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Abstract—Among various approaches to modeling gene 

regulatory networks (GRNs), Boolean networks (BNs) and its 

probabilistic extension, probabilistic Boolean networks (PBNs), 

have been studied to gain insights into the dynamics of GRNs. To 

further exploit the simplicity of logical models, a multiple-valued 

network employs gene states that are not limited to binary values, 

thus providing a finer granularity in the modeling of GRNs. In 

this paper, stochastic multiple-valued networks (SMNs) are 

proposed for modeling the effects of noise and gene perturbation 

in a GRN. An SMN enables an accurate and efficient simulation of 

a probabilistic multiple-valued network (as an extension of a 

PBN). In a k-level SMN of n genes, it requires a complexity of 

O(𝒏𝑳𝒌𝒏) to compute the state transition matrix, where L is a 

factor related to the minimum sequence length in the SMN for 

achieving a desired accuracy. The use of randomly permuted 

stochastic sequences further increases computational efficiency 

and allows for a tunable tradeoff between accuracy and efficiency. 

The analysis of a p53-Mdm2 network and a WNT5A network 

shows that the proposed SMN approach is efficient in evaluating 

the network dynamics and steady state distribution of gene 

networks under random gene perturbation. 

 
Index Terms—Gene perturbation, multiple-valued logic, 

stochastic computation, steady state analysis, Boolean networks. 

I. INTRODUCTION 

N a cell, biological functions are implemented through the 

interactions among genes, proteins and other molecules. 

However, gene networks are noisy due to the effect of 

stochastic fluctuations in genetic interactions [1]. Various 

methodologies have been proposed to model the interactions 

among genes [2]. As a classic logical model, Boolean networks 

(BNs) provide a qualitative analysis of the network dynamics [3 

- 5]. Probabilistic Boolean networks (PBNs) further consider 

noise in a BN model [6 - 8]. Recently, stochastic Boolean 

networks (SBNs) have been used to efficiently implement the 

function of PBNs [9]. By a stochastic simulation of a PBN, an 

SBN trades off accuracy for efficiency and thus provides an 

alternative and efficient means to help understanding the 

dynamics of gene regulatory networks (GRNs), such as those in 

the oscillatory behavior of a p53-Mdm2 network [10] and the 

dynamic attractors in a T cell immune response network [11].  
The Boolean simplification, however, may incur an accuracy 

loss in the modeling of complex biological networks such as a 

random Boolean network [12, 13]. To address this, an approach 

using multiple-valued variables introduces an increased level of 

granularity and can thus be more accurate in the modeling of a 
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gene regulatory network (GRN) [14-17]. For examples, three 

states of the protein p53 is considered in [18, 19] and 

multiple-valued gene nodes are analyzed in a T-helper network 

[17]. Moreover, deterministic multiple-valued networks are 

analyzed in [20]. A multiple-valued analysis provides a tradeoff 

between the simplicity of Boolean networks and the complexity 

of differential equation based approaches [15]. Multiple-valued 

networks have also been studied in chemical reactions [21] and 

cognitive sciences [22]. 

When gene expressions are discretized into multiple values, 

they are considered to be not only affected by the presence of 

activating or repressing proteins, but also by the absence of a 

protein [23]. Random and probabilistic multiple-valued 

networks (PMNs) have respectively been studied in [16] and 

[24], for providing insights into the long run behavior of a 

network with noise. For a k-valued network of 𝑛 genes with 𝑁 

network functions, however, a 𝑘𝑛 × 𝑘𝑛 matrix is required for 

an accurate analysis of the steady state distribution (SSD), 

resulting in a complexity of O(𝑛𝑁𝑘2𝑛) by a PMN analysis in 

the computation of the state transition matrix (STM). This also 

requires a memory usage in the order of at least O(𝑘2𝑛). Since 

the size of an STM (and the required memory) increase 

exponentially with the number of genes, the analysis of a 

network with a higher quantization level presents even a greater 

challenge. This prevents the use of an accurate analysis in the 

evaluation of large networks. For a network with an increased 

number of genes, a Markov chain Monte Carlo (MCMC) 

method is often used to estimate the SSD of a PBN [25] and its 

multiple-valued extension, PMNs [24]. An MCMC simulation 

is considered to produce an accurate result when a sufficient 

number of simulations are performed to produce a stable 

output; however, this number is usually required to be very 

large, due to the slow convergence of the MCMC method [26], 

thus incurring a very long simulation time. 

In this paper, stochastic multiple-valued networks (SMNs) 

are proposed for an efficient implementation of probabilistic 

multiple-valued networks (PMNs), where the quantization 

level of a gene’s state is not limited to binary. As in stochastic 

computation, SMNs employ random streams of multiple values 

to represent probabilities and computation is performed by 

stochastic logic. Due to stochastic fluctuations, however, the 

computational results obtained by an SMN are not 

deterministic, but probabilistic. In an SBN, it has been shown 

that the use of non-Bernoulli sequences of random 

permutations of fixed numbers of 1’s and 0’s as initial inputs 

reduces the stochastic fluctuation and produces more accurate 

results than using Bernoulli sequences [9]. In a k-valued SMN, 

similarly, randomly permuted sequences of fixed numbers of 

the k values are used to reduce the required computational 

complexity. It is shown in simulation results that the use of 

randomly permuted sequences increases the computational 
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efficiency and allows for a tunable tradeoff between accuracy 

and efficiency. The required complexity for computing the 

STM of a k-valued network is reduced from O(𝑛𝑁𝑘2𝑛 ) to 

O(𝑛𝐿𝑘𝑛 ), where 𝐿 , determined by the minimum length of 

stochastic sequences for achieving a desired accuracy, 

increases slower than 𝑁.  

Nevertheless, the analysis of the steady state distribution 

(SSD) is challenging due to the size of the STM required. 

However, the SSD analysis of a PMN resembles that of a finite 

state machine (FSM), due to their common underlying 

Markovian nature. An FSM is often implemented by a 

sequential circuit, which can be unrolled into a series of 

identical combinational modules by a so-called time-frame 

expansion in the spatial domain. A time-frame expansion of an 

SMN, hence, is used for an SSD analysis, which makes the 

SMN approach very efficient in the analysis of complex GRNs. 

Simulation results show that the proposed SMN approach 

produces very accurate results for small networks compared to 

a theoretical analysis. For large networks, the SMN approach 

using the time-frame expansion technique is more efficient than 

a simulation-based MCMC method. It is shown that the SMN 

approach reveals the oscillatory dynamics of a multiple-valued 

p53-Mdm2 network [19] with random gene perturbation, and 

that it accurately and efficiently predicts the SSD of a ternary 

WNT5A network [24] with gene perturbation.  

The rest of the paper is organized as follows. Section II 

reviews the definitions of PMNs. Section III presents stochastic 

multiple-valued networks (SMNs) without and with gene 

perturbation for STM and SSD analysis. In Section IV, a 

multiple-valued p53-Mdm2 and a ten-gene WNT5A network 

are analyzed using the proposed SMN approach. Finally, 

Section V concludes the paper. 

