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The Ising Model

• Describes ferromagnetic interactions of

magnetic spins.

• Each spin: either an upward (+1) or

downward (−1) state.

• Energy of an Ising model (Hamiltonian):

• Converges to the lowest energy state.

• An Ising machine solves combinatorial

optimization problems with a polynomial time.

𝐻(𝜎) = −෍

𝑖,𝑗

𝐽𝑖𝑗𝜎𝑖𝜎𝒋 −෍

𝑖

ℎ𝑖𝜎𝑖

𝜎𝑖 = {−1,1}

𝑯(𝝈)

𝝈

A magnetic spin

Upward state

Downward state
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Solving MCPs using the Ising Machine

• The Max-cut problem (MCP): the vertices are partitioned in a weighted graph to two
independent subsets such that the sum of edges between the subsets is maximized.

4

4

1

1

𝜎1 𝜎2

𝜎3𝜎4

𝐻(𝜎) = − (1 × 𝜎1𝜎4 + 1 × 𝜎1𝜎2+. . . ) = 6

𝑐𝑢𝑡 = 1 + 1 = 2

𝐻(𝜎) = −σ𝑖,𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝒋 − σ𝑖 ℎ𝑖𝜎𝑖, where 𝐽𝑖𝑗 = −𝑤𝑖𝑗 .
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• The Max-cut problem (MCP): the vertices are partitioned in a weighted graph to two
independent subsets such that the sum of edges between the subsets is maximized.
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𝐻(𝜎) = − (1 × 𝜎1𝜎4 + 4 × 𝜎2𝜎3+. . . )
= 0

𝑐𝑢𝑡 = 1 + 4 = 5

𝑐𝑢𝑡 = 2

Solving MCPs using the Ising Machine

𝐻(𝜎) = −σ𝑖,𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝒋 − σ𝑖 ℎ𝑖𝜎𝑖, where 𝐽𝑖𝑗 = −𝑤𝑖𝑗 .
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• The Max-cut problem (MCP): the vertices are partitioned in a weighted graph to two
independent subsets such that the sum of edges between the subsets is maximized.
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Solving MCPs using the Ising Machine

𝐻(𝜎) = −σ𝑖,𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝒋 − σ𝑖 ℎ𝑖𝜎𝑖, where 𝐽𝑖𝑗 = −𝑤𝑖𝑗 .
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• The Max-cut problem (MCP): the vertices are partitioned in a weighted graph to two
independent subsets such that the sum of edges between the subsets is maximized.

𝐻(𝜎) = −σ𝑖,𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝒋 − σ𝑖 ℎ𝑖𝜎𝑖,
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Solving MCPs using the Ising Machine

where 𝐽𝑖𝑗 = −𝑤𝑖𝑗 .
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• Good news: Emulating the adiabatic evolution of oscillator networks,

simulated bifurcation (SB) realizes parallel update of the spin states, unlike

simulated annealing (SA).

ሶ𝑥𝑖,𝑡 = 𝑎0𝑦𝑖,𝑡, 

ሶ𝑦𝑖,𝑡 = − 𝑎0 − 𝑎 𝑡 𝑥𝑖,𝑡 + 𝑐0𝐽𝑥𝑖,𝑡 + 𝜂 𝑡 ℎ𝑖

𝑥𝑖 is replaced with its sign and 𝑦𝑖 is initialized to 0 if |𝑥𝑖| > 1. 

• Bad news: Solving differential equations is not easy, especially when the 

matrices are large (compute-intensive).

Solving MCPs using Simulated Bifurcation

𝑥𝑖,𝑡 and 𝑦𝑖,𝑡 are the position and momentum of oscillator 𝑠𝑖, respectively. 𝐽 describes the interaction between 𝑠𝑖 and 𝑠𝑗. 𝑎0
and 𝑐0 are constants. 𝑎 𝑡 is a linear function. ሶ𝑥𝑖,𝑡 and ሶ𝑦𝑖,𝑡 are derivatives of 𝑥𝑖,𝑡 and 𝑦𝑖,𝑡, respectively.

Simulated bifurcation (SB)
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Stochastic Computing (SC)

• Good news: In SC, values are represented and processed as random bit streams of 0s
and 1s; simple logic gates/counters can perform arithmetic operations.

