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Abstract— A redundant system usually consists of primary and standby modules as critical 

components for fault tolerance. The so-called spare gate is extensively used to model the 

dynamic behavior of such a system in the analysis of dynamic fault trees (DFTs). Several 

methodologies have been proposed to evaluate the reliability of DFTs containing spare gates 

by computing the failure probability. However, either a complex analysis or a significant 

simulation time is usually required by such an approach. Moreover, it is difficult to compute 

the top event’s failure probability for basic events that are not exponentially distributed. 

Additionally, probabilistic common cause failures (PCCFs) have been widely reported, 

usually occurring in a dependent manner. Failure to account for the effect of PCCFs 

overestimates the reliability of a DFT. In this paper, stochastic computational models are 

proposed for an efficient analysis of spare gates and PCCFs in a DFT. Using these models, a 

DFT with spare gates under PCCFs can be efficiently evaluated. In the proposed stochastic 

approach, a signal probability is encoded as a non-Bernoulli sequence of random 

permutations of fixed numbers of 1s and 0s. The basic event’s failure probability is not 

limited to an exponential distribution, thus this approach is applicable to a DFT analysis in 

a general case. Several case studies are evaluated to show the accuracy and efficiency of the 
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proposed approach, compared to both an analytical approach and Monte Carlo (MC) 

simulation. 

Index Terms—Dynamic fault tree, warm spare gate (WSP), cold spare gate (CSP), hot spare 

gate (HSP), reliability analysis, stochastic computation, non-Bernoulli sequence, stochastic 

logic, probabilistic common cause failure (PCCF). 

ACRONYM 

FTA                  fault tree analysis 

DFT                 dynamic fault tree 

FDEP               functional dependency gate 

PAND              priority AND gate 

SEQ                 sequence enforcing gate 

WSP                 warm spare gate 

CSP                  cold spare gate 

HSP                  hot spare gate 

pdf                    probability density function 

cdf                     cumulative density function 

BDDs               binary decision diagrams 

SBDDs             sequential binary decision diagrams 
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MC                   Monte Carlo 

FPGA               field programmable gate array 

CCF                  common cause failure 

PCCF               probabilistic common cause failure 

NOTATION 

→                      an inclusive precedence in failure order 

𝑡                        mission time 

𝐴, 𝐵, 𝐶              basic events  

𝜆                       failure rate 

𝑝(𝑡𝑖)                 failure probability in the time interval [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡] 

𝑆(𝑡𝑖)                 binary sequence at time 𝑡𝑖 generated for 𝑝(𝑡𝑖) 

𝐿                       sequence length in bits for the stochastic approach 

I. INTRODUCTION 

AULT tree analysis (FTA) was first proposed in the 1960s for evaluating the reliability of a 

flight system [1]. Over the last few decades, this technique has been widely applied to the 

analysis of various systems, including chemical plants, nuclear reactors, airplane controllers and 

computers [2]. The so-called dynamic fault tree (DFT) has been developed to mimic the dynamic 

behavior of a system; this has been accomplished by incorporating several additional dynamic 

gates, such as the priority AND gate (PAND), the sequence enforcing gate (SEQ), the standby or 

F 
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spare gate (SPARE) and the functional dependency gate (FDEP) [3, 4, 5].  

Various approaches have been proposed to analyze DFTs, including Markov models [6, 7], 

Bayesian [8], an Inclusion/Exclusion approach [9], a numerical integration approach [10], binary 

decision diagrams (BDDs) [11], sequential binary decision diagrams (SBDDs) [12, 13] and Monte 

Carlo (MC) simulation [14, 15]. 

In a redundant system, some modules are online or operational, while one or more modules 

function as standby. They are therefore referred to as primary and standby modules, respectively. 

Standby modules are critical for tolerating hardware failures or software errors; this is achieved by 

removing the faulty primary module from the operation and replacing it with a spare unit [16]. In 

a DFT, the primary and standby modules are considered as input events to a spare gate [13]. If the 

primary and standby components are not treated as basic events, or the input events include several 

standby components, it becomes cumbersome to obtain the failure probability through the use of 

existing approaches. Recently, stochastic computational approaches using random binary bit 

streams have been proposed for the reliability analysis of logic circuits [17, 18] and DFT analysis 

[19]. It has been shown that the use of non-Bernoulli sequences of random permutations of fixed 

umbers of 1s and 0s as initial inputs leads to an efficient and accurate evaluation by a stochastic 

approach [18]. A stochastic model for PAND gates has been proposed for use in an efficient DFT 

analysis [20]. As shown in [20], signal correlations are inherently preserved in stochastic 

sequences; hence, repeated events are readily accounted. Furthermore, the general case of non-

exponential distributions is modeled efficiently by a stochastic approach [20]. For systems with 

perfect fault coverage, the FDEP can be treated as an OR gate [21, 22]; the SEQ gate can be 

regarded as a special case of a cold spare gate (CSP) [23]. Furthermore, a hot spare gate (HSP) is 

logically equivalent to an AND gate [13]. The priority relationship is considered in the stochastic 
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PAND model of [20]; however, modeling of spare gates (and in particular, the warm spare gate 

(WSP) and CSP), has not been considered. Hence, this paper focuses on the WSP and CSP gates. 

A stochastic model is first proposed for spare gates in the analysis of DFTs; both exponential and 

non-exponential (e.g. Weibull) distributions are then analyzed using this stochastic model. 

In practice, the basic events of a system are often subject to common cause failures (CCFs) 

including earthquakes, sudden changes in the environment, design errors and incorrect operations 

[24]. CCFs are sometimes closely related; for instance, floods are likely to be caused by hurricanes. 

These CCFs are referred to as dependent CCFs. Furthermore, the occurrence of a CCF is usually 

not deterministic, but probabilistic, thus referred to as a probabilistic CCF (PCCF) [25]. The 

probability of occurrence differs by components or conditions. The consideration of PCCFs in a 

DFT analysis is of great significance as the system’s reliability is likely to be overestimated 

without incorporating PCCFs. However, it presents a great challenge to consider PCCFs in a DFT 

analysis using existing methods, such as an integration-based approach. In this paper, a stochastic 

model is proposed for modeling the effect of dependent PCCFs. A general DFT with 

independent/dependent PCCFs can be efficiently evaluated by the proposed stochastic approach. 

The accuracy of a stochastic analysis increases with the length of the non-Bernoulli sequences in 

stochastic computation. In summary, this paper makes the following novel contributions: 

1. Stochastic computational models for WSP and CSP, as well as for CCFs and PCCFs. 

2. An efficient analysis of DFTs using stochastic models for different static and dynamic 

gates by incorporating CCFs and PCCFs; both exponential and non-exponential failure 

distributions are considered for the failures of basic events. 

