
  
Abstract—Stochastic mean circuits (SMCs) are at the core of 

mean filtering and neural networks, but they have not been fully 
investigated in stochastic computing (SC). In this paper, SMCs in 
the unipolar and bipolar formats are respectively proposed to 
average bitstreams. For this purpose, the unipolar and bipolar 
stochastic inner-product circuits (SIPCs) are first designed by 
using positively correlated bitstreams for multiplication and 
accumulation. These bitstreams are generated by sharing a 
random number source (RNS) among different stochastic number 
generators (SNGs) to lower hardware costs. Applications of the 
proposed designs in Gaussian filtering, edge detection, and mean 
filtering are implemented. Experimental results show that the 
proposed SIPCs and SMCs outperform previous designs in both 
hardware efficiency and computing accuracy. 

Index Terms—Stochastic computing, correlation, inner-product 
circuit, mean circuit. 

I. INTRODUCTION 
TOCHASTIC computing (SC) encodes binary numbers into 
randomly distributed bitstreams when a slight computing 

inaccuracy is acceptable in applications such as image 
processing. The bitstreams make it feasible for simple logic 
gates to implement complex functions. For example, an AND 
gate or a multiplexer (MUX) performs the multiplication or 
addition of two independent bitstreams [1]. 

Another basic component in SC is the stochastic mean circuit 
(SMC), which is at the core of filtering and neural networks [2]. 
One way to average stochastic bitstreams is to use MUXs by 
controlling the select bitstreams [3]. Although the input 
bitstreams to be averaged can be generated by sharing one 
random number source (RNS), the select bitstreams have to be 
independently produced to lower the stochastic computing 
correlation (SCC), thus causing a large hardware cost. A 
unipolar SMC has been proposed to average positively 
correlated bitstreams [4]. The design uses an RNS to generate 
correlated bitstreams to avoid the stringent requirement of 
decorrelation. However, minimum detectors are used, making 
the SMC inevitably expensive in hardware implementation. 
Other designs include 2-, 4-, and 9-input unipolar SMCs to 
average positively correlated bitstreams in [5]. Although these 
designs use two RNSs for respectively generating coefficient 
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and input bitstreams, preliminary results validate their 
advantage over previous designs. This work is a thorough 
extension of [5]; it provides two general design methods of 
stochastic inner-product circuits (SIPCs) and SMCs in the 
unipolar and bipolar formats with additional theoretical analysis 
and applications. The SIPC and SMC are applicable to any 
number of inputs and consume only one RNS. The main 
contributions of this work are as follows. (1) Two SIPCs are 
proposed for positively correlated bitstreams in the unipolar and 
bipolar formats, respectively. (2) Two SMCs based on the 
SIPCs are proposed to average positively correlated bitstreams 
in the unipolar and bipolar formats, respectively. (3) 
Theoretical proofs are provided for the proposed designs. (4) 
Applications in Gaussian filtering, Sobel edge detection, and 
mean filtering are implemented. 

This paper proceeds as follows. Section II provides the basics 
of SC. Section III briefly reviews related works. Section IV 
illustrates the proposed SIPCs and SMCs. Section V provides 
the experimental results and applications in image processing. 
Section VI concludes this work. 

II. BASICS 
Stochastic numbers or the so-called bitstreams are generated 

by a stochastic number generator (SNG), which is generally 
composed of an RNS and a comparator. A number R generated 
by the RNS is compared to a k-bit binary number B at every 
clock cycle to produce a bitstream b with a length of 2k bits, as 
shown in the 2nd column in TABLE I. If B is larger, or smaller, 
than R, the SNG produces a 1, or a 0, at each clock cycle. The 
RNS can be a linear feedback shift register (LFSR) [6], a Sobol 
sequence generator (SSG) [7], or other pseudorandom number 
generators. In the unipolar format, the probability p of each bit 
being 1 in the generated bitstreams equals the corresponding 
binary number B within [0, 1], while the probability p is (A+1)/2 
in the bipolar format, where A is within [-1, 1]. We use 
lowercases to indicate bitstreams and uppercases to denote 
corresponding binary numbers, unless otherwise specified. 