Binary 

number 

inputs

Stochastic number 

generators (SNGs)

Stochastic 

circuits

Probability 

estimators (PEs)

Binary 

number 

outputs

A stochastic computing system.

An SNG.

Random number 

generator (RNG)

Binary number 

register

A > B

A

B
A probability estimator.

𝑁1: the number of 1s.

𝑁𝑠: the number of all bits.

counter
0110…

𝑝 =
𝑁1
𝑁𝑠

0110…

𝑝1 = 0.5:
0110…

𝑝2 = 0.5: 

1100…

𝑝1𝑝2 = 0.25: 

0100…

A unipolar stochastic multiplier. 
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Dynamic Stochastic Computing (DSC)

• Good news: In DSC, signals are sampled as random bit streams of 0s and 1s; each bit
encodes a (changing) value or probability of the signal.

Specifically, we use dynamic stochastic sequences (DSS’s) in DSC.

For each sampling point, 𝔼[𝑋𝑖] = 𝑥𝑖

𝑋𝑖

𝑥𝑖

Dynamic stochastic sequence

A DSNG.

Random number 

generator (RNG)

A > B

A

B
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Dynamic Stochastic Computing (Cont’d)

• Good news: In DSC, signals are sampled as random bit streams of 0s and 1s; each bit
encodes a (changing) value or probability of the signal.

Random number 

generator (RNG)

Up/down counter

>

+

-

In our previous work (DAC’17 [1]), DSC was used to solve ODEs.

A Stochastic Integrator (SI):

𝑋𝑎[𝑖]

𝑋𝑏[𝑖]

𝑌[𝑖]

𝑦[𝑖]

𝑦[𝑖] = 𝑦(𝑡)|𝑡=ℎ𝑖 ≈ ∑[𝑥𝑎(𝑡) − 𝑥𝑎(𝑡)]

Euler method

𝐝𝑦 𝑡

𝐝𝑡
= 𝑓 𝑡

th

1
ො𝑦𝑖

ℎ𝑓(𝑡)

Ordinary differential equation (ODE)

ො𝑦𝑖 ≈ ∑𝑓𝑖

Instead ො𝑦𝑖 ≈ ∑𝐹𝑖 𝐹𝑖: DSS encoding 𝑓 𝑡
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Formulation of SB

ሶ𝑥𝑖,𝑡 = 𝑎0𝑦𝑖,𝑡 = 𝑓(𝒚𝑡)𝑖, 

ሶ𝑦𝑖,𝑡 = − 𝑎0 − 𝑎 𝑡 𝑥𝑖,𝑡 + 𝑐0𝐽𝒙𝑖,𝑡 + 𝜂 𝑡 ℎ𝑖 = 𝑔(𝒙𝑡)𝑖

Semi-implicit Euler integration

1

A linear 

function

𝑥𝑖,𝑡+1 = 𝑥𝑖,0 + 𝜂2σ𝑗=0
𝑡 σ𝑘=0

𝑗
𝑔(𝑥𝑘)𝑖

𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡 + 𝜂𝑔(𝒙𝒕)𝑖

𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝜂𝑓(𝒚𝒕+𝟏)𝑖

𝑥𝑖,𝑡 and 𝑦𝑖,𝑡 are the position and momentum of oscillator 𝑠𝑖, respectively.
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A Stochastic Computing SB Cell

𝑥𝑖,𝑡+1 = 𝑥𝑖,0 + 𝜂2σ𝑗=0
𝑡 σ𝑘=0

𝑗
𝑔(𝑥𝑘)𝑖

The Stochastic Computing SB Cell (SC-SBC):
Aimed for higher area efficiency.

(SSI: Sequential Stochastic Integrator)

𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡 + 𝜂𝑔(𝒙𝒕)𝑖

𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝜂𝑓(𝒚𝒕+𝟏)𝑖

Convert a binary 𝑔(𝒙𝒕)𝑖 to a DSS
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A Binary-Stochastic Computing SB Cell

The Binary-Stochastic Computing SB Cell (BSC-SBC):
Aimed for higher performance.