The remainder of this paper is organized as follows. Section II presents some hypotheses 

considered in this work. Section III presents a review of spare gates. Section IV first introduces 
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the fundamentals of the stochastic approach and a non-Bernoulli sequence generation algorithm; 

then, stochastic models are proposed for spare gates, majority voters and CCFs/PCCFs. Several 

benchmarks are simulated and analyzed in Section V. Finally, Section VI concludes the paper. 

II. ASSUMPTIONS 

The following assumptions are made in this paper: 

 The quantization level of a basic event is represented as a binary variable 𝑥, 𝑥 ∈ {0,1}, with 

0 indicating no fault; 

 All basic events are fault-free at the beginning of the mission time; 

 The basic events are assumed to be non-repairable [26]; 

 The failure probability of a component in a selected time interval [𝑡𝑖, 𝑡𝑖 + 𝛥𝑡] is considered 

constant at the value at the beginning of the time interval, i.e., the failure probability is given 

by 𝑝 = 𝐹(𝑡𝑖) for any time in the considered time interval. For simplicity, the time interval 

[𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡] is referred to as time 𝑖 in this paper. 

III. REVIEW OF SPARE GATES 

A standby system modeled by a spare gate usually consists of two types of modules: the 

primary (or online) modules and the standby modules. Standby modules are used to replace the 

faulty modules to keep the system functional or operational. Hence, the spare gate fires (i.e., fails) 

if both of the modules fail. Spare gates are divided into three categories, depending on the 

switching relationship of the primary and standby modules: the hot spare gate (HSP) [13, 26], the 

cold spare gate (CSP) [13, 26], and the warm spare gate (WSP) [26, 27, 28, 29]. In an HSP system, 

a standby module is always powered and ready to replace a faulty primary module when a fault 

occurs. HSPs are typically used in systems, in which a minimal reconfiguration time is required, 
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e.g. a chemical process control system. In a CSP, however, the standby modules are usually not 

powered until it is necessary to replace a faulty module [30]. Hence, it is usually used in power 

consumption critical systems, such as a satellite system [16]. As a tradeoff between CSP and HSP, 

the standby modules in a WSP are powered initially, but with a lower failure rate. The failure rate 

of the standby module in a WSP changes when it is switched to replace a faulty module [27]. For 

WSP, usually less power is consumed in the standby state compared to HSP, and less initialization 

and recovery time are required compared to CSP [28, 29]. 

WSP

HSP

CSP

P S S

spare

P 1
0

10 

 
Fig. 1. A spare gate [26]. It is classified into different categories (WSP, HSP and CSP) by the factor 𝛼, according 

to the failure behavior of the standby module. 

Fig. 1 shows different types of spare gate. A spare gate models the sequential failure events 

of the primary online module, 𝑃, (with a failure rate of 𝜆𝑃) and the standby module, 𝑆. The failure 

rate is assumed to be 𝛼 ∙ 𝜆𝑆  prior to the switching of the standby module to replace a faulty 

component. The standby module in operation is subject to a failure rate 𝜆𝑆 after switching. Hence, 

the spare gate can be classified by a different value of the factor 𝛼: if 𝛼 = 1, the gate is an HSP 

gate; if 0 < 𝛼 < 1, it becomes a WSP gate; if 𝛼 = 0, it is a CSP gate. A generic failure rate 

switching diagram for a spare gate is shown in Fig. 2. 
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Fig. 2. A generic switching diagram for the failure in a spare gate [12, 26]. 

HSP and CSP gates can be regarded as special cases of the WSP gate; the only difference 

lies in the value of the failure rate before and after the switching point. A spare gate can be 

converted into a combinational fault tree with two sequential components serving as inputs of an 

OR gate, as shown in Fig. 3 [12, 13].  

G

G

(a)  (b)

PS  SP 

SP 

 

Fig. 3. The spare gate decomposition: (a) A combinational model for the spare gate, and (b) A simplified model 

for CSP. " → " indicates an inclusive precedence in a failure order. 

In Fig. 3, the sequential event 𝑆 → 𝑃 indicates that both modules fail and the standby 

module fails before the primary module does; while the sequential event 𝑃 → 𝑆 means that both 

modules fail and the primary module fails before the standby module. The two sequential events 

cannot occur at the same time, thus they are mutually exclusive. Furthermore, it is impossible for 

the standby module of a CSP gate to fail because the failure rate of the standby module before 

switching is 0. Hence, the combinational model for a CSP gate can be simplified as shown in Fig. 

3(b); this indicates that the output failure probability of a CSP gate is the same as the failure 

probability of the sequential event 𝑃 → 𝑆. The output failure probability of the spare gate in Fig. 

3(a) is given by [12]: 

𝑈𝑠𝑦𝑠 = 𝑝(𝑃 → 𝑆) + 𝑝(𝑆 → 𝑃),                                         (1)  
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while the probabilities of the two sequential failure events in (1) are given by: 

𝑝(𝑃 → 𝑆) = ∫ ∫ 𝑓𝑃(𝜏2)𝑓𝑆,𝜆(𝜏1)
𝑡−𝜏2

0

𝑡

0
(1 − ∫ 𝑓𝑆,𝛼𝜆(𝜏1)𝑑𝜏1

𝜏2

0
)𝑑𝜏2𝑑𝜏1,       (2) 

and 

𝑝(𝑆 → 𝑃) = ∫ ∫ 𝑓𝑃(𝜏2)𝑓𝑆,𝛼𝜆(𝜏1)
𝑡

𝜏1

𝑡

0
𝑑𝜏2𝑑𝜏1,                               (3) 

where 𝑓𝐴(𝑡), 𝑓𝑆,𝛼𝜆(𝑡) and 𝑓𝑆,𝜆(𝑡) are the failure probability density functions (pdfs) for the primary 

module, the standby module before replacing the faulty primary module and after replacing the 

faulty primary module. For a k-out-of-n WSP system consisting of identical WSPs, a closed 

expression can be derived; however, it is only applicable to systems with identical input events 

[31]. 

IV. PROPOSED STOCHASTIC MODELS 

A. Stochastic Computation 

Stochastic computation was initially proposed in the 1960s for reliable circuit design [32]. 