The scaled adder and multiplier are two basic components in 
SC, as respectively listed in the 3rd, 4th, and 5th columns in 
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TABLE I. The bitstream s of the adder has to be uncorrelated 
with x and y to ensure a correct function SX+(1-S)Y, while x and 
y can be correlated with each other. This adder is feasible in 
both unipolar and bipolar formats. An AND or XNOR gate 
performs the multiplication in the unipolar or bipolar format, 
respectively, if the bitstreams x and y are uncorrelated. Yet, an 
OR gate with negatively correlated bitstreams can perform the 
saturated addition X+Y if X+Y≤1 or 1 if X+Y>1; an XOR gate 
with positively correlated bitstreams realizes the absolute 
subtraction |X-Y| [8], as in the last two columns in TABLE I. 

III. RELATED WORK 

A. Stochastic Inner-Product Circuits (SIPCs) 
A bipolar SIPC is based on a MUX [9], as shown in Fig. 1(a). 

The bitstreams y1, y2, and |x2|/(|x1|+|x2|) are generated by three 
SNGs, respectively corresponding to binary numbers Y1, Y2, and 
|X2|/(|X1|+|X2|). It performs the scaled inner-product function, as 
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where sign(Xi) (i=1 or 2) is 1 if Xi≥0, or sign(Xi) is -1. To lower 
the hardware costs of generating multiple bitstreams, circular 
shifting of the bits of an RNS has been considered to share the 
RNS within multiple SNGs [10]. This method works well for 
SIPCs with fewer inputs. 

B. Stochastic Mean Circuits (SMCs) 
By setting x1 and x2 to be 1 for the SIPC, a MUX based SMC 

to average y1 and y2 can be obtained, as shown in Fig. 1(b). 
Multi-input SMCs have been designed and evaluated [3], for 
which multiple uncorrelated select bitstreams have been 
generated by sharing an RNS to save hardware. Positively 
correlated bitstreams can be averaged by simple logic gates; 
meanwhile, a high computing accuracy can also be preserved, 
as demonstrated in [4]. Minimum detectors to distinguish the 
smallest value cause large hardware costs, which makes the 
method inferior. 

IV. THE PROPOSED DESIGNS 

A. Positively Correlated Bitstreams 
Logic gates using correlated bitstreams can perform specific 

functions, as described above. The SCC value of two bitstreams 
x and y is defined as [8] 
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where δ(x,y)=pxy-pxpy (pxy is the probability of the ANDed 
results of x and y). SCC=0 means two bitstreams are ideally 
independent, while a value of +1 or -1 respectively indicates a 
maximally positive or negative correlation. The generation of n 
positively correlated bitstreams can be realized by sharing an 
RNS among n SNGs, as shown in Fig. 2(a) [11]. Assume n k-
bit binary number B1, …, Bi, …, Bj, …, and Bn, and Bi < Bj. The 
generated bitstreams respectively are b1, …, bi, …, bj, …, and 
bn, with a length of 2k bits. In the tth clock cycle (1 ≤ t ≤ 2k), if 
R < Bi, the tth bit of bi is a 1, and the tth bit of bj is also a 1, and 
vice versa. Thus, the positions of 1 and 0 in bi and bj are 
overlapped to the extent possible. Consider a case, for example, 
bi=00001111 and bj=11001111. δ(bi,bj)=

i jb bp -
ibp

jbp =4/8-

4/8×6/8=1/8. Their SCC(bi,bj) is 1, so bi and bj are positively 
correlated bitstreams. 