II. PROBABILISTIC MULTIPLE-VALUED NETWORKS 

A multiple-valued network of n genes is defined by 𝐺(𝑉, 𝐹), 
with a node set 𝑉 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}  and a list of sets of 

predictor functions 𝐹 = {𝐹1, 𝐹2, ⋯ , 𝐹𝑛} [6]. If the state of gene 𝑖 
is quantized into 𝑘  levels, then 𝑥𝑖 ∈ {0,⋯ , 𝑘 − 1}  for 𝑖 ∈
{1,⋯ , 𝑛}. For 𝑘 = 2, a network is referred to as a probabilistic 

Boolean network (PBN), where 𝑉  is a set of binary-valued 

nodes; for 𝑘 = 3, it is considered as a ternary network [24]. At 

time 𝑡, the state of a network can be described by a vector, 

𝒙(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)), where the state of a gene is 

given by 𝑥𝑖(𝑡) ∈ {0,⋯ , 𝑘 − 1} for 𝑖 ∈ {0,1,⋯ , 𝑛}. A network 

state is also referred to as a gene activity profile (GAP). For a 

𝑘-valued network of 𝑛 genes, hence, there are a total of 𝑘𝑛 

network states or GAPs. A GAP is also given as a decimal 

index. For a ternary network of n genes, a GAP is indexed by: 

𝑑 =  ∑ 𝑥𝑖(𝑡) ∙ 3
𝑖−1 + 1𝑛

𝑖=1 ,                        (1) 

where 𝑥𝑖 is the state of the 𝑖th gene, 𝑖 ∈ {0,1,⋯ , 𝑛}. 
For gene 𝑖 (𝑖 ∈ {1,⋯ , 𝑛}), the set of predictor functions is 

given by 𝐹𝑖 = {𝑓1
(𝑖), 𝑓2

(𝑖), ⋯ , 𝑓𝑙(𝑖)
(𝑖)}, with each predictor function 

𝑓𝑗(𝑖)
(𝑖) : {0,1,⋯ , 𝑘 − 1}𝑛 → {0,1,⋯ , 𝑘 − 1} , where 𝑙(𝑖)  is the 

number of possible predictor functions for gene 𝑖 and 𝑙(𝑖) is 

usually a small number [27, 28]. Due to the stochastic behavior, 

the next state of gene 𝑖 is determined by all of its predictor 

functions in 𝐹𝑖 , i.e., 𝑓1
(𝑖), 𝑓2

(𝑖)… , 𝑓𝑙(𝑖)
(𝑖)

 with probabilities 

𝑐1
(𝑖), 𝑐2

(𝑖), ⋯ , 𝑐𝑙(𝑖)
(𝑖)

.  

If the predictor functions are independent, there are 𝑁 =
∏ 𝑙(𝑖)𝑛
𝑖=1  possible realizations of the network, each of which is 

referred to as a context. Assume that the 𝑗 th context is 

represented as 𝒇𝑗 = (𝑓𝑗(1)
(1) , 𝑓𝑗(2)

(2) , ⋯ , 𝑓𝑗(𝑛)
(𝑛) ) , where each 

𝑓𝑗(𝑖)
(𝑖) : {0,1,⋯ , 𝑘 − 1}n → {0,1,⋯ , 𝑘 − 1} , for 1 ≤ 𝑗(𝑖) ≤ 𝑙(𝑖) , 

is a predictor function of gene 𝑖; the next state of a gene is 

determined by both the present state and the selected context. 

A multiple-valued network can be modeled by a Markov 

chain [24], so the next state of gene 𝑖, 𝑥𝑖 (𝑥𝑖 ∈ {0,1,⋯ , 𝑘 − 1} 
in a 𝑘-valued network) is given by: 

𝑥𝑖
(𝑡+1) = 

{
 
 

 
 0         𝑤𝑖𝑡ℎ 𝐶𝑖

0(𝑺(𝑡)) = 𝑃𝑟(𝑥𝑖
(𝑡+1) = 0|𝑺(𝑡))

1          𝑤𝑖𝑡ℎ 𝐶𝑖
1(𝑺(𝑡)) = 𝑃𝑟(𝑥𝑖

(𝑡+1) = 1|𝑺(𝑡))

⋮

𝑘 − 1 𝑤𝑖𝑡ℎ 𝐶𝑖
𝑘−1(𝑺(𝑡)) = 𝑃𝑟(𝑥𝑖

(𝑡+1) = 𝑘 − 1|𝑺(𝑡))

. (2) 

where 𝐶𝑖
0(𝑺(𝑡)) + 𝐶𝑖

1(𝑺(𝑡)) +⋯+ 𝐶𝑖
𝑘−1(𝑺(𝑡)) = 1. Thus, the 

transition probability from the network state (or GAP) 𝑺(𝑡) at 

time 𝑡 to 𝑺(𝑡+1) at 𝑡 + 1 is given by: 

𝑃𝑟(𝑺(𝑡) → 𝑺(𝑡+1)) = ∏ 𝐶
𝑖

𝑥𝑖
(𝑡+1)

𝑛
𝑖=1 .                      (3) 

Using the decimal indices of GAPs by (1), the state transition 

of a ternary network is described by the state transition matrix 

(STM) as follows:  

𝑨 =

[
 
 
 
 
𝑃𝑟 (1|1) 𝑃𝑟 (2|1) ⋯ ⋯   𝑃𝑟 (3𝑛|1)

𝑃𝑟 (1|2) 𝑃𝑟 (2|2) ⋯ ⋯   𝑃𝑟 (3𝑛|2)
⋯
⋯

𝑃𝑟 (1|3𝑛)

⋯
⋯

𝑃𝑟 (2|3𝑛)

⋯
⋯
⋯

⋯
⋯
⋯

⋯
⋯

𝑃𝑟 (3𝑛|3𝑛)]
 
 
 
 

.    (4) 

In 𝑨, each entry indicates the conditional probability that the 

network transitions from a present state into a next state. For 𝑁 

realizations of the network, 𝑨  can be obtained as 𝑨 =

∑ 𝑃𝑗
𝑁
𝑗=1 𝑨𝑗, where 𝑃𝑗 (𝑃𝑗 = ∏ 𝑐𝑗(𝑖)

(𝑖)𝑛
𝑖=1 ) is the probability that the 

jth realization of the network emerges and 𝑨𝑗  is the STM 

resulting from the jth realization [6]. Hence, the STM can be 

derived for a multiple-valued network with a complexity of 

𝑂(𝑛𝑁𝑘2𝑛), where 𝑁 is the number of possible realizations of 

the network and 𝑘 is the quantization level of the gene states. 

External stimuli cause random gene perturbations that make 

the dynamics of a network an ergodic Markov chain [7]. In an 

ergodic Markov chain, all states are communicated and thus a 

steady state distribution (SSD) exists in a network. Since a 

perturbed gene has 𝑘 − 1 possible states, there are (𝑘 − 1)𝑛0  

states for 𝑛0 perturbed genes (𝑛0 ∈ {1,⋯ , 𝑛}); hence, each of 

the perturbed states in  𝑺(𝑡+1) is selected with a probability of 

[1/(𝑘 − 1)]𝑛0 . The event that no gene is perturbed, occurs with 

a probability of (1 − 𝑝)𝑛. Hence, 𝑺(𝑡+1) is determined by the 

selected context if no perturbation exists, i.e. 𝑃𝑟{𝑺(𝑡) →

𝑺(𝑡+1)} = ∏ 𝐶
𝑙

𝑥𝑙
(𝑡+1)

𝑛
𝑙=1 . If 𝑛0  genes are perturbed, 𝑺(𝑡) →

𝑺(𝑡+1)  occurs with probability 𝑝𝑛0 ∙ (1 − 𝑝)𝑛−𝑛0 ∙
[1/(𝑘 − 1)]𝑛0 . Following [24], therefore, the state transition 
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probability from 𝑺(𝑡) to 𝑺(𝑡+1) in a perturbed 𝑘-valued network 

is given by:  

𝑃𝑟{𝑺(𝑡) → 𝑺(𝑡+1)} = (∏ 𝐶
𝑖

𝑥𝑖
(𝑡+1)

𝑛
𝑖=1 ) ∙ (1 − 𝑝)𝑛 + 𝑝𝑛0 ∙

(1 − 𝑝)𝑛−𝑛0 ∙ 𝑝0
𝑛0 ∙ 1[𝑺(𝑡) ≠ 𝑺(𝑡+1)], (5) 

with 

𝑛0 = ∑ 1(𝑥𝑖
(𝑡)
≠ 𝑥𝑖

(𝑡+1)
)𝑛

𝑖=1 ,                      (6) 

𝑝0 = 1/(𝑘 − 1),                             (7) 

where 𝑝 is the perturbation rate, 𝑛0 is the number of perturbed 

genes,  𝑝0 is the probability that a gene will change to a new 

state if perturbed, and 1(∙) is an indicator function; 1[𝑺(𝑡) ≠

𝑺(𝑡+1)] = 1  if 𝑺(𝑡) ≠ 𝑺(𝑡+1) and 1[𝑺(𝑡) ≠ 𝑺(𝑡+1)] = 0 

otherwise. Using (5), a perturbed state transition matrix (STM) 

or perturbation matrix [9, 27] can be obtained for further 

analysis of the steady state distribution (SSD).   

