectively, due

to the 3.9X larger connectivity.
 The proposed SC-SBM and BSC-SBM utilize at least 10.62% smaller normalized area than [8].
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D-wave [3] |[JSSC’15 [14] | JSSC’21 [8] |ISSCC’21 [15] | CICC’21 [16] | JSSC’22 [17] | Prop. SC-SBM | Prop. BSC-SBM
Computing Quantum CMOS SCA Metropolis Simulated Simulated Simulated Simulated
Method Annealing Annealing | Annealing Annealing Annealing Annealing Bifurcation Bifurcation
Technology Superconductor | 65nm CMOS | 65nm CMOS | 65nm CMOS | 65nm CMOS | 65nm CMOS | 40nm CMOS 40nm CMOS
# Spins 2k 20k 512 16k 252 480 2k 2k
Topology Chimera Lattice Complete King King King Complete Complete
# Spin Interactions 5 5 511 8 8 8 1999 1999
Coefficient Bit-Width N/A 2 5 5 4 4 2 2
Spin Type Qubit SRAM SRAM Register Register Register Register Register
Power per Spin 12.2 W 2.83 pW 1.27 mW N/A 1.33 pW 0.18 pW 0.74 mWw 0.64 mW
Area per Spin N/A 289 pm? 12207 um? 552 ptm? 1671 pm? 832 pm? 6370 um? 6453 um®
(Normalized Area) (6.86 x) (1.13 %) (3.28 X) (12.41 x) (6.17 X) (1 %) (1.01 x)
Frequency N/A 100 MHz 320 MHz 100 MHz 64 MHz 200 MHz 250 MHz 250 MHz
# Spin Update Cycles N/A N/A 512 22 N/A 1 20 20
25




Conclusion

A high-performance fully connected stochastic SB machine (SSBM) is designed for
low-cost and accurate combinatorial optimization using the Ising model.

Based on stochastic computing, two efficient SB cells are further designed by using
SSls to solve pairs of differential equations in SB.

The 2000-spin fully connected SSBM using the SC-SBC or BSC-SBC as a building
block realizes fast energy convergence in a short search and also prevents from
being stuck at the local minimum in a long search.

An improvement of at least 44% in power is achieved with a 1.19X speedup,

compared to conventional SB machines.
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