Fig. 2(b) shows the average SCC values of two positively and 
negatively correlated bitstreams for different bitwidths of 
LFSRs and SSGs. The SNGs using SSGs consistently realize 
larger absolute SCC values than those using LFSRs. The 
absolute SCC values of two designs with 8-bit RNSs are 0.9844 
and 0.9923, respectively, thus resulting in a high computing 
accuracy. This can be seen from the mean squared error (MSE) 
values in Fig. 2(c), where an OR or XOR gate respectively 
works with negatively or positively correlated bitstreams. Both 
gates reach very low MSE values. In fact, the MSE values for 
the OR and XOR gates using SSGs are 0, while those using 
LFSRs result in negligible accuracy loss because an LFSR 
usually does not have an all-zero state [12]. 

B. SIPCs 
A SIPC performs the multiplication and addition as 
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where X=(X1, X2, …, Xn) and Y=(Y1, Y2, …, Yn) are two binary 
vectors; sign(Xi) is +1 or -1 for positive or negative numbers. 
The resulting F that exceeds 1 or -1 should be scaled down to 
[0, 1] or [-1, 1], respectively, corresponding to the unipolar or 

TABLE I 
STOCHASTIC COMPONENTS 

Operation (a) SNG (b) Unipolar/Bipolar addition (c) Unipolar multiplication (d) Bipolar multiplication (e) Addition (f) Absolute subtraction 

Component 
      

Function B→b F=SX+(1-S)Y F=XY F=XY F=X+Y F=|X-Y| 
Correlation NA Uncorrelated Uncorrelated Uncorrelated Negatively correlated Positively correlated 
 

 
Fig. 1.  (a) A MUX based SIPC [9]. (b) A MUX based SMC. 

 
Fig. 2.  (a) The generation of positively correlated bitstreams adapted from [11]. 
(b) The SCC values of sharing an LFSR and SSG. (c) The MSEs of OR and 
XOR gates performing addition and absolute subtraction. 
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bipolar format. The maximum and minimum values of the 
unipolar and bipolar SIPCs have to be determined in advance, 
respectively, as (4) and (5) 
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Thus, the scaled results of the unipolar and bipolar SIPCs are 
respectively given in (6) and (7) 
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Unipolar SIPCs: Fig. 3(a) shows the proposed unipolar SIPC. 
x1, x1+x2, …, and x1+…+xn represent positively correlated 
bitstreams generated by sharing an RNS among n SNGs as in 
Fig. 2(a), respectively denoting scaled numbers X1/(X1+…+Xn), 
(X1+X2)/(X1+…+Xn), …, and (X1+…+Xn)/(X1+…+Xn). The 
XORed results of the bitstreams are x1, x2, …, and xn since the 
XOR gates perform the absolute subtraction. x1, x2, …, and xn 
are negatively correlated with each other and proved as follows. 

The bitstreams xi and xj being negatively correlated mean 
SCC(xi,xj)=-1. Assume k < j < i and i=j+1=k+2 for simplicity. 
According to (6) 

1
1

nx xp p+ + = , max(
i jx xp p+ -1,0)=0. The 

binary numbers of bitstreams x1+…+xk, x1+…+xj, and x1+…+xi 
satisfy (X1+…+Xk)/(X1+…+Xn) ≤ (X1+…+Xj)/(X1+…+Xn) ≤ 
(X1+…+Xi)/(X1+…+Xn). Thus, if x1+…+xi is 1, x1+…+xj can be 
1 or 0, or x1+…+xj and x1+…+xk must be 0. If x1+…+xj is 1, 
x1+…+xk can be 1 or 0; otherwise, x1+…+xk must be 0, as listed 
in TABLE II. If the values are 1, 1, and 1, the XORed results 
are xi=0 and xj=0; if the values are 1, 1, and 0, xi=0 and xj=1; if 
the values are 1, 0, and 0, xi=1 and xj=0; and if the values are 0, 
0, and 0, xi=0 and xj=0. Thus, 

i jx xp =p(xi=1∩xj=1)=0 and 

δ(xi,xj)=
i jx xp -

i jx xp p =-
i jx xp p , and then SCC(xi, xj)=-1. 