III. STOCHASTIC MULTIPLE-VALUED NETWORKS 

A. Stochastic Computation for Multiple-valued Logic 

In stochastic computation, probabilities are encoded into 

random binary bit streams. Information is carried in the 

statistics of the binary streams and processed by stochastic 

logic [29]. Usually, a probability is represented by a 

proportional number of bits, e.g. the mean number of 1’s in a bit 

sequence. In Boolean logic, for example, an inverter computes 

the complement of a probability while the multiplication of 

probabilities is implemented by an AND gate with independent 

inputs. Thus, stochastic computation performs a probabilistic 

analysis in the real domain. Due to inevitable stochastic 

fluctuations, the computational result by stochastic logic is not 

deterministic but probabilistic. However, stochastic 

fluctuations can be reduced through the use of non-Bernoulli 

sequences of random permutations of fixed numbers of 1’s and 

0’s as initial inputs. This produces more accurate results than 

using Bernoulli sequences [30]. Signal correlations are 

efficiently handled in a stochastic network by the bit-wise 

dependencies encoded in the random binary streams, thus 

making it an efficient approach to computing probabilities [30].  

Stochastic computation is also applicable to the probabilistic 

analysis of multiple-valued signals. For a 𝑘-valued signal, the 

probability of each value is given in a vector 𝑃 =

[𝑝𝑘−1, 𝑝𝑘−2, ⋯ , 𝑝1 , 𝑝0] , with ∑ 𝑝𝑖
𝑘−1
𝑖=0 = 1 . This probability 

vector can be encoded into a multiple-valued stochastic 

sequence. An example is shown in Fig. 1 for a ternary signal. 
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Fig. 1. The stochastic encoding of a ternary signal using a sequence of 10 

values. 

 
Multiple-valued logic includes the buffer, inverter, MIN 

(minimum), MAX (maximum) and rotator; some are defined as 

follows [20]: 

(1) A multiple-valued buffer: 

BUF(𝐴) = 𝐴, 

(2) A multiple-valued inverter: 

INV(𝐴) = (𝑘 − 1) − 𝐴, 

(3) A multiple-valued rotator ∅ :  

∅(𝐴) = {
𝐴 + 1       𝐴 ≠ 𝑘 − 1
0               𝐴 = 𝑘 − 1

. 

The following new logic operators are further defined: 

(4) A multiple-valued equal or larger (EL) operator:  

𝐸𝐿(𝐴 ≥ 𝑎) = 𝑀𝐴𝑋(𝐴, 𝑎), 
(5) A multiple-valued equal or smaller (ES) operator:  

𝐸𝑆(𝐴 ≤ 𝑎) = 𝑀𝐼𝑁(𝐴, 𝑎). 
Several ternary stochastic processing elements are shown in 

Fig. 2, including a buffer, an inverter, an EL operator, an ES 

operator, a MIN, a MAX, a rotate gate and a 4-to-1 multiplexer. 
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Fig. 2. Stochastic logic: (a) a ternary buffer (TB); (b) a ternary inverter (TI); (c) 
an EL operator; (d) an ES operator; (e) a ternary MIN with independent inputs; 

(f) a ternary MAX with independent inputs; (g) a ternary MIN with totally 

dependent inputs; (h) a ternary rotate gate; (i) a 4-to-1 multiplexer. A 
probabilistic computation is performed through stochastic logic operations by 

encoding signal probabilities into random sequences. 

 
For the ternary MIN logic, if the two inputs are independent 

with probabilities 𝐴 = [0.3 0.4 0.3] and 𝐵 = [0.5 0.4 0.1], the 

output probabilities are expected to be 𝑝(2) = 𝑝𝐴(2) ∙ 𝑝𝐵(2) =
0.3 × 0.1 = 0.03 ,  𝑝(0) = 𝑝𝐴(0) + 𝑝𝐵(0) − 𝑝𝐴(0) ∙ 𝑝𝐵(0) =
0.65 and 𝑝(1) = 1 − 𝑝(0) − 𝑝(2) = 0.32. This function can 

be implemented by the ternary MIN gate, as shown in Fig. 2(e), 

using stochastic sequences. For a sequence length of 10,000 

values, the output sequence is expected to have approximately 

6500 0’s, 3200 1’s and 300 2’s. For the ternary rotate logic, if 

the input’s signal probability is given by 𝐴 = [0.3 0.4 0.3], the 

output’s signal probability is expected to be 𝑝(0) = 𝑝𝐴(2) =
0.3 ,  𝑝(1) = 𝑝𝐴(0) = 0.3  and 𝑝(2) = 𝑝𝐴(1) = 0.4 . This 

function can be implemented by the ternary rotate gate with the 

use of stochastic sequences (Fig. 2(h)). 

For the 4-to-1 multiplexer logic in Fig. 2(i), its output is 

determined by its binary control signals ′𝑒𝑓′. It takes the value 

of input 𝑎 for 𝑒𝑓 = 00, 𝑏 for 𝑒𝑓 = 01, 𝑐 for 𝑒𝑓 = 10, or 𝑑 for 

𝑒𝑓 = 11. Similarly, a stochastic multiplexer takes one of the 

inputs as its output according to the distributions of control bits 
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(i.e., 00, 01, 10 and 11). Thus, the selection probabilities are 

encoded in the random sequences of the control bits. However, 

these numbers are not deterministic but probabilistic, due to 

inherent stochastic fluctuations. For stochastic Boolean 

networks, it has been shown that, compared to the use of 

Bernoulli sequences of independently generated binary bits 

(such as in a coin-flipping experiment), the effect of the 

fluctuation can be significantly reduced through the use of 

non-Bernoulli sequences of random permutations of fixed 

numbers of 1’s and 0’s for initial input probabilities [9]. In this 

paper, stochastic sequences of random permutations of fixed 

numbers of the multiple values, hereafter referred to as 

randomly permuted sequences, are used for encoding initial 

input probabilities. The use of randomly permuted sequences 

reduces the amount of stochastic fluctuations in a network. It 

will be shown in the Results and Discussion Section that the 

effect of fluctuation is negligible when a reasonable sequence 

length is used in the simulation. 

B. Stochastic Multiple-valued Networks without Perturbation 

A stochastic Boolean network (SBN) has been proposed for 

an instantaneous probabilistic Boolean network (PBN) [9]. In 

the general case that multiple quantization levels are 

considered, a stochastic multiple-valued network (SMN) can be 

constructed to model a multiple-valued gene network. As 

discussed previously, the next state of a gene is determined by 

the present state of its input genes and a set of predictor 

functions according to their occurring probabilities. In an SMN, 

these probabilities are represented by randomly permuted 

multiple-valued sequences and the selection of the predictor 

functions is implemented by a multiple-input multiplexer with 

properly generated control sequences. A structure of the SMN 

for a single gene is shown in Fig. 3.   
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i

multiple-valued 
function 1

MUX

Present 
State

1S mS

multiple-valued 
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Fig. 3. A stochastic multiple-valued network (SMN) without perturbation (for a 

single gene 𝑖 ). The control sequences 𝑆1~𝑆𝑚  of the multiplexer (MUX) 
probabilistically determine the selection of the multiple-valued functions. 

