
An Energy-Efficient Stochastic Computational Deep
Belief Network

Yidong Liu
ECE Department

University of Alberta
Edmonton, AB, Canada

Email: yidong1@ualberta.ca

Yanzhi Wang
EECS Department
Syracuse University
Syracuse, NY, USA

Email: ywang393@syr.edu

Fabrizio Lombardi
ECE Department

Northeastern University
Boston, MA, USA

Email: lombardi@ece.neu.edu

Jie Han
ECE Department

University of Alberta
Edmonton, AB, Canada

Email: jhan8@ualberta.ca

Abstract—Deep neural networks (DNNs) are effective machine
learning models to solve a large class of recognition problems,
including the classification of nonlinearly separable patterns. The
applications of DNNs are, however, limited by the large size and
high energy consumption of the networks. Recently, stochastic
computation (SC) has been considered to implement DNNs to
reduce the hardware cost. However, it requires a large number
of random number generators (RNGs) that lower the energy
efficiency of the network. To overcome these limitations, we
propose the design of an energy-efficient deep belief network
(DBN) based on stochastic computation. An approximate SC
activation unit (A-SCAU) is designed to implement different types
of activation functions in the neurons. The A-SCAU is immune
to signal correlations, so the RNGs can be shared among all
neurons in the same layer with no accuracy loss. The area and
energy of the proposed design are 5.27% and 3.31% (or 26.55%
and 29.89%) of a 32-bit floating-point (or an 8-bit fixed-point)
implementation. It is shown that the proposed SC-DBN design
achieves a higher classification accuracy compared to the fixed-
point implementation. The accuracy is only lower by 0.12% than
the floating-point design at a similar computation speed, but with
a significantly lower energy consumption.

Index Terms—stochastic computing, deep belief network, recti-
fier linear unit, cognitive computing.

I. INTRODUCTION

As a type of deep neural networks (DNNs), a deep belief
network (DBN) substantially improves the performance of
conventional artificial neural networks such as a multilayer
perceptron [1]. A DBN can perform unsupervised learning and
solve nonlinearly separable pattern recognition problems such
as the classification of objects [2], speech [3] and hand written
characters [4]. However, the size of a DBN increases rapidly
with the complexity of a problem, so it inevitably results in
a large hardware and a high energy consumption. Hence, it
is difficult to implement a machine learning algorithm using
a DBN on a resource-limited system such as a mobile device
or an embedded system. It has become imperative to develop
efficient hardware design for implementing a DBN at a small
circuit area and low power consumption.

The recent resurgence of stochastic computing (SC) pro-
vides such an opportunity [5] [6]: an SC circuit reduces the
hardware footprint of many fundamental arithmetic circuits,
such as adders, subtractors [7] [8] and multipliers [9] [10].
The hyperbolic tangent (tanh) and exponential functions can

be implemented by linear finite state machines (LFSMs) [11].
Recently, SC designs have been utilized to implement radial
basis function neural networks [12], a multi-layer perceptron
[13], a convolutional neural network [14], a DBN [15] and
other types of DNNs [16] [17]. In these designs, the neural
networks are pre-trained to perform the nonlinear classification
in hardware.

In spite of the simple SC circuits, stochastic number
generators (SNGs), consisting of random number generators
(RNGs) and comparators, incur a large area and high power
consumption [16] [17], thus reducing the energy efficiency of
an SC design. Moreover, because different types of activation
functions are needed for various requirements in the learning
process, the performance of SC-based DNNs is limited as it
is difficult to reconfigure the activation function without re-
implementing the design.

In this paper, a stochastic computational DBN (SC-DBN)
is proposed to overcome the above limitations. The Modified
National Institute of Standards and Technology (MNIST)
dataset is used for the evaluation of the proposed design.
An approximate SC activation unit (A-SCAU) is proposed to
implement different types of activation functions such as the
sigmoid, the rectifier linear and the pure line functions. The
SC-DBN achieves a smaller area, lower power and energy
consumption with a similar accuracy and computation speed
compared to conventional floating- and fixed-point implemen-
tations.