The bitstreams y1, …, yn are generated by sharing an RNS 
with an inversed order [6]. The n AND gates perform the 
multiplication since the bitstreams xi and yi are uncorrelated. 
The ANDed results a1, …, and an are also negatively correlated. 
It is proved in (8) using ai and aj. 
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The last OR gate realizes the addition of n negatively 
correlated bitstreams a1, …, and an. 

Bipolar SIPCs: Fig. 3(b) shows the proposed bipolar SIPC. 
If sign(xi) is +1, the connected pin is fixed to 1, while if sign(xi) 
is -1, the pin is 0. The XNOR gates realize the multiplication of 
yi and sign(xi) in the bipolar format. Its working principle is 
similar to the one in the unipolar format. 

C. SMCs 
Fig. 4(a) shows the proposed unipolar SMC. It is realized by 

setting the inputs X1/(X1+…+Xn), (X1+X2)/(X1+…+Xn), …, and 
(X1+…+Xn)/(X1+…+Xn) of the unipolar SIPC to be 1/n, 2/n, …, 
and n/n, respectively. Fig. 4(b) shows the proposed bipolar 
SIPC with various binary inputs. It is necessary to make sure 
that their absolute values are 1/n, 2/n, …, and n/n. If all of them 
are set to positive values, the bipolar SMC is the same as the 
unipolar one, except for the different coding methods. 

V. APPLICATIONS AND RESULTS 
The proposed and compared stochastic designs in [3-5, 10] 

are modeled in MATLAB through m Monte Carlo trials for 
evaluating computing accuracy using the MSE defined as 
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where f and fʹ are respectively the exact and computed results 
using a stochastic circuit. Ten thousand Monte Carlo trials for 
each input combination are carried out to dampen the 
fluctuation of bitstreams. The proposed stochastic designs are 
implemented in Verilog and synthesized by the Synopsys 
Design Compiler with a TSMC 40 nm standard library at the 
typical corner [13]. The stochastic designs in [3-5, 10] are 
reprogrammed using the same design flow and implemented in 
the same technology node, as the proposed designs, to fairly 
judge their hardware performance. The command 
‘compile_ultra’ is used to ungroup all components and 
automatically synthesize the circuits according to timing 
constraints. The clock period is set to be 10 ns. The averaged 
power is measured by the PrimeTime using a vector-based 
power model for ten thousand random input combinations. A 
vector is randomly generated using a uniform distribution in 
MATLAB to generate a *.vcd file in ModelSim for each design. 

 
Fig. 4.  The proposed SMCs using (a) Unipolar format, and (b) Bipolar format. 
 

TABLE II 
RELATIONSHIPS OF THREE BITSTREAMS 

Bitstream Value 
x1+…+xi 1 0 
x1+…+xj 1 0 0 
x1+…+xk 1 0 0 0 

 
Fig. 3.  The proposed SIPCs using (a) Unipolar format, and (b) Bipolar format. 



A. Computing Accuracy 
SIPCs: Fig. 5(a) shows the MSEs of the proposed 9-input 

unipolar SIPC (PLFSR and PSobol), which exponentially decrease 
as the bitwidths of RNSs increase. The unipolar SIPC using an 
SSG realizes a higher computing accuracy than the one using 
an LFSR. Fig. 5(b) shows that the proposed 9-input bipolar 
SIPC achieves much higher computing accuracy than the one 
sharing RNSs and using circular shifting for decorrelation 
(SLFSR and SSobol) [10]. The MSE is lowered by up to 85% and 
84% on average compared with SLFSR and SSobol, respectively. 
Fig. 6 illustrates the MSEs of the proposed SIPCs for different 
numbers of inputs, using 8-bit LFSRs and SSGs. As can be seen, 
the number of inputs affects the computing accuracy of the 
unipolar SIPCs, and the accuracy loss worsens for the bipolar 
SIPCs. The MSEs of 1024-input unipolar and 64-input bipolar 
SIPCs respectively are about 5×10-4 and 9×10-4, which are 
sufficient for image-processing applications because the peak 
signal-to-noise ratio (PSNR) will not be less than 30 dB [6]. 