 

If the next state of gene 𝑖  is determined by 𝑙(𝑖)  predictor 

functions, the number of control bits of the multiplexer is given 

by ⌈𝑙𝑜𝑔2(𝑙(𝑖))⌉ . Usually, a function has only a few input 

variables and the number of possible predictor functions is 

generally small [27, 28]. By a multiplexer with control bits 

𝑆1~𝑆𝑚 , a function is selected in the jth BN for gene 𝑖 with 

probability 𝑐𝑗(𝑖)
(𝑖)

. Assume that a network transfers from state 

𝑺(𝑡)  to 𝑺(𝑡+1)  in a context (or network function), then the 

transition probability for 𝑺(𝑡) → 𝑺(𝑡+1)  is given by the 

probability of selecting this context. This indicates that when 

all the genes are considered, the SMN model in Fig. 3 

accurately implements the function of (3). 

C. Stochastic Multiple-valued Networks with Perturbation 

Under external stimuli, a gene’s state can be perturbed by a 

small chance during a transition [7]. In a 𝑘-valued network of 𝑛 

genes, a perturbation flag vector 𝜸 is used to indicate whether a 

gene is to be perturbed. Assume that the network goes from 

state 𝑺(𝑡)  to 𝑺(𝑡+1)  under perturbation. If each gene is to be 

perturbed with a probability 𝑝, the probability that the next 

state is totally determined by a network function (i.e., no 

perturbation occurs) is (1 − 𝑝)𝑛. When a perturbation occurs, 

the state of the perturbed gene transitions to a different state: 

this new state is determined by the present state and the value in 

the perturbation flag vector 𝜸. Without the loss of generality, a 

set of transition rules can be determined, as shown in Table 1 

for a ternary network. The set of rules in Table 1 can be 

implemented by sum and modulo operations; for 𝑺(𝑡) =
(0,0,0,1,1,1,2,2,2) and 𝜸 = (0,1,2,0,1,2,0,1,2), as an example, 

the next state is given by 𝑺(𝑡+1) = 𝑚𝑜𝑑𝑢𝑙𝑜 ((𝑺(𝑡) + 𝜸), 3) =

(0,1,2,1,2,0,2,0,1) . Hence, the perturbation in a ternary 

network can be implemented by the sum and modulo operations. 

For a network of higher levels, similar operations can be 

implemented for the perturbation (although not discussed in 

detail), while for a Boolean network, this operation is 

simplified to an XOR gate.  

 
TABLE 1 STATE TRANSITION RULES FOR A GENE IN A TERNARY NETWORK 

UNDER PERTURBATION 

Current State 
(𝑥) 

perturbation 
(𝛾) 

Next State 
(𝑥′ = 𝑚𝑜𝑑𝑢𝑙𝑜(𝑥 + 𝛾, 3)) 

0 1 1 
2 2 

1 1 2 
2 0 

2 1 0 
2 1 

 

For an SMN, therefore, if 𝑺(𝑡) = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) is the GAP 

or state of the network at time 𝑡; the next state 𝑺(𝑡+1) is given 

by: 

𝑺(𝑡+1) = {
𝑚𝑜𝑑𝑢𝑙𝑜(𝑠𝑢𝑚(𝑺(𝑡) , 𝜸), 𝑘) 𝑤𝑖𝑡ℎ 1 − (1 − 𝑝)𝑛,

𝒇𝑗(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)          𝑤𝑖𝑡ℎ (1 − 𝑝)𝑛,
     

(8) 

where 𝑝 is the perturbation rate for each gene and 𝒇𝑗(∙) is the 

𝑗th realization of the network at time 𝑡. (8) indicates that no 

perturbation occurs, i.e., 𝛾𝑖 = 0 for any 𝑖 ∈ {1,⋯ , 𝑛}, with a 

probability of (1 − 𝑝)𝑛 . In this case, the next state 𝑺(𝑡+1)  is 

determined by the selected context (or network function). If 

gene 𝑖 is perturbed, 𝛾𝑖 in 𝜸 is assigned to be 𝑚 (𝑚 ≠ 0) with a 

probability of 1/(𝑘 − 1); the gene’s state 𝑥𝑖  is then changed 

from 𝑗  to 𝑚  (𝑚 ≠ 𝑗)  with a probability of 1/(𝑘 − 1)  [24]. 

This state transition under perturbation is then implemented by 

the function of 𝑚𝑜𝑑𝑢𝑙𝑜(𝑠𝑢𝑚(𝑺(𝑡) , 𝜸), 𝑘). In a network of 𝑛  
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TABLE 2 MINIMUM SEQUENCE LENGTH AND AVERAGE RUN TIME REQUIRED IN COMPUTING THE STATE TRANSITION MATRIX OF TERNARY SMNS, COMPARED TO 

THOSE OBTAINED BY A MARKOV CHAIN ANALYSIS [24]. 𝑛: THE NUMBER OF GENES; 𝑁: POSSIBLE NUMBER OF NETWORKS; PERTURBATION RATE 𝑝 = 0.1; 𝐿: 
REQUIRED MINIMUM SEQUENCE LENGTH. ACCURACY OF THE SMN APPROACH IS MEASURED BY NORM 2 BETWEEN THE STMS OBTAINED BY THE MARKOV CHAIN 

ANALYSIS AND THE SMN APPROACH. AN EQUAL NUMBER OF PREDICTOR FUNCTIONS ARE RANDOMLY GENERATED FOR EACH GENE. 

𝑛 𝑁 Number 
of states 

SMN (Norm 2 = 0.04) SMN (Norm 2 = 0.02) Markov chain analysis [24] 
𝐿  Average run 

time (s) 
Standard 
deviation 

𝐿  Average run 
time (s) 

Standard 
deviation 

Average run 
time (s) 

Standard 
deviation 

2 4 9 260 0.00276 0.00044 1,000 0.00666 0.00097 0.00344 0.00019 
3 8 27 900 0.02321 0.00131 3,600 0.08361 0.00419 0.02354 0.00168 
4 16 81 1,600 0.14861 0.00506 6,000 0.53357 0.00416 0.19815 0.00644 
5 32 243 2,700 0.93284 0.03965 10,000 3.37799 0.01376 1.60821 0.01220 
6 64 729 4,200 4.67169 0.02427 17,000 15.0681 0.03060 12.3910 0.36403 
7 128 2187 6,000 24.2737 0.16698 24,000 74.7821 0.62384 119.080 5.91620 
8 256 6561 10,000 136.930 3.02933 34,000 438.999 11.9537 1003.70 37.1771 

 
TABLE 3 AVERAGE RUN TIME IN COMPUTING THE STEADY STATE DISTRIBUTION (SSD) OF SMNS, COMPARED TO THE USE OF A MARKOV CHAIN ANALYSIS [24].  

ACCURACY OF THE SMN APPROACH IS MEASURED BY NORM 2 BETWEEN THE SSDS, I.E. ‖∆𝑺𝑺𝑫‖2,  OBTAINED BY THE MARKOV CHAIN ANALYSIS [24] AND THE 

SMN APPROACH. THE STEADY STATE IS CONSIDERED TO HAVE BEEN REACHED IN 30 ITERATIONS. 𝑛: THE NUMBER OF GENES; 𝑁: POSSIBLE NUMBER OF NETWORKS;  

K: THE DISCRETIZATION LEVEL OF A GENE NETWORK (ALL GENES ARE ASSUMED TO HAVE THE SAME DISCRETIZATION LEVEL); PERTURBATION RATE 𝑝 = 0.1; 𝐿: 
SEQUENCE LENGTH USED IN THE SIMULATION.  