Probabilities are encoded into random binary bit streams by setting a proportional number of bits 

to a specific value, i.e., 1 or 0. By using stochastic logic, Boolean logic operations are transformed 

into probabilistic computations in the real domain. Stochastic computation has the advantages of 

hardware simplicity and fault tolerance. However, inevitable random fluctuations occur in the 

computation of probabilities. Conventionally, Bernoulli sequences are utilized as random binary 

bit streams in stochastic computation. In a Bernoulli sequence, every bit is independently generated 

as 1 or 0, according to a specified probability. For a probability of 0.5, this process is similar to a 

coin-flipping experiment, i.e. a head or tail is observed for approximately half of the trials. Due to 

its probabilistic nature, the number of 1s or 0s in a Bernoulli sequence is not deterministic, so 

stochastic fluctuations exist in the computed result. [18] has shown that the use of non-Bernoulli 
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sequences of fixed numbers of 1s and 0s for the initial input probabilities significantly reduces the 

effect of stochastic fluctuations compared to Bernoulli sequences. In this type of non-Bernoulli 

sequences [18], the numbers of 1s and 0s are computed from a specified probability, and then they 

are randomly permuted to encode the probability. This is a more efficient process compared to the 

generation of Bernoulli sequences, because less pseudo-random numbers need to be generated. 

The non-Bernoulli sequences contain deterministic numbers of 1s and 0s, so there is no variation 

in the initial sequences. Therefore, the use of non-Bernoulli sequences as initial inputs results in 

less variation in the stochastic computing process of a network, thus it produces more accurate 

results than the case when Bernoulli sequences are used as initial inputs.  

Examples of computation and encoding using non-Bernoulli sequences are shown in Fig. 

4(a-d) for a sequence length of 10 bits; a longer sequence length is usually required in a practical 

application, as shown in Fig. 4(e). For the 2-to-1 multiplexer of Fig. 4(e), the output takes the value 

of one of the two inputs when the control bit is 0 or 1. When stochastic sequences are used as input 

and control signals, this multiplexer selects one of the inputs as output according to the 

distributions (and thus the probabilities) of 0s and 1s in the control sequence. In a stochastic 

implementation, the multiplexer takes one of the inputs as output according to the probabilities 

encoded in the distributions of the control bits.  

Furthermore, the repeated input events (as typically encountered in an FTA) are readily 

dealt with in a stochastic approach because a stochastic computing technique efficiently handles 

the problem of signal re-convergence [20], as shown in Fig 4(c). The stochastic logic gates used 

in this work are shown as follows: 
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Fig. 4. Stochastic logic: (a) An inverter with a random binary bit sequence as input, (b) An AND gate with 

independent inputs, (c) an AND gate with totally dependent inputs, (d) An OR gate with independent inputs, (e) 

A 2-to-1 multiplexer. 

B. Stochastic models for spare gates 

The discretization of a continuous probability distribution and the generation of the non-

Bernoulli sequences are introduced next, followed by a stochastic model for the spare gate.  

1) Discretization 

Given the probability density function (pdf) of a failure, 𝑓(𝑡), the cumulative density 

function (cdf), 𝐹(𝑡), is calculated as 𝐹(𝑡) = ∫ 𝑓(𝑡)
𝑡

0
𝑑𝑡 . Similar to [20], the mission time 𝑡 is 

divided into 𝑀  equal time intervals; 𝑀  is determined by a tradeoff between accuracy and 

efficiency. The discretization provides a relatively accurate estimate of the failure probability of a 
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basic event with a reasonable 𝑀. 

2) Generation of non-Bernoulli sequences 

Let the failure probabilities for two adjacent time intervals, time 𝑖 − 1 and time 𝑖 , be 

denoted by 𝑝𝑖−1 and 𝑝𝑖 respectively. Since the non-Bernoulli sequences use random permutations 

of fixed numbers of 1s and 0s, for a sequence length of 𝐿 bits the number of 1s in the sequences 

for the two failure probabilities are determined by 𝑁(𝑝𝑖−1) = 𝐿 ∙ 𝑝𝑖−1  and 𝑁(𝑝𝑖) = 𝐿 ∙ 𝑝𝑖 

respectively. Let the non-Bernoulli sequence for the probability at time 𝑖 − 1 be represented by 

𝑆(𝑝𝑖−1) , then the sequence 𝑆(𝑝𝑖)  for the probability at time 𝑖  can be obtained by randomly 

assigning a number of 1s to replace the 0s in 𝑆(𝑝𝑖−1); this number is given by 𝛥𝑁 = 𝑁(𝑝𝑖) −

𝑁(𝑝𝑖−1) = 𝐿 ∙ (𝑝𝑖 − 𝑝𝑖−1). The relationship between the two non-Bernoulli sequences for two 

adjacent time intervals is then given by: 

𝑆(𝑝𝑖) 𝐴𝑁𝐷 𝑆(𝑝𝑖−1) = 𝑆(𝑝𝑖−1).                                               (4) 

(4) is due to the assumption of non-reparability, such that the 1s in 𝑆(𝑝𝑖−1) still remain as 1s in 

𝑆(𝑝𝑖); thus, the mutual set in both sequences is given by 𝑆(𝑝𝑖−1). 

3) Stochastic model of the WSP/CSP gate 

The failure probability of the spare gate with any inputs is given by (1); however, it is more 

complex to derive the exact failure probability for non-exponentially distributed basic events. 

Those are generally more realistic to model a basic event’s failure behavior in a mechanical system. 

The derivation process becomes even more cumbersome when the primary and standby 

components are combinations of several other events. Moreover, the components in a realistic DFT 

system may also suffer from common cause failures that occur either deterministically or 

probabilistically. This makes the distribution of the failure behavior even more complicated. 

Hence, a stochastic model is proposed in this paper for efficiently analyzing spare gates.  
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Let 𝑆𝑖−1
𝑃  and 𝑆𝑖

𝑃 denote the non-Bernoulli sequences generated for the failure probabilities 

of the primary module at two adjacent time intervals 𝑖 − 1 and 𝑖, i.e., 𝐹𝑖−1
𝑃  and 𝐹𝑖

𝑃, where 𝐹𝑃 is the 

cdf for the failure of the primary module. As a primary module is non-repairable, the relationship 

of (4) must be met. For the 𝑗th bit in the non-Bernoulli sequence, the state of the primary module 

is given by 𝑆𝑖−1,𝑗
𝑃  and 𝑆𝑖,𝑗

𝑃   for the two consecutive time intervals: a state of 0 or 1 indicates that no 

fault occurs or a fault occurs. The state combination of the primary module at time 𝑖 − 1 and time 

𝑖 for the 𝑗th trial – a trial is carried out by a bit or a combination of bits in the stochastic sequences 

- is represented by 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 , where 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 ∈ {00, 01, 11} , due to the non-reparability 

assumption. For the WSP/CSP gate, the failure rate of the standby module varies before and after 

switching to replace the primary module (for CSP, the failure probability is 0 before switching). 