SMCs: Fig. 7 shows the MSEs of the proposed 9-input SMCs 
(PLFSR and PSobol), the MUX based designs (MLFSR and MSobol) 
[3], the minimum detector based design (DLFSR) [4], and the 
Two LFSRs based design (TLFSR) [5]. For MLFSR and MSobol, a 
16-input MUX is used, where its first 8 input bitstreams are 
connected to the first 8 pins, and the other 8 pins are connected 
to the 9th input bitstream. The 4 select bitstreams that must be 
uncorrelated with input bitstreams are generated by using 
isolators, for example, D flip flops (DFFs) [14]. The MUX and 
detector based SMCs perform better than the proposed designs 
when the bitwidths of RNSs are less than 6. However, all of 
them have larger MSEs, which are impractical in reality. As the 
bitwidths of RNSs increase, the proposed designs consistently 
outperform the previous designs. For example, the MSEs of the 
unipolar and bipolar SMCs using 8-bit RNSs are lowered by 
about 92% and 93%, 87%, and 84%, using LFSRs and SSGs, 
compared to MLFSR and MSobol, respectively. The proposed 
SMCs for different numbers of inputs using 8-bit RNSs bring 
out the same MSE trend as the SIPCs, as shown in Fig. 8. 

B. Hardware Cost 
SIPCs: TABLE III lists the hardware costs of the proposed 

9-input unipolar and bipolar SIPCs, and previous stochastic 
designs using D flip flops for decorrelation [10], using 8-bit 
RNSs. All designs include SNGs and the core computing units, 

without the derandomization units for subsequent usage. The 
proposed SIPC has only a few logic gates on the critical path to 
realize a smaller delay than SLFSR and SSobol with multilevel 
cascaded MUXs. The proposed designs are more efficient than 
SLFSR and SSobol in all aspects. For example, the power-delay 
product (PDP), area-delay product (ADP), and energy-delay 
product (EDP) are respectively reduced by about 13%, 62%, 
and 17% for the bipolar SIPCs. 

SMCs: TABLE IV gives the hardware costs of the proposed 
9-input unipolar and bipolar SMCs, the MUX based designs [3], 
the minimum detector based design [4], and the two LFSRs 
based design [5], using 8-bit RNSs. DLFSR uses a multilevel 
minimum detector to find the smallest value in 9 inputs, which 
inevitably induces a larger delay. The proposed designs have a 
decisive advantage over the previous ones. For example, the 
EDP of the proposed bipolar SMC using an LFSR is reduced by 
up to about 69%, compared to that of bipolar MLFSR [3]. 

C. Applications 
Five images downloaded from [15], including clock, airplane, 

cameraman, Lena, and moon, are processed using the SIPCs 
and SMCs with 8-bit LFSRs, as examples. PSNR and mean 
structural similarity (MSSIM) are used to evaluate the quality 
of processed images [16]. Fig. 9 gives the 3×3 kernels for 
Gaussian filtering, Sobel edge detection, and mean filtering, 

 
Fig. 5.  The MSEs of 9-input SIPCs. (a) Unipolar format. (b) Bipolar format. 

 
Fig. 6.  The MSEs of the proposed SIPCs for different numbers of inputs. 

 
Fig. 7.  The MSEs of 9-input SMCs. (a) Unipolar format. (b) Bipolar format. 

 
Fig. 8.  The MSEs of the proposed SMCs for different numbers of inputs. 