(BEI: binary Euler integrator)

𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡 + 𝜂𝑔(𝒙𝒕)𝑖 𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝜂𝑓(𝒚𝒕+𝟏)𝑖

𝑥𝑖,𝑡+1 = 𝑥𝑖,0 + 𝜂2σ𝑗=0
𝑡 σ𝑘=0

𝑗
𝑔(𝑥𝑘)𝑖
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The SSBM System Design
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Application: Max-Cut Problems (MCPs)

 Experimental Setup

• Algorithms: bSB, dSB, SC-SBM (𝜂= 0.125,0.25,0.5), BSC-SBM (𝜂= 0.125,0.25,0.5).

• Benchmark: the K2000 benchmark 

• Time steps: 𝑇𝑠 = 1000, 𝑇𝑠 = 10000

 Evaluation: 

• The statistics of cut values from 100 trials:  

Ave: the average of cut values; Max: the maximum of cut values; Min: the minimum of cut values.

A larger Ave, Max and Min indicate a higher performance, given by a higher likelihood to jump out of the 

local optima, and thus a higher stability.

• Probability-to-target (𝑃𝑔) and Step-to-target (𝑆𝑔) 
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Performance Evaluation

 The proposed SSBM: higher Ave and Min values

are obtained with 𝜂 = 0.5 than with 𝜂 =

0.125, 0.25.

 Evaluated by Ave and Min, when 𝜂 = 0.5, the BSC-

SBM performs better than the SC-SBM when 𝑇𝑠 =

1000; the SC-SBM performs better than the BSC-

SBM when 𝑇𝑠 = 10000.

 It shows the advantages of BSC-SBM in a short

search, and SC-SBM in a long search.

(a) 𝑇𝑠 = 1000

(b) 𝑇𝑠 = 10000

* bSBM: ballistic simulated bifurcation machine;  
dSBM: discrete simulated bifurcation machine.
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Performance Evaluation (Cont’d)

The Values of 𝑃𝑔 and 𝑆𝑔 for the Max-cut Problems on K2000 Benchmark

 For 𝑻𝒔 = 𝟏𝟎𝟎𝟎, the SSBMs can achieve a higher 𝑃99.5% value than dSBM. Moreover, the proposed BSC-SBM 

performs similarly to bSBM. 

 For 𝑻𝒔 = 𝟏𝟎𝟎𝟎𝟎, it is difficult for bSBM to reach 𝑃99.8% of the best-known cut value due to the lack of ability 

to jump out of the local minima, and a better solution can be obtained by dSBM and SSBMs. 

 It shows that SSBMs find a better solution than dSBM in a short search and have a lower probability of being 

stuck at the local minima than bSBM in a long search.

* K2000: 2000 nodes, 1999000 edges, a complete graph, edge weight 𝑤𝑖𝑗 ∈ {−1,+1}, best-known cut value: 33337.
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Hardware Evaluation

 Experimental Setup

• Ising Machines: D-wave [3], JSSC’21 [8], JSSC’15 [14], ISSCC’21 [15], CICC’21 [16], JSSC’22 [17], vs. SC-SBM, 

BSC-SBM

• Simulation results for SC-SBM and BSC-SBM are obtained by using the Synopsys Design Compiler. 

• A CMOS 40 nm technology is applied with a supply voltage of 1.0 V and a temperature of 25℃.

 Evaluation

• Computing Method; Technology; # Spin; Topology; # Spin Interactions; Coefficient Bit-Width; Spin Type

• Power per Spin; Area per Spin; Frequency; # Spin Update Cycles

• Normalized Power per Spin, Normalized Area per Spin
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Hardware Efficiency
• The dense connectivity between spins leads to an increase in area and power.

• The spins in SC-SBM and BSC-SBM require 1.5X and 1.3X more power per spin than [8], respectively, due 

to the 3.9X larger connectivity. 

• The proposed SC-SBM and BSC-SBM utilize at least 10.62% smaller normalized area than [8].
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Conclusion

• A high-performance fully connected stochastic SB machine (SSBM) is designed for 

low-cost and accurate combinatorial optimization using the Ising model.

• Based on stochastic computing, two efficient SB cells are further designed by using 

SSIs to solve pairs of differential equations in SB. 

• The 2000-spin fully connected SSBM using the SC-SBC or BSC-SBC as a building 

block realizes fast energy convergence in a short search and also prevents from 

being stuck at the local minimum in a long search. 

• An improvement of at least 44% in power is achieved with a 1.19X speedup, 

compared to conventional SB machines.
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