𝑛 𝑁 𝑘 Time frame expanded SMN approach Markov [24] 
Average time 

(s) 
𝐿  Average 

time (s) 
‖∆𝑺𝑺𝑫‖2 𝐿 Average 

time (s) 
‖∆𝑺𝑺𝑫‖2 𝐿  Average 

time (s) 
‖∆𝑺𝑺𝑫‖2 

2 4 3 1k 
 

0.017933 0.0255 10k 
 

0.191410 0.0096 100k 
 

1.385850 0.0058 0.016257 
4 0.017418 0.0282 0.178193 0.0105 1.374220 0.0072 0.020486 
5 0.020142 0.0306 0.161153 0.0125 1.633088 0.0091 0.016485 
6 0.019914 0.0312 0.175710 0.0130 1.539379 0.0106 0.049608 

3 8 3 1k 
 

0.033131 0.0283 10k 
 

0.266318 0.0099 100k 
 

2.616372 0.0049 0.043657 

4 0.029720 0.0303 0.274549 0.0104 2.494515 0.0054 0.093971 

5 0.028082 0.0310 0.277415 0.0116 2.540246 0.0064 0.383156 

6 0.029365 0.0323 0.274347 0.0121 2.456368 0.0073 1.050769 

4 16 3 1k 
 

0.033118  0.0293 10k 
 

0.367657 0.0098 100k 
 

3.207161 0.0045 0.243478 

4 0.039506 0.0302 0.357331 0.0100 2.815740 0.0046 1.629470 

5 0.033572 0.0312 0.306706 0.0107 2.844093 0.0054 8.522092 

6 0.032634 0.0317 0.309268 0.0110 2.857933 0.0059 35.32554 

 
TABLE 4 REQUIRED MEMORY USAGE IN COMPUTING THE STEADY STATE DISTRIBUTION (SSD) OF MULTIPLE-VALUED NETWORKS BY THE MARKOV CHAIN ANALYSIS 

[24] AND TIME FRAME EXPANDED SMN APPROACH, GIVEN BY 𝑀𝑒𝑚𝑀𝐶𝐴 AND 𝑀𝑒𝑚𝑆𝑀𝑁  RESPECTIVELY. 50 ITERATIONS ARE PERFORMED IN EACH SIMULATION. 𝑛: 

THE NUMBER OF GENES; K: THE DISCRETIZATION LEVEL OF A GENE NETWORK; PERTURBATION RATE 𝑝 = 0.1; SEQUENCE LENGTH: 𝐿 = 30K. TWO PREDICTOR 

FUNCTIONS ARE RANDOMLY GENERATED FOR EACH GENE.  

 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 
𝑛 = 2 𝑛 = 3 

𝑀𝑒𝑚𝑀𝐶𝐴 (Byte) 0.0026M 0.0068M 0.0156M 0.0314M 0.0183M 0.0968M 0.3630M 1.0767M 
Avg. time (s) 0.016257 0.020486 0.016485 0.049608 0.043657 0.093971 0.383156 1.050769 

𝑀𝑒𝑚𝑆𝑀𝑁(Byte) 5.9797M 5.9798M 5.9799M 5.9799M 8.7265M 8.7268M 8.7272M 8.7279M 

Avg. time (s) 0.465250 0.454927 0.456008 0.473981 0.694176 0.724946 0.695185 0.690967 

 𝑛 = 4 𝑛 = 5 
  𝑀𝑒𝑚𝑀𝐶𝐴(Byte) 0.1544M 1.5109M 8.9656M 38.4939M 1.3628M  24.0411M 223.6387M 1.3843 ×

103M 
Avg. time (s) 0.243478 1.629470 8.522092 35.325539 1.402525 21.860890 200.207121 1272.674693 

𝑀𝑒𝑚𝑆𝑀𝑁 (Byte) 11.4735M 11.4748M 11.4777M 11.4828M 14.2214M 14.2273M 14.2433M 14.2788M 

Avg. time (s) 0.927799 0.927331 0.924562 0.934311 1.174922 1.186381 1.198102 1.290500 
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Fig. 4. An SMN with perturbation. Gene perturbation is implemented by the 

sum and modulo 𝑘 functions of the perturbation vector and the present state. 
 

genes, if 𝑛0 genes are to be perturbed, this indicates that the 

perturbation flag vector 𝜸 contains 𝑛0 non-zero values and 𝑛 −
𝑛0 zeros. For each zero, the current state of the corresponding 

gene remains, as shown in the aforementioned example. For the 

𝑛0 non-zero values, a different set of values leads to a different 

next state of the perturbed genes. For random gene 

perturbation, each set occurs with a probability of [1/(𝑘 −
1)]𝑛0 , so the network transition from the present state to a 

particular next state, i.e.  𝑺(𝑡) → 𝑺(𝑡+1) , occurs with a 

probability of 𝑝𝑛0 ∙ (1 − 𝑝)𝑛−𝑛0 ∙ [1/(𝑘 − 1)]𝑛0 . Since a 

perturbed state is considered to be different from the present 

state, i.e. 𝑺(𝑡+1) ≠ 𝑺(𝑡), under perturbation, the probability of  

the state transition of (8) is given by (5). 

To account for the perturbation effect, a modified SMN is 

shown in Fig. 4. The probability that the multiple-valued 

network is left without perturbation or that a perturbation takes 

effect, is determined by the output of an 𝑛-input MAX gate. 

In the SMN in Fig. 4, gene perturbation is considered as 

follows. Since a random gene perturbation probabilistically 

changes the state of a gene, the modules of sum and modulo 𝑘 

operations are used to implement the perturbation function (of 

the perturbation vector and the genes’ current states). The 𝑗𝑡ℎ 

perturbation vector, 𝑃𝑒𝑟𝑗 , consists of a number of 𝑖 ’s, 𝑖 =

0,1,⋯ , (𝑘 − 1); for instance, if an 𝐿-bit sequence 𝑃𝑒𝑟𝑖 is used 

to indicate the perturbation rate 𝑝 in a ternary network and let 

𝑀 = 𝐿 ∙ 𝑝, then there are 𝐿 − 𝑀 0’s, 𝑀/2 1’s and 𝑀/2 2’s in 

the sequence. 

This indicates that if a gene at state 𝑖 is perturbed, the new 

state can be any 𝑗 (𝑗 ≠ 𝑖) with an equal probability of 1/(k −
1). Hence, if 𝑛0 genes are perturbed, a perturbed state is chosen 

with a probability of [1/(𝑘 − 1)]𝑛0 . The probability that either 

an original multiple-valued function works or a perturbation 

occurs (by (8)) is implemented by the output sequence of an 

𝑛-input MAX gate. This sequence is then used as the control 

sequence of a bus (or multiple-bit) multiplexer. If no 

perturbation occurs, the perturbation vectors ( ′𝑃𝑒𝑟1′, ′𝑃𝑒𝑟2′, 
⋯, ′𝑃𝑒𝑟𝑛′ in Fig. 4 ) consist of all 0’s, and thus the output 

sequence of the MAX gate will contain all 0’s. The next state is 

subsequently given by the original SMN without perturbation; 

otherwise, the next state is determined by the perturbation 

probability encoded in the output sequence of the MAX gate. 

From this analysis, it can be seen that the SMN model 

implements the function of (8) and thus computes the transition 

probability of (5). This indicates that it accurately implements a 

probabilistic multiple-valued network with perturbation. 

D. State Transition Matrix and Steady State Analysis 

In the simulation of an SMN, each input combination results 

in output sequences that contain information about the 

transition probability from this input to every output (or next 

state). For a deterministic input (i.e. the present state), the 

proportions of the numbers of the next states encoded in the 

output sequences return the statistics as the transition 

probabilities in a row in the state transition matrix (STM). 

Hence, all the transition probabilities for this input can be 

generated in a single run. For a probabilistic multiple-valued 

network (PMN) with 𝑘 levels and 𝑛 genes, the SMN needs to 

be run for each of the 𝑘𝑛 input states and an 𝑂(𝑛) number of 

sequences need to be generated for the control signals of the 

multiplexers. 

The accuracy in the computed state transition probabilities is 

determined by the length of the stochastic sequences. Since 

longer sequences are usually required in a larger network for 

achieving an evaluation accuracy, a factor, 𝐿, is used here to 

account for the computational overhead required by using a 

longer stochastic sequence. For a 𝑘-valued network of 𝑛 genes, 

a complexity of O(𝑛𝐿𝑘𝑛) results for computing the STM at a 

desired accuracy. As shown in the simulation results in Table 2 

for ternary networks, the required minimum sequence length 

increases slower with the numbers of genes than the number of 

possible networks, 𝑁, which generally increases exponentially 

with the number of genes in a network. Therefore, the 

complexity of using an SMN to compute the STM, i.e., 

O(𝑛𝐿𝑘𝑛), is smaller than O(𝑛𝑁𝑘2𝑛) of an accurate analysis 

[24]. This difference becomes significant for a large network, 

as indicated by the shorter average run time in Table 2. 