TABLE III 
HARDWARE COSTS OF 9-INPUT SIPCS 

Design Area Power Delay PDP ADP EDP 

Unipolar PLFSR 545.61 19.28 2.38 45.89 1298.54 109.21 
PSobol 648.98 18.37 2.36 43.35 1531.58 102.31 

Bipolar 

PLFSR 751.99 19.88 2.56 50.89 1925.10 130.29 
PSobol 850.60 19.44 2.60 50.54 2211.56 131.41 

SLFSR [10] 1962.63 21.62 2.71 58.59 5318.72 158.78 
SSobol [10] 2063.53 21.17 2.72 57.58 5612.79 156.62 

Area: um2; Power: uW; Delay: ns; PDP: uW∙ns; ADP: um2∙ns; EDP: uW∙ns2. 
TABLE IV 

HARDWARE COSTS OF 9-INPUT SMCS 
Design Area Power Delay PDP ADP EDP 

Unipolar 

PLFSR 165.64 12.83 0.96 12.32 159.01 11.82 
PSobol 249.78 12.10 0.96 11.62 239.79 11.15 

MLFSR [3] 318.23 39.10 0.98 38.32 311.86 37.55 
MSobol [3] 400.60 34.59 0.98 33.90 392.59 33.22 
DLFSR [4] 231.08 21.90 1.56 34.16 360.49 53.30 
TLFSR [5] 235.32 24.22 1.04 25.19 244.73 26.20 

Bipolar 

PLFSR 165.64 12.84 0.96 12.33 159.01 11.83 
PSobol 249.78 12.10 0.96 11.62 239.79 11.15 

MLFSR [3] 305.35 40.38 0.98 39.57 299.24 38.78 
MSobol [3] 388.61 34.48 0.98 33.79 380.84 33.11 

Area: um2; Power: uW; Delay: ns; PDP: uW∙ns; ADP: um2∙ns; EDP: uW∙ns2. 
 



where 1/16, 1/8, 1/8, and 1/9 are factors to scale down inputs 
into [0, 1] or [-1, 1]. 

Gaussian filtering: Since the kernel of Gaussian filtering 
contains only positive numbers, a proposed unipolar SIPC can 
realize the filtering. In addition, all images are polluted through 
salt & pepper noise with a density of 0.01 at first using the 
command ‘imnoise’ in MATLAB and then processed. 

Edge detection: The Sobel operators have negative and 
positive numbers, so a bipolar SIPC is used to perform the edge 
detection [17], for example, the proposed bipolar SIPC and a 
previous design in [10]. The involved absolute function is 
implemented by a finite state machine with 16 states [18]. 

Mean filtering: Mean filtering is just to average neighboring 
pixels to replace the central pixel. Thus, both unipolar SMC and 
bipolar SMC can be used to realize the filtering [3-5]. All 
images are also polluted using salt & pepper noise. 

TABLE V and TABLE VI list the average values of PSNR 
and MSSIM for five processed images. Fig. 10 shows the 
original and processed images for these three applications, 
including cameraman, as an example. The proposed designs 
provide better results and image quality for all three image 
processing algorithms. 

VI. CONCLUSION 
This paper proposes a design method for stochastic inner-

product circuits (SIPCs) and stochastic mean circuits (SMCs) 
using positively correlated bitstreams in the unipolar and 
bipolar formats, respectively. The SIPC or SMC uses only one 
random number source (RNS), which significantly reduces 
hardware costs and increases computing accuracy, compared to 
previous works. Gaussian filtering, edge detection, and mean 
filtering validate the strengths of the proposed designs. 
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Fig. 9.  Kernels for three image processing algorithms. (a) Gaussian filtering. 
(b) Sobel edge detection. (c) Mean filtering. 

 
Fig. 10.  The processed images. (a) Original cameraman. (b) Gaussian filtering. 
(c) Sobel edge detection. (d) Mean filtering. 

TABLE V 
PSNR OF THREE IMAGE PROCESSING ALGORITHMS 

 Gaussian filtering Edge detection Mean Filtering 
Design Proposed Proposed [10] Proposed [3] [4] [5] 
PSNR 49.53 35.41 24.58 48.73 35.69 34.39 41.97 

TABLE VI 
MSSIM OF THREE IMAGE PROCESSING ALGORITHMS 

 Gaussian filtering Edge detection Mean Filtering 
Design Proposed Proposed [10] Proposed [3] [4] [5] 
MSSIM 0.9974 0.9887 0.8598 0.9928 0.9867 0.9400 0.9786 
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