Hence, it is necessary to record the failure time of the primary module to determine the failure 

probability of the standby module. If 𝑆𝑘−1,𝑗
𝑃 = 0 and 𝑆𝑘,𝑗

𝑃 = 1, it indicates that the primary module 

fails at time 𝑘 for the 𝑗th trial; hence, for WSP and CSP, the operational time of the standby module 

should be determined from the failure time of the primary module, i.e., 𝑡𝑠 = 𝑖 − 𝑘, where 𝑖 is the 

present mission time and 𝑘 is the failure time of the primary module. Similarly, the operational 

time of the standby module can be determined for any other trial. 

Let 𝑆𝑖−1
𝑆  and 𝑆𝑖

𝑆 be the stochastic sequences generated for the failure probabilities of the 

standby module at two adjacent time intervals 𝑖 − 1 and 𝑖. Then we discuss the following three 

different cases when  𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 00,  𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 01 and  𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 11: 

 For 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 00, the primary module does not fail at time 𝑖. For a WSP, if  𝑆𝑖−1,𝑗
𝑆 = 1, 

then  𝑆𝑖,𝑗
𝑆 = 1 . If 𝑆𝑖−1,𝑗

𝑆 = 0 , the current state of the standby module for the jth trial is 

determined by the failure probability, i.e., the cdf  𝐹𝑖
𝑆,𝛼𝜆

 obtained from the failure rate of the 
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standby module before it is switched to replace the primary module.  

 For 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 01, the primary module fails at time 𝑖 and the standby module is expected to 

replace the faulty primary module at the failure time. For a WSP, hence, if  𝑆𝑖−1,𝑗
𝑆 = 0, 𝑆𝑖,𝑗

𝑆  is 

determined by the failure cdf of the standby module before switching to replace the faulty 

module, 𝐹𝑖
𝑆,𝛼𝜆

, because the primary module still functions at time 𝑖 − 1.  

In both of these two cases, 𝑆𝑖,𝑗
𝑆  remains 0 for a CSP as the standby module is not activated 

prior to the failure of the primary module and is assumed to be fault free before it is switched to 

replace the faulty primary module.  

 For 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 11, the primary module has failed by time 𝑖 − 1. For the standby module, if 

𝑆𝑖−1,𝑗
𝑆 = 1, then 𝑆𝑖,𝑗

𝑆 = 1. Otherwise, 𝑆𝑖−1,𝑗
𝑆  is determined for a WSP gate by the failure cdf, i.e. 

𝐹𝑡𝑠

𝑆,𝜆
, obtained from the failure rate of the standby module after switching to replace the faulty 

primary module; while for a CSP, it is also determined by 𝐹𝑡𝑠

𝑆,𝜆
, where 𝑡𝑠 is the operational 

time of the standby module.  

These processes are shown in the flowchart of Fig. 5(a), which can be implemented by the 

stochastic architecture in Fig. 5(b). These stochastic architectures model the sequential behavior 

of the WSP/CSP gates. 
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Fig. 5 (a) Flowchart for generating the stochastic sequences of the standby module, and (b) A general stochastic 

logic model for the spare gates (WSP and CSP). 𝑆𝑖
𝑈 denotes the output sequence for the spare gate. 

The proposed stochastic model is applied to evaluate the WSP in Fig. 1; the results are 

compared with those obtained by an accurate approach [12], as shown in Table 1. In Table 1, the 

failures of basic events are exponentially distributed with 𝜆𝑃 = 0.001, 𝛼 = 0.6, and 𝜆𝑆 = 0.0025. 

𝑭𝐴 and 𝑭𝑆 are the failure probability vectors for the accurate and stochastic analysis respectively. 
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∆𝑭𝑆−𝐴 denotes the discrepancies of the two failure probability vectors, i.e., ∆𝑭𝑆−𝐴 =  𝑭𝑆 − 𝑭𝐴. 

The differences between the simulation results are measured by several norms. For a vector 𝒙, the 

norms are defined as ‖𝒙‖1 = ∑ |𝑥𝑖|𝑛
𝑖=1 , ‖𝒙‖2 = √∑ |𝑥𝑖|2𝑛

𝑖=1  and ‖𝒙‖∞ = 𝑚𝑎𝑥
1≤𝑖≤𝑛

|𝑥𝑖|, where 𝑛 is the 

number of elements in the vector 𝒙.  

Table 1 Evaluation of the stochastic WSP gate model for a mission time of 1000 hours compared with an accurate 

approach [12]. The average simulation time for the stochastic approach is also provided. 

Sequence length 𝐿 (bits) 𝐿 = 1k 𝐿 = 10k 𝐿 = 100k 

‖∆𝑭𝑆−𝐴‖1 6.0512 2.1548 0.8354 

‖∆𝑭𝑆−𝐴‖2 0.2424 0.0763 0.0163 

‖∆𝑭𝑆−𝐴‖∞ 0.0189 0.0047 0.0025 

Average run time (s) 0.2385 1.0893 10.477 

For the WSP gate with the same initial parameters of Table 1, the top event’s failure 

probability is obtained for different mission times by the accurate and stochastic approaches (for 

a sequence length of 10k). For the WSP gate, the exact failure probabilities for 300, 600 and 1000 

hours (as computed by (1)) are 0.1175, 0.3173 and 0.5500 respectively, while the results obtained 

by the stochastic approach are 0.1153, 0.3136 and 0.5477 by using a sequence length of 10k bits. 

As shown in Fig. 6, the accuracy of the stochastic approach can be further improved with longer 

stochastic sequences. In general, the stochastic approach accurately computes the failure 

probability at a reasonable sequence length (e.g. 10k bits). 
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Fig. 6 The differences in the failure probabilities obtained by the stochastic approach and an accurate analysis for 

the WSP in Fig. 1. 

C. Stochastic models for CCFs and majority voters 

The stochastic model for common cause failure (CCF) is presented next for analyzing a 

general DFT. This is followed by an improved model that considers the CCF’s probabilistic 

behavior, i.e., probabilistic CCFs (PCCFs). Finally, a stochastic majority voter is proposed. 