In a network with a large number of genes, a matrix-based 

analysis becomes cumbersome because of the size of the 

involved matrices. A steady state analysis becomes even more 

challenging. Using an SMN, however, the STM can be 

accurately and efficiently computed. The steady state 

distribution (SSD) can be evaluated by using the so-called 

time-frame expansion technique [9].  

SMN

Time frame 1

Initial State

1

n

2 SMN

Time frame 2

... SMN

Time frame N

1

n

2

...

...

Steady State

...

...

...

......

 
Fig. 5. A time-frame expanded SMN. 

 

By this technique, the temporal evolution of a 

multiple-valued network is simulated using a spatially iterative 

structure of the SMN, as shown in Fig. 5. The number of 

iterations is determined by the number of state transitions 

before reaching a steady state.  
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A general multiple-valued network (with any k) can be 

analyzed by the time-frame expanded SMN approach. The 

simulation results in Table 3 reveal that, while the SMN 

approach takes longer time than a Markov chain analysis [24] 

for small networks, it becomes faster in the analysis of large 

networks. Although the evaluation accuracy slightly decreases 

with the increase of the discretization level, k, a better accuracy 

is obtained when longer stochastic sequences are used. 

The memory usage of the SMN approach is further 

investigated and compared to that of the Markov chain analysis 

[24]. As shown in the simulation results in Table 4, the Markov 

chain analysis requires less memory than SMN for small 

networks with a low quantization level, k, whereas the required 

memory outgrows that of the SMN approach in the analysis of a 

larger network with a larger k. In fact, the required memory by 

the Markov chain analysis increases exponentially with the 

number of genes and depends heavily on k, because of the 

increased size of transition matrices in an analysis. On the other 

hand, the memory required by the time frame expanded SMN 

approach is mainly determined by the sequence length (L) and 

number of genes (n), while the quantization level (k) has little 

impact. It is also shown that the Markov chain analysis incurs a 

significantly longer run time than the SMN approach in the 

analysis of networks with larger n and k. Although a constant 

sequence length (30K) is used for the simulation results in 

Table 4, further simulations using different sequence lengths 

show a similar pattern. As reported in the Results and 

Discussion section, these features make the SMN approach 

more efficient than an analytical Markov chain approach while 

producing very accurate results compared to the Monte Carlo 

method in the analysis of large gene networks.  

IV. RESULTS AND DISCUSSION 

A. A Multiple-valued p53-Mdm2 Network 

p53 is a tumour suppressor gene that plays an important role 

in preventing the development and progression of tumour cells 

[31, 32]. External stimuli such as DNA damages can activate 

signaling pathways that involve the genes p53 and Mdm2. The 

dynamic behavior of a p53 network has been studied by using 

various Boolean models [18, 33] and an oscillatory behavior of 

the p53 and Mdm2 has been observed [10, 34].  

A four-node network has been analyzed in [18, 19] with 

“DNA damage” as one of the nodes. As DNA damage (such as 

double strand breaks) is one of the major factors that activate 

the p53 network [10, 32, 34], a three-node network that 

excludes the DNA damage as an external factor, as shown in 

Fig. 6, is considered in this section for an application of the 

SMN model. Let 𝑋1 denote the gene p53, cytoplasmic p53 and 

nucleic p53 (i.e. protein p53), and 𝑋2  and 𝑋3  denote the 

cytoplasmic Mdm2 and nucleic Mdm2, respectively. As protein 

p53 activates the cytoplasmic Mdm2 that has a positive effect 

on the nuclear Mdm2. Thus, protein p53 promotes nucleic 

Mdm2 indirectly through the cytoplasmic Mdm2. At the same 

time, p53 down-regulates nucleic Mdm2 by directly inhibiting 

the nuclear translocation of p53 [18, 19].  

protein p53

nuclear
Mdm2

cytoplasmic
Mdm2

1X

2X 3X

 
Fig. 6. The multiple-valued p53-Mdm2 network under DNA damage (adapted 
from [18, 19]). 

 

Based on these interactions, an SMN for the p53 network is 

established as follows: 𝑉 = {𝑋1, 𝑋2, 𝑋3}, where 𝑋1 has ternary 

values,  each of which indicates a different concentration level 

of the p53 protein (low, medium and high) [18], while 𝑋2 and 

𝑋3  are binary nodes, with the ternary functional sets 𝐹1 =

{𝑓1
(1), 𝑓2

(1)} , 𝐹2 = {𝑓1
(2), 𝑓2

(2)} , and 𝐹3 = {𝑓1
(3), 𝑓2

(3)} . Given 

their truth tables [19], these functions can be implemented by 

multiple-valued logic gates. For the gene node 𝑋2  (i.e. 

cytoplasmic Mdm2), for example, the state transitions are 

shown in the first and last columns in Table 5. These transitions 

can be implemented by an ES operator and two rotate gates, as 

shown in Fig. 7. The intermediate states during the transitions 

are shown in Table 5. 
 

TABLE 5 STATE TRANSITIONS OF 𝑋2 

𝑋1 𝑋1 (≥1) 𝑋2 (rotate) 𝑋2 
0 1 2 0 
1 1 2 0 
2 2 0 1 

 

rotate rotate
2X

1X
1X 2X

1
 

Fig. 7. A stochastic multiple-valued network for gene 𝑋2 (cytoplasmic Mdm2).  

 

Similarly, the implementation functions for the other genes 

X1 and X3 can be determined from their truth tables as well (in 

Tables 6 and 7 respectively).  

 
TABLE 6 TRUTH TABLE FOR X1 [19] 

𝑋3 𝑋1 𝑋1 
0 0 1 
0 1 2 
0 2 2 
1 0 0 
1 1 0 
1 2 1 

 
TABLE 7 TRUTH TABLE FOR X3 (ADAPTED FROM [19]) 

𝑋1 𝑋2 𝑋3 
0 0 0 
0 1 1 
1 0 0 
1 1 1 
2 0 0 
2 1 1 
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While the state transition in [19] is dependent on the current 

state and the state after transition, random state transitions are 

considered in this work, as in [6-8, 24]. Under this assumption, 

the present state is transitioned into a next state with a transition 

probability when perturbation occurs. The selection 

probabilities are shown in Table 8 for the predictor functions.  

 
TABLE 8 THE SELECTION PROBABILITIES OF PREDICTOR FUNCTIONS FOR THE 

MULTIPLE-VALUED P53-MDM2 NETWORK. 

𝑓1 𝑓2 𝑓3 

0.95 0.95 0.95 
0.05 0.05 0.05 
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Fig. 8. A stochastic multiple-valued network (SMN) for the p53-Mdm2 
network under DNA damage. 
 

For the p53-Mdm2 network in Fig. 6, an SMN can be 

constructed for implementing its functions, as shown in Fig. 8. 

For this three-gene network, a two-input multiplexer is used for 

each gene to probabilistically select a function with the 

selection probability encoded in the control sequence. For the 

update functions, 𝑓1
(𝑖)

 (𝑖 ∈ {1, 2, 3}) is for the state transition 

due to interactions with other genes or the change of the current 

state, while 𝑓2
(𝑗)

 (𝑗 ∈ {1, 2, 3}) indicates the preservation of the 

current state. In this model, the effect of asynchronicity [35] is 

implicitly considered at each step of the state updating process. 

For each input state, the output sequences are read out and 

decoded into (transition) probabilities.  

The p53 SMN model is used to compute the state transition 

matrix (STM) for this network, which is compared to the STM 

obtained by a Markov chain analysis. The norms ‖∙‖1, ‖∙‖2, 

and ‖∙‖∞ are then used to measure the differences of the STMs 

obtained by the different methods. ‖∙‖1 and ‖∙‖∞ indicate the 

maximum absolute values of the summed differences of the 

columns and rows respectively, while ‖∙‖2  measures the 

average difference of all entries. Let 𝑨𝑆𝑀𝑁  and 𝑨𝑀𝐶𝐴  be the 

STMs obtained by the SMN and a Markov chain analysis; the 

difference between these two matrices is then given by 

∆𝑨 = 𝑨𝑆𝑀𝑁 − 𝑨𝑀𝐶𝐴 . For the multiple-valued p53-Mdm2 

network with no perturbation, we obtain ‖∆𝑨‖1  = 0.0049, 

 ‖∆𝑨‖2 = 0.0023 and  ‖∆𝑨‖∞ = 0.0021 by using a sequence 

length of 10,000 values for the SMN.  

The STM of the p53-Mdm2 network under perturbation can 

similarly be computed using an SMN with perturbation (by 

implementing the SMN in Fig. 8 into that of Fig. 4). The STMs 

obtained by different approaches are illustrated in Fig. 9, while 

the norms of the differences, ‖∆𝑨‖1，‖∆𝑨‖2 and ‖∆𝑨‖∞, are 

shown in Table 9 for using different sequence lengths. The 

average run time is also provided for both approaches. 

As revealed in Table 9, the difference between the STMs 

computed using the SMN and the Markov chain analysis 

decreases with the increase of sequence length 𝐿. For the same 

accuracy requirement, as can be seen, a larger sequence length 

is needed for a higher perturbation rate. This relationship 

between the sequence length and perturbation rate is further 

shown in Fig. 10. However, the computational inaccuracy due 

to the inherent stochastic fluctuation in stochastic computation 

is generally small and negligible. Hence, the proposed SMN 

approach can accurately and efficiently compute the STM of a 

probabilistic multiple-valued network (PMN) with or without 

perturbation.   

 

 
Fig. 9. State transition matrices (STMs) obtained by the Markov chain [24] and 

SMN approaches for the p53-Mdm2 network. Sequence length: 𝐿 = 10,000 

bits; perturbation rate: 𝑝 = 0.1.  
 

TABLE 9 NORMS OF THE DIFFERENCE BETWEEN THE STMS OBTAINED BY 

MARKOV CHAIN ANALYSIS (MCA) AND THE SMN APPROACH FOR THE 

P53-MDM2 NETWORK, ∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁. 𝑝: PERTURBATION RATE; 𝐿: SEQUENCE 

LENGTH FOR THE STOCHASTIC APPROACH. 

 𝑝 = 0 
𝐿 (bits) 1,000 10,000 100,000 

‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖1 0.0091 0.0049 7.6500 × 10−4 
‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖2 0.0091 0.0023 8.1496 × 10−4 
‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖∞ 0.0183 0.0021 0.0016 

Average 
time (s) 

MCA 0.00522 

SMN 0.06804 0.57853 5.72595 

 𝑝 = 0.1 
𝐿 (bits) 1,000 10,000 100,000 

‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖1 0.0368 0.0097 0.0030 
‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖2 0.0210 0.0061 0.0016 
‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖∞ 0.0401 0.0105 0.0032 

Average 
time (s) 

MCA 0.01538 

SMN 0.05937 0.64545 5.96927 
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Fig. 10. The relationship between the minimum sequence length required for 

computing the STM (with an accuracy requirement of ‖∙‖2 = 0.02) and the 
perturbation rate for the multiple-valued p53-Mdm2 network. 

 

A probabilistic network with random perturbation evolves as 

an ergodic Markov chain [7], because the non-zero perturbation 

rate makes all the states in the network connected. Hence, a 

steady state exists in a network with perturbation. The steady 

state distribution (SSD) for the p53 network under DNA 

damage is obtained by using different approaches, as shown in 

Fig. 11.  

 
Fig. 11. Steady state distributions (SSDs) of the multiple-valued p53 network 

after 30 state transitions with an initial state of 000. The X-axis indicates the 

network state, and the Y-axis is for the different approaches. The color bar on 

the right shows the values of the SSD. Perturbation rate: 𝑝 = 0.1; sequence 

length or simulation runs: 10,000. 
 

As shown in Fig. 11, all approaches produce similar SSDs. In 

fact, the difference between the results by the SMN and the 

accurate Markov chain analysis is negligible when reasonably 

long stochastic sequences are used (such as those of 10,000 

values). Using the STM computed by an SMN approach or the 

time frame expanded SMN approach results in a very accurate 

approximation of the SSD compared to the rigorous Markov 

chain analysis. A further analysis shows that the relative error is 

less than approximately 0.2% for the stochastic approach. 

Individual gene expressions are shown in Fig. 12 for a single 

simulation of 30 transitions. It can be seen that the likely 

expression levels of p53 and nuclear Mdm2 follow an 

oscillatory pattern as analytically [19] and experimentally [36] 

shown previously. 
 

 
Fig. 12. Individual gene expressions for the p53 network generated from a 

single simulation of 30 iterations with an initial state of 011. X-axis indicates 

the iteration number and Y-axis shows the expression level of p53 or nuclear 
Mdm2. 

B. A WNT5A network 

Next, a WNT5A network [24] is used to illustrate the 

efficiency of the stochastic multiple-valued network (SMN) 

model and the time-frame expansion technique. A ten-gene 

network is derived from the predictive relationships in Table 

10. The selection probabilities of the predictor functions are 

also given in Table 10 (estimated from [24]). Fig. 13 shows a 

detailed structure of the network with double (or single) - 

headed arrows indicating the bi (or uni) - directional 

relationships of gene pairs. While the number of output arcs 

varies, every node (or gene) has three input arcs in Fig. 14. 

 
TABLE 10 THE SELECTION PROBABILITY OF PREDICTOR FUNCTIONS FOR A 

10-GENE WNT5A NETWORK (ESTIMATED FROM [24]). 

Target Predictor 

𝑓1 
Select 

prob. 

Predictor 

𝑓2 

Select 

prob. 

Predictor 

𝑓3 

Select 

prob. 

pirin WNT5A 0.6 STC2 0.2 HADHB 0.2 
WNT5A pirin 0.6 S100P 0.2 RET-1 0.2 

S100P WNT5A 0.33 RET-1 0.33 Synuclein 0.34 

RET-1 pirin 0.43 WNT5A 0.24 S100P 0.33 

MMP-3 S100P 0.43 RET-1 0.25 HADHB 0.32 

PHO-C MART-1 0.33 Synuclein 0.33 STC-2 0.34 

MART-1 pirin 0.44 WNT5A 0.28 MMP-3 0.28 
HADHB pirin 0.3 WNT5A 0.4 MMP-3 0.3 

Synuclein pirin 0.25 S100P 0.25 MART-1 0.5 

STC2 pirin 0.35 WNT5A 0.3 PHO-C 0.35 

 

RET-1

WNT5A

pirin

STC2

PHO-C

synuclein

MART-1

S100P

MMP-3

HADHB

 
Fig. 13. A ternary WNT5A network with gene interactions (adapted from [24]). 
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Fig. 14. An SMN module for certain gene 𝑖 of the ternary WNT5A network, 

with the predictor function implemented by a ternary buffer. Let 𝑮𝑖 =
(𝑋1, 𝑋2, 𝑋3) be the input vector for gene 𝑖; the input vector for each of the genes 
in the ternary WNT5A network is given by: 

𝑮𝑊𝑁𝑇5𝐴 = (𝑝𝑖𝑟𝑖𝑛, 𝑆100𝑃, 𝑅𝐸𝑇 − 1);  
𝑮𝑝𝑖𝑟𝑖𝑛 = (𝑊𝑁𝑇5𝐴, 𝑆𝑇𝐶2, 𝐻𝐴𝐷𝐻𝐵);  