1) Stochastic model for CCFs 

Generally, CCFs are usually modeled by two types of methods: explicit methods [33, 34] 

and implicit methods [35, 36]. In this paper, an explicit method is modeled by a stochastic approach 

and the CCF is considered as a basic event. To model dependent CCFs, a multiplexer is used with 

the stochastic sequences as inputs, as shown in Fig. 7(a). For a DFT [37], a hurricane occurs with 

a probability of 𝑝(ℎ) = 0.015 . As floods usually occur in conjunction with hurricanes, the 

dependent relationship between the hurricane and flood can be described by conditional 

probabilities. The occurrence of floods is usually conditional on the occurrence of hurricanes, 

denoted as 𝑝(𝑏 = 𝑓|ℎ) = 0.55 and 𝑝(𝑎 = 𝑓|ℎ̅) = 0.035. These conditional probabilities can be 
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derived from available weather information [38]. 

The function computed by the 2-to-1 multiplexer in Fig. 7 (a) is given by:  

𝑝(𝑓) = 𝑝(𝑎 = 𝑓|ℎ̅) ∙ 𝑝(ℎ̅) + 𝑝(𝑏 = 𝑓|ℎ) ∙ 𝑝(ℎ),                                      (5) 

where 𝑓|ℎ̅ and 𝑓|ℎ are the events of floods (𝑓) conditional on the occurrence of a hurricane (ℎ). 

The output of the multiplexer is determined by the value of the control bit. For the 2-to-1 

multiplexer of Fig. 7(a), one of the inputs is selected as the output according to the distributions of 

0s and 1s in the control sequence encoding the signal probability of ℎ. For a sequence length of 

10k bits, the input sequences for probabilities of 𝑝(𝑓|ℎ) = 0.55 and 𝑝(𝑓|ℎ̅) = 0.035 consist of 

5500 and 350 1s, respectively. If the random input sequences are independent, the output of the 

multiplexer is expected to be 0.0427 (by (5)), i.e. approximately 427 1s are expected in the output 

sequence for a sequence length of 10k bits. If multiple conditions are considered, for example to 

compute 𝑝(𝐴𝐵𝐶) based on 𝑝(𝐴𝐵) and 𝑝(𝐶|𝐴𝐵), two conditions can first be combined, e.g., using 

an AND gate for a conjunction of the two events A and B; then this new condition can be used as 

the control input to a multiplexer for computing the joint probability 𝑝(𝐴𝐵𝐶). This process is 

shown in Fig. 7(b). The computed result is however approximate due to the inevitable stochastic 

fluctuations inherent in the processing of the random binary bit streams. This is an important 

feature in stochastic computation as probabilistic values are propagated rather than deterministic 

ones.  
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Fig. 7 (a) A stochastic multiplexer model for the dependency relationship between the two dependent CCFs of 

flood (f) and hurricane (h), and (b) A stochastic model for computing the joint probabilities of multiple 

conditions. 

It has been shown in [18] that when the initial probabilities are encoded by non-Bernoulli 

sequences, the stochastic fluctuations are significantly reduced compared with the use of Bernoulli 

sequences. For the previous example, the occurrence probability of floods is obtained by using a 

multiplexer with stochastic non-Bernoulli sequences; the mean and variance are reported in Table 

2 for a number of simulations using different sequence lengths. As shown by the simulation results, 

the evaluation accuracy is better for the stochastic approach with a smaller variance and it can be 

improved with an increase of sequence length. 

Table 2 Mean and variance of the occurrence probability of flood obtained by using the stochastic approach and 

Monte Carlo (MC) method for 1,000 experiments with different sequence lengths or simulation runs.  

Sequence length 𝐿 (bits) / Simulation runs 

𝑁 

𝑁/𝐿 = 1k 𝑁/𝐿 = 10k 𝑁/𝐿 = 100k 

Stochastic approach Mean 0.04264 0.04274 0.04274 

Variance 3.892 × 10−6 4.159 × 10−7 3.829 × 10−8 

Monte Carlo 

simulation 

Mean 0.04284 0.04265 0.04271 

Variance 5.5956 × 10−5 4.1978 × 10−6 4.0124 × 10−7 

The stochastic approach efficiently computes the occurrence probability of dependent 

CCFs as evidenced by the average run time in Table 2. Moreover, the variance is significantly 
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reduced with an increase of sequence length. The use of a sequence length of 1k bits generates 

very accurate results, with a relative disparity (RD) of approximately 0.23%, compared to the 

analytical result of 0.0427 computed by (5). RD is defined as: 

𝑅𝐷 = (𝑝 − 𝑝0)/𝑝0,                                                         (6) 

where 𝑝 and 𝑝0 are the probabilities obtained by using the stochastic approach and an accurate 

analysis, respectively. For an increased sequence length, a smaller RD can be obtained by the 

stochastic approach.  

2) A stochastic model for PCCF 

A mechanical system can be subject to multiple CCFs, as denoted by 𝐶𝐶𝐹1, 𝐶𝐶𝐹2, ⋯,𝐶𝐶𝐹𝑚. 

The failure of a dependent event affected by a specific CCF (say 𝐶𝐶𝐹𝑖 ) occurs with certain 

probability, so the CCF is considered as a probabilistic CCF (PCCF). The occurrence probability 

of a PCCF is given by 𝛾𝑖 = 𝑝(𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑒𝑣𝑒𝑛𝑡 𝑓𝑎𝑖𝑙𝑠|𝐶𝐶𝐹𝑖 𝑜𝑐𝑐𝑢𝑟𝑠); 𝛾𝑖 may vary for different 

components affected by a CCF.  
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Fig. 8 (a) A PCCF gate [25], (b) a combinational model for the PCCF gate, and (c) proposed stochastic model for 

the PCCF gate. 

In Fig. 8(a), the CCF occurs as a trigger event with probability p; then one or more dependent 

events affected by the trigger event fail at a specific probability. For example, an event 𝑆𝑖 occurs 
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with probability 𝛾𝑖 if the trigger event occurs. Let 𝑆𝑖𝑎 and 𝑆𝑖𝑏 denote the failures of the basic event 

𝑆𝑖 without and with considering the effect of a CCF; then if 𝑆𝑖𝑎 or 𝑆𝑖𝑏 occurs, the output event 𝑆𝑖 

fails. Thus, the failure of the event 𝑆𝑖 can be modeled as an OR gate with two input events 𝑆𝑖𝑎 and 

𝑆𝑖𝑏  (as illustrated in Fig. 8(b)). The event 𝑆𝑖𝑏  occurs with probability 𝑝 ∙ 𝛾𝑖 , where  𝑝  is the 

occurrence probability of the CCF and 𝛾𝑖 is the conditional failure probability of the dependent 

event 𝑆𝑖 affected by the CCF. A stochastic model is proposed to implement the PCCF, as shown 

in Fig. 8(c). The simulation results for this model are shown in Table 3 for 𝑝(𝐴) = 0.1 and 

𝑝(𝐶𝐶𝐹) = 0.01; the probability of event 𝐴 affected by the CCF is given by 𝛾 = 0.3. 

Table 3 Mean and variance of the simulated occurrence probability of a component A under a PCCF by applying the 

stochastic approach for 1,000 simulations. The average run time is also provided. 

Sequence length 𝐿 (bits) 𝐿 = 1k 𝐿 = 10k 𝐿 = 100k 

𝑝(𝐴) Mean 0.1026 0.1027 0.1027 

Variance 1.9439 × 10−6 2.1275 × 10−7 1.9579 × 10−8 

Average run time (s) 0.000642 0.006680 0.071408 

As revealed in Table 3, the proposed stochastic approach accurately computes the occurrence 

probability of PCCFs. The relative disparity (given by (6)) is approximately 0.0974% for a 

sequence length of 1,000 bits compared with the analytical result of 0.1027 [25]. Furthermore, the 

variance can be significantly reduced with a longer sequence length, thus the accuracy in the failure 

probability obtained by the stochastic approach increases with an increase of sequence length. 

3) A stochastic model for Majority voter 

The stochastic structure for a majority voter (2/3) is shown in Fig. 9, as implemented by 

stochastic logic in Fig. 9(b). The analytical expression for the output probability of the majority 

voter (2/3) is given by [40]: 
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𝑝(𝑂𝑢𝑡) = 𝑝(𝐴) ∙ 𝑝(𝐵) + 𝑝(𝐴) ∙ 𝑝(𝐶) + 𝑝(𝐵) ∙ 𝑝(𝐶) − 2 ∙ 𝑝(𝐴) ∙ 𝑝(𝐵) ∙ 𝑝(𝐶)      (7) 
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B 2/3
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Out
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Fig. 9 (a) A majority voter (2/3) [40]; (b) A stochastic model for the majority voter (2/3). 

 

Table 4 Mean and variance of the failure probabilities of 2/3 and 3/5 majority voters, obtained by the stochastic 

approach. The average simulation time is also provided. 

For 2/3 voter, 𝑝(𝐴) = 0.3, 𝑝(𝐵) = 0.6, 𝑝(𝐶) = 0.2 

Sequence length L (bits)  𝐿 = 1k 𝐿 = 10k 𝐿 = 100k 

Mean 0.2882 0.2880 0.2880 

Variance 6.3098 × 10−5 5.4278 × 10−6 5.8191 × 10−7 

Average simulation time (s) 0.002396 0.002264 0.013988 

For 3/5 voter, 𝑝(𝐴) = 0.2, 𝑝(𝐵) = 0.4, 𝑝(𝐶) = 0.5, 𝑝(𝐷) = 0.1, 𝑝(𝐸) = 0.4 

Sequence length 𝐿 (bits)  𝐿 = 1k 𝐿 = 10k 𝐿 = 100k 

Mean 0.1783 0.1781 0.1780 

Variance 6.6767 × 10−5 6.2741 × 10−6 6.3871 × 10−7 

Average simulation time (s) 0.003154 0.027721 0.281911 

For a (2/3) majority voter with inputs’ failure probabilities given in Table 4, the output failure 

probability is 0.2880 by (7); the relative disparity (RD) is 0.069% (given by (6)) for the stochastic 

approach using sequences of 1k bits. For a (3/5) majority voter, the output probability is 0.1780 

using the analysis of [40], while the RD is approximately 0.17% for the stochastic approach with 
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𝐿 = 1k bits. Thus, the error in the failure probability for the stochastic approach decreases with 

the increase of sequence length. Similar stochastic circuits can be constructed for majority gates 

with more than three inputs.  

D.  DFT analysis flow 

Following the proposed stochastic models for the spare and PAND gates [20], the process for 

evaluating the top event’s failure probability of a general DFT with PCCFs, consists of the 

following steps: 

i. Replace the original spare gate with the proposed stochastic model for WSP/CSP in Fig. 5(b);  

ii. Substitute the original FDEP and PAND gates with the OR model [21, 22] and the stochastic 

PAND model in [20] respectively; then a DFT with dynamic gates can be implemented by 

combinational logic; 

iii. Encode the events’ failure probabilities at different time steps into non-Bernoulli sequences; 

iv. If PCCFs are considered in the DFT, an additional PCCF module is required for each of the 

basic events subject to PCCFs. Moreover, if the CCFs are dependent, a stochastic multiplexer 

is used to model the effect of the dependency. 

v. Derive the top event’s failure probability at different time steps by propagating the non-

Bernoulli sequences through the stochastic models.  

V. CASE STUDIES 

In this section, several case studies are presented to show the efficiency and accuracy of the 

stochastic method, in comparison with the analytical method of [10] and the Monte Carlo (MC) 

approach of [15]. Simulations are performed for DFTs with and without probabilistic common 

cause failures (PCCFs). Furthermore, the effect of dependent PCCFs is also analyzed. Non-

exponential distributions of the basic events are also considered to show the capabilities of the 
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stochastic approach to handle general cases. All simulations are run on a computer with a 3.10 

GHz i3-2100 microprocessor and a 6 GB memory. 

Let the failure probability of a basic event 𝐵 at time 𝑖 be 𝐹𝑖
𝐵, 𝑖 ∈ {1, 2, ⋯ , 𝑀}, obtained as the 

failure cdf for the basic event; then the failure probability of the DFT is given by: 

 𝐹(𝑖) = 𝑓(𝐹𝑖
𝐵),                                                    (8) 

where 𝑓(. ) indicates the logic operation determined by the system’s topology. Hence, the failure 

probability vector for the entire mission time is given by a vector 𝑭 = (𝐹(1), 𝐹(2), ⋯ , 𝐹(𝑀)), 

where 𝑀 indicates the number of discretized intervals of the mission time. The failure probability 

vectors obtained using the stochastic, analytical [10] and MC [15] approaches are then represented 

by 𝑭𝑆, 𝑭𝐴 and 𝑭𝑀𝐶 respectively. Hence, ∆𝑭𝑆−𝐴 indicates the disparity vector for the stochastic and 

analytical methods; ∆𝑭𝑀𝐶−𝐴 represents the disparity vector for the MC and analytical approaches. 

Similarly, the norms, ‖∙‖1, ‖∙‖2 and ‖∙‖∞, are used to measure the differences of these failure 

probability vectors.  

A. HECS with and without PCCFs 

A DFT of the Hypothetical Example Computer System (HECS) (from [26] and shown in Fig. 

10) is used to illustrate the efficiency and accuracy of the proposed stochastic method.  