𝑮𝑅𝐸𝑇−1 = (𝑝𝑖𝑟𝑖𝑛,𝑊𝑁𝑇5𝐴, 𝑆100𝑃);  
𝑮𝐻𝐴𝐷𝐻𝐵 = (𝑝𝑖𝑟𝑖𝑛,𝑊𝑁𝑇5𝐴,𝑀𝑀𝑃 − 3); 
𝑮𝑀𝑀𝑃−3 = (𝑆100𝑃, 𝑅𝐸𝑇 − 1,𝐻𝐴𝐷𝐻𝐵); 
𝑮𝑆100𝑃 = (𝑊𝑁𝑇5𝐴,𝑅𝐸𝑇 − 1, 𝑆𝑦𝑛𝑢𝑐𝑙𝑒𝑖𝑛); 
𝑮𝑀𝐴𝑅𝑇−1 = (𝑝𝑖𝑟𝑖𝑛,𝑊𝑁𝑇5𝐴,𝑀𝑀𝑃 − 3); 
𝑮𝑆𝑦𝑛𝑢𝑐𝑙𝑒𝑖𝑛 = (𝑝𝑖𝑟𝑖𝑛, 𝑆100𝑃,𝑀𝐴𝑅𝑇 − 1); 

𝑮𝑃𝐻𝑂−𝐶 = (𝑀𝐴𝑅𝑇 − 1, 𝑆𝑦𝑛𝑢𝑐𝑙𝑒𝑖𝑛, 𝑆𝑇𝐶2); 
𝑮𝑆𝑇𝐶2 = (𝑝𝑖𝑟𝑖𝑛,𝑊𝑁𝑇5𝐴, 𝑃𝐻𝑂 − 𝐶). 

 
For the 10-gene ternary WNT5A network, it requires a state 

transition matrix (STM) of 310 = 59049 columns and rows for 

an accurate analysis. This makes it difficult, if not impossible, 

to estimate the steady state of an SMN using a matrix-based 

analysis. In general, it is difficult to analyze a large gene 

network, due to its excessive computational overhead. A Monte 

Carlo (MC) method has been used in [24] for evaluating the 

steady state distribution (SSD) of a network with perturbation. 

However, the MC method is very time consuming due to the 

slow convergence typically encountered in an MC simulation.  

However, an SMN model can be constructed for the ternary 

WNT5A network, as shown in Fig. 14. For this SMN, the SSD 

can be estimated using the aforementioned time-frame 

expansion technique and compared with the MC simulation 

[24]. By the time-frame expansion technique, the temporal 

operation of an SMN is laid out into a series of identical SMN 

modules in the spatial domain (as in Fig. 5). The required 

iterations of the SMN are determined by the number of state 

transitions before reaching a steady state. As in [37], a steady 

state is considered to have been reached if the discrepancy 

between two adjacent simulations is smaller than a threshold or 

the number of simulations has reached a maximum value. The 

state or GAP of the WNT5A network can be represented by a 

ternary vector as (𝑥1, 𝑥2 , ⋯, 𝑥10), or its decimal index. The 

SSDs of the network with all of the 59049 states, obtained using 

the SMN and the MC method [24], are shown in Fig. 15. 

The norms of the differences of the SSDs obtained using the 

time frame expanded SMN approach with different sequence 

lengths and the MC method are shown in Table 11. As can be 

seen, the time-frame expanded SMN technique efficiently 

evaluates the SSD of the WNT5A network and produces very 

accurate results compared to the Monte Carlo simulation [24]. 

The average run time reveals the efficiency of the SMN 

approach. This is because the use of randomly permuted 

sequences results in a faster convergence than in the MC 

simulation. The use of longer stochastic sequences further 

improves the accuracy of evaluation and remains more efficient 

by several orders of magnitude than the MC method. Albeit at a 

higher memory cost than the MC simulation (shown in Table 

11), the SMN approach requires much less memory than an 

accurate approach such as a Markov chain analysis (shown in 

Table 4). Since it is difficult to compute the STM or SSD of a 

large GRN by using an accurate analysis, a time-frame 

expanded SMN provides an alternative method to evaluate the 

SSD of a large network with a tunable tradeoff between 

accuracy and efficiency by using stochastic sequences of 

different lengths. 

 

 
Fig. 15. SSDs of the ternary WNT5A network using the SMN model and Monte 

Carlo (MC) simulation with perturbation rate 𝑝 = 0.2 and sequence length or 

simulation runs 𝐿/𝑁𝑢𝑚 = 300,000. 

 
TABLE 11 NORMS OF THE DIFFERENCE BETWEEN THE SSDS OBTAINED BY THE 

TIME FRAME EXPANDED SMN TECHNIQUE AND MONTE CARLO (MC) 

SIMULATION FOR THE TERNARY WNT5A NETWORK WITH PERTURBATION RATE 

𝑝 = 0.2. THE AVERAGE RUN TIME IS ALSO SHOWN. 𝐿: SEQUENCE LENGTH FOR 

THE STOCHASTIC APPROACH; 𝑁𝑢𝑚: NUMBER OF SIMULATION RUNS FOR THE 

MC METHOD; 𝑺𝑺𝑫𝑀𝐶  AND 𝑺𝑺𝑫𝑆𝑀𝑁  RESPECTIVELY DENOTE THE STEADY 

STATE DISTRIBUTIONS OBTAINED BY THE MC SIMULATION AND THE TIME 

FRAME EXPANDED SMN TECHNIQUE; A MAXIMUM NUMBER OF 50 ITERATIONS 

IS APPLIED TO THE STEADY STATE EVALUATION. 

Num/L 3k 30k 300k 3000k 
‖𝑺𝑺𝑫𝑀𝐶
− 𝑺𝑺𝑫𝑆𝑀𝑁‖1 

1.8827 1.3291 0.4915 0.1605 

‖𝑺𝑺𝑫𝑀𝐶
− 𝑺𝑺𝑫𝑆𝑀𝑁‖2 

0.0258 0.0082 0.0026 
8.5342
× 10−4 

‖𝑺𝑺𝑫𝑀𝐶
− 𝑺𝑺𝑫𝑆𝑀𝑁‖∞ 

1.0000
× 10−3 

2.6667
× 10−4 

1.3333
× 10−4 

5.6333
× 10−5 

Average 
time (s) 

MC 98.4768 981.159 9731.04 97336.5 

SMN 0.47811 4.23694 58.9336 673.928 
Required 

memory 
(M Byte) 

MC 2.7117 10.0076 51.2108 599.607 

SMN 9.8083 40.9368 373.299 3696.5 

V. CONCLUSION 

As a generalization of stochastic Boolean networks (SBNs), 

stochastic multiple-valued networks (SMNs) are proposed as 

an efficient approach to modeling the effects of noise in gene 

regulatory networks (GRNs). In an SMN, the state transition 

matrix can be accurately and efficiently computed with a 

complexity of 𝑂(𝑛𝐿𝑘𝑛), where 𝑛 is the number of genes in a 

network, 𝑘 is the quantization level of a gene’s state and 𝐿 is a 

factor determined by the stochastic sequence length. Since 𝐿 

increases slower with 𝑛 than the number of network functions 

𝑁 , this result is an improvement compared to the previous 
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result of 𝑂(𝑛𝑁𝑘2𝑛)  for an accurate analysis. The use of 

randomly permuted sequences further increases computational 

efficiency and allows for a tunable tradeoff between accuracy 

and efficiency. A steady state analysis using a time-frame 

expansion technique has shown a significant speedup compared 

to an accurate Markov chain analysis and produced very 

accurate results compared to Monte Carlo simulation. 

SMNs are constructed for the analysis of a multiple-valued 

p53-Mdm2 network and a ternary WNT5A network under gene 

perturbation. Simulations of the SMNs have revealed the 

oscillatory dynamics of the p53-Mdm2 network with random 

gene perturbation. The SMN approach can also efficiently 

predict the steady state distribution of the WNT5A network 

with gene perturbation. Hence, the SMNs are useful in 

evaluating the effects of gene perturbation and, potentially, 

helpful in drug discovery for an intervention-based gene 

therapy. Future work includes the further investigation of 

asynchronous networks [38], as well as stochastic networks 

with time delays [39] and parameter uncertainties [40].  
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