A1 A2
Cold 

Spare A
Memory 

Interface Unit1

Memory 

Interface Unit2

Operator console 

Operator & software

M1 M2 M3 M4 M5

Redundant bus

 

Fig. 10 The Hypothetical Example Computer System (HECS) [26]. 
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The correct operation of the HECS is determined by the states of different systems such as the 

processor (A1, A2 and A), memory, bus and application interfaces [41]. The HECS will fail if any 

of the four subsystems fail. The computer of Fig. 10 is modeled by a DFT in Fig. 11(a) as illustrated 

in [41]. Using the stochastic models of the dynamic gates, a complete stochastic system can be 

constructed for the HECS, as shown in Fig. 11(b).  
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Fig. 11 (a) A DFT of HECS with CSP, FDEP and static gates [41], and (b) the stochastic model for the HECS 

with constituent dynamic gate models. 

 

Table 5 The failure rates of the basic events in the HECS [26, 41]. 

Basic event Failure rate (ℎ−1) 

A1 A2 A 10−4 

M1M2 M3 M4 M5 6 × 10−5 

MIU1,MIU2 5 × 10−5 

BUS1,BUS2 10−6 

HW 5 × 10−5 

SW 3 × 10−2 

OP 10−3 
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The mission time of the HECS is assumed to be 100 hours and the failure behaviors of the 

basic events in the HECS are considered to be exponentially distributed (the failure rates are shown 

in Table 5 [26, 41]). 

For a mission time of 100 hours, the difference in failure probabilities of the HECS and the 

average simulation time are shown in Table 6 for the different approaches. 𝑁 and 𝐿 denote the 

number of simulation runs for the MC method and the sequence length for the stochastic approach, 

respectively. The norms of the disparity vectors are presented for the stochastic and MC [15] 

approaches.  

Table 6 Norms of the differences in the top event’s failure probability vectors obtained by the proposed stochastic 

approach and MC simulation for the DFT in Example A. The average run time is also provided.  

 𝑁/𝐿 = 1k 𝑁/𝐿 = 10k 𝑁/𝐿 = 100k 

‖∆𝑭𝑆−𝐴‖1 0.1749 0.0529 0.0168 

‖∆𝑭𝑆−𝐴‖2 0.0225 0.0066 0.0023 

‖∆𝑭𝑆−𝐴‖∞ 0.0064 0.0016 7.0872 × 10−4 

‖∆𝑭𝑀𝐶−𝐴‖1 0.8199 0.2830 0.1024 

‖∆𝑭𝑀𝐶−𝐴‖2 0.1079 0.0386 0.0140 

‖∆𝑭𝑀𝐶−𝐴‖∞ 0.0364 0.0134 0.0049 

Average run 

time (s) 

Accurate Analysis 0.001738 

Stochastic 0.0509 0.3868 3.9639 

MC 0.1414 1.2583 12.596 

As shown in Table 6, the proposed stochastic approach requires a shorter run time and results 

in a smaller variance in the computed failure probability; hence, it is more efficient and more 

accurate than the MC method. The evaluation accuracy can be further improved by increasing the 
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sequence length 𝐿. However, a trade-off between precision and efficiency must be determined 

when selecting the sequence length. Although the accurate analysis results in the shortest run time, 

the significantly longer time required for deriving the analytical expressions is not included in the 

value reported in Table 6. 

In practice, the failure distribution is not limited to an exponential distribution if other factors 

such as aging are taken into consideration. Therefore, a non-exponential distribution may be 

required for a more accurate modeling. A Weibull distribution is considered for a DFT with non-

exponentially distributed basic events. The pdf and cdf of a Weibull distribution are given by 

𝑓(𝑡) =
𝑘

𝜆
(

𝑡

𝜆
)𝑘−1𝑒−(𝑡/𝜆)𝑘

                                                 (9) 

and 

 𝐹(𝑡) = 1 −  𝑒−(𝑡/𝜆)𝑘
                                                 (10) 

respectively, where 𝑘 and 𝜆 are the shape and scale parameters respectively. 

Assume that the basic events A1 and BUS1 follow a Weibull distribution with λ = 2 and 𝑘 =

0.1, while the failures of the other basic events are exponentially distributed. Furthermore, assume 

that BUS1 and HW are subject to a CCF (i.e. 𝛾𝑖 = 1) with an occurrence probability of 0.1. Fig. 12 

reveals the difference of the top event’s failure probabilities for a mission time of 100 hours, 

obtained by both the stochastic approach and MC simulation [15]. It can be seen that the difference 

between the stochastic and MC approach decreases with the increase of the sequence length. For 

a sequence length (or simulation runs) of 10k bits, ‖∙‖1. ‖∙‖2, ‖∙‖∞ of the differences in the failure 

probability vectors obtained by the two approaches are 0.3087, 0.0387 and 0.0133 respectively. 

As revealed by these norm values, a DFT with non-exponentially distributed basic events subject 

to PCCFs can be efficiently evaluated by the proposed stochastic approach with a reasonable 

sequence length.  
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Fig. 12 Difference in the failure probabilities of the top event for the HECS for a mission time of 100 hours.  

B. DFT with dependent PCCFs  

A DFT with WSP, FDEP and PAND gates is analyzed next to show the efficiency of the 

stochastic approach (Fig. 13(a)). Assume that ℎ, 𝑙 and 𝑓 denote the events of hurricanes, lightning 

strikes and floods respectively. Table 7 shows the exponentially distributed failure rates of the 

components; non-exponential distributions will be dealt with subsequently. The occurrence 

probabilities of a hurricane and a lightning strike are given as 𝑝(ℎ) = 0.015 and 𝑝(𝑙) = 0.025 

respectively. The dependencies between the CCFs are given as the conditional probabilities 

between a hurricane and floods, i.e., 𝑝(𝑓|ℎ) = 0.55  and 𝑝(𝑓|ℎ̅) = 0.035  as obtained from 

weather information [38]. The probability of a component affected by a CCF is assumed to be 

𝛾𝑖 = 0.8 for 𝑖 = 1, 2, 3 (where 𝑖 indicates a different CCF, i.e., ℎ, 𝑙, 𝑓, respectively). For this 

DFT, a stochastic model is constructed in Fig. 13(b) with the PAND model of [20] and the 

stochastic models in Figs. 7 and 8 for considering the effects of PCCFs. 
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Table 7 Component failure rates ( 10−3/hour). 

Basic events Failure rates Basic events Failure rates 

A 1.5 B 1.0 

C 4.0 D 1.0 

E 2.0 F 1.0 

G 3.0 H 2.0 

I (spare) 1.0 I (working) 2.0 
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Fig. 13 (a) A DFT with dependent PCCFs (taken from [24]), and (b) a stochastic model for the DFT in (a). 

The average run time and norms of the differences in the failure probability vectors of the DFT 

obtained by the stochastic and MC [15] approaches are given in Table 8 for a mission time of 200 

hours. Also shown are the failure probabilities by considering PCCFs for each of the modules.  
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Table 8 Norms of the differences in the top event’s failure probability vectors of the DFT in Example B, and the 

average run time for the proposed stochastic approach and MC simulation in [15]. 

Under CCFs (i.e. 𝜸𝒊 = 𝟏) 𝑵/𝑳 = 1k 𝑵/𝑳 = 10k 𝑵/𝑳 = 100k 

‖∆𝑭𝑆−𝑀𝐶‖1 2.4370 0.7457 0.2301 

‖∆𝑭𝑆−𝑀𝐶‖2 0.2227 0.0680 0.0205 

‖∆𝑭𝑆−𝑀𝐶‖∞ 0.0460 0.0148 0.0041 

Average run time 

(s) 

Accurate Analysis 0.0049 

Stochastic 0.2207 2.0595 16.282 

MC 0.3825 3.5453 36.664 

Under PCCFs with 𝜸𝒊 = 𝟎. 𝟖 𝑵/𝑳 = 1k 𝑵/𝑳 = 10k 𝑵/𝑳 = 100k 

‖∆𝑭𝑆−𝑀𝐶‖1 2.5580 0.8148 0.2498 

‖∆𝑭𝑆−𝑀𝐶‖2 0.2324 0.0722 0.0216 

‖∆𝑭𝑆−𝑀𝐶‖∞ 0.0450 0.0152 0.0042 

Average run time 

(s) 

Accurate Analysis 0.0061 

Stochastic 0.2445 1.8734 21.031 

MC 0.4783 4.9198 41.159 

In Monte Carlo simulation, the result follows approximately a Gaussian distribution for a 

large number of runs; this is also applicable to stochastic computation [18]. In this case, a 

parameter 𝑧𝑐 can be used to determine the confidence interval of the simulated results [39]. The 

error in the computed result is then given by   

𝐸 =  
zc

𝜇
√

𝑣

𝑚
,                                                              (11) 

where 𝜇 and 𝑣 are the accurate mean and variance of the distribution of the results, and 𝑚 is the 

number of simulations (or equivalently, the number of bits in a stochastic sequence). For a 

confidence level of 95%, 𝑧𝑐  = 1.96. For the failure rates in Table 7 and 𝛾𝑖 = 0.8, stochastic 
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sequences of one million bits are used to find the accurate mean and variance, as 0.8119 and 0.1527, 

respectively, for the stochastic approach. For a sequence length of 10k, the error is then obtained 

by (11) as 0.9434% (i.e. less than 1%) at a confidence level of 95%. As per (11), the error decreases 

with an increase of sequence length at a given confidence level. The required sequence length can 

thus be estimated by (11) for achieving a desired evaluation accuracy.  

For this DFT, the top event’s failure probability for a mission time of 200 hours is plotted 

in Fig. 14 for two values of 𝛾𝑖, where 𝛾𝑖, 𝑖 = 1, 2, 3, indicates the probability that the basic event 

is affected by a CCF. In Fig. 14(a), the failures of the basic events are assumed to be exponentially 

distributed; for γi = 0, i.e., when the effect of a CCF is not considered, the failure probability is 

underestimated compared to the case when the occurrence of a CCF will definitely cause a failure 

of the basic event (i.e. when 𝛾𝑖 = 1). In the latter case, the failure probability is overestimated 

compared to the case when the probabilistic behavior of a CCF is considered, i.e., when 0 < 𝛾𝑖 <

1  (for which the failure probabilities would lie between the values shown in Fig. 14(a)). 

Furthermore, assume that components A and D follow a Weibull distribution with 𝜆 = 2 and 𝑘 =

0.1, while the failure rates of the other basic events remain at the values given in Table 7. Fig. 

14(b) plots the differences between the failure probabilities obtained by the stochastic and Monte 

Carlo approaches; the difference decreases with an increase of stochastic sequence length or the 

number of simulation runs. For a sequence length (or simulation runs) of 10k bits, the norms, 

‖∙‖1. ‖∙‖2, and ‖∙‖∞, of the differences in the failure probability vectors of the stochastic and MC 

approaches are obtained as 0.8198, 0.0734 and 0.0136, respectively. 
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(a) 

 

(b) 

Fig. 14 Example B: (a) Failure probability of the DFT subject to PCCFs for 𝛾𝑖 = 0 and 𝛾𝑖 = 1 (for basic events 

with exponentially distributed failures, using a sequence length of 10k bits), and (b) Difference of the failure 
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probabilities of the DFT subject to PCCFs for 𝛾𝑖 = 0.8 (for basic events with non-exponentially distributed 

failures).  

As can be seen from these results, the DFT systems (inclusive of the spare gate, PAND and 

FDEP gates) can be efficiently evaluated by the proposed stochastic approach. The stochastic 

approach is more efficient than a MC method [15] with an equivalent number of simulation runs. 

Furthermore, the accuracy of the proposed stochastic approach can be improved by increasing the 

sequence length. The required sequence length is determined as a trade-off between precision and 

efficiency. It is also shown that the reliability of a DFT system decreases by considering the effects 

of PCCFs that widely occur in practice. Hence, if the failure of certain component affected by 

PCCFs is not considered, the reliability of a DFT is likely to be overestimated. If the effect of 

PCCFs is considered to be deterministic in causing a failure, then the reliability of a DFT is 

underestimated. 

VI. CONCLUSION 

In this paper, stochastic models have been proposed for analyzing a two-input spare gate and 

probabilistic common cause failures (PCCFs) in a dynamic fault tree (DFT); the WSP and CSP 

gates have been analyzed in detail. For a DFT with spare gates, a stochastic approach using the 

proposed models provides an efficient analysis of the DFT compared to an analytical approach. 

The use of non-Bernoulli sequences of random permutations of fixed numbers of 1s and 0s as 

initial input probabilities makes the stochastic approach more efficient and more accurate than 

Monte Carlo simulation. The effect of PCCF has been taken into consideration and a stochastic 

logic model has been constructed for dependent PCCFs. The efficiency and accuracy of the 

proposed stochastic approach have been shown by the case studies of several benchmark systems. 
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Ongoing work includes the stochastic modeling of repair schemes and the assessment of 

multiple-valued DFT systems with imperfect fault coverage. 
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