II. REVIEW

A. The structure of DBNs

A DBN consists of one input layer, multiple hidden layers
and one output layer. Assume that the number of neurons in
layer l−1 and l are M and E, wl

ij denotes the weight between
neuron j in layer l − 1 and neuron i in layer l. The output
signal of neuron i in layer l at epoch t, yli(t), is given by [18]

yli(t) = ϕ(

M∑
j=1

yl−1
j (t) · wij), i = 1, 2, ..., E, (1)

where ϕ(·) is the activation function. One of the most widely
used activation function is the sigmoid function [18], defined
as



ϕ(x) =
1

1 + exp(−x)
. (2)

The rectifier linear function (ReLU) [19] is another useful
activation function, defined as

ϕ(x) = min(1,max(0, x)). (3)

The pure line function [18] is defined as

ϕ(x) = min(1,max(−1, x)). (4)

B. Stochastic logic elements

In SC, assume that there are a 1’s in a random binary bit
stream with a length of b bits; the bit stream encodes the
value of a/b within [0, 1] in the unipolar representation or
(2a − b)/b within [−1, 1] in the bipolar representation [5]
[6]. Some fundamental computational elements can be imple-
mented by simple circuits. For example, a bipolar multiplier is
implemented by an XNOR gate and an adder is implemented
by a multiplexer with the select signal encoding a probability
of 0.5 [7]. Compared to conventional binary designs, the area
and power consumption of these simple stochastic circuits are
significantly smaller.

III. DESIGN OF THE SC-DBN

In the SC-DBN, an approximate SC activation unit (A-
SCAU) that is immune to signal correlations, is proposed to
implement different types of activation functions.

A. Neuron design

To implement the forward propagation algorithm, a neuron
requires four components in the SC-DBN: two SNG arrays for
the input signals and the layer weights, a bipolar SC multiplier
array implemented by XNOR gates and an A-SCAU array
(Fig. 1). The SNG arrays convert the binary input signals and
the layer weights to stochastic sequences. Each signal in a
D-dimensional input is converted into q parallel stochastic
sequences to reduce latency. In a conventional SC design,
the sharing of RNGs causes correlations between the output
sequences, thus reducing the computation accuracy. In the
SC-DBN, however, an RNG is shared to produce stochastic
sequences for the inputs and a total of q RNGs are required for
a parallelization of q levels. Therefore, the number of RNGs
is changed to 1/D of those required in a conventional design
with the same level of parallelization but no sharing structure.

Fig. 1. Design of the neuron. I is the input signal and W is
the layer weight. K is the output of the SC multiplier array.

Fig. 2. Design of the A-SCAU.

B. Reconfigurability of the A-SCAU

The A-SCAU consists of an accumulative parallel counter
(APC), a linear approximation unit (LAU), an RNG and
a comparator (Fig. 2). The A-SCAU implements a linear
function to approximate different activation functions such as
(2), (3) and (4). The linear function of the A-SCAU has the
generalized form of

ψ(x) = min(1,max(p,
1

r
x+ s)), (5)

where p, r and s are parameters that can be configured to
implement different activation functions.

For the sigmoid function (2), for example, the output range
is [0,+1]. If x = 0, ψ(x) = ϕ(x) = 1/2. Therefore, p and s
are set to 0 and 1/2, respectively, and a search is conducted
to find the optimal value of r. Assume r varies in [+2,+10]
with a step size of 0.01, r = 5.27 leads to the minimum
mean squared error (MSE), 6.16 × 10−4, between ψ(x) and
ϕ(x). The value of r is set to 4 to simplify the hardware
implementation. As a result, (2) is approximated by

ψ(x) = min(1,max(0,
1

4
x+

1

2
)). (6)

Thus, the sigmoid function is approximated by using the
configuration p = 0, r = 4, and s = 1/2 in the A-SCAU.

The rectifier linear function (3) can be directly implemented
by the A-SCAU with the configuration p = 0, r = 1 and s = 0.
The pure line function (4) is implemented by the configuration
p = −1, r = 1 and s = 0.

Note that the A-SCAU implements an approximate model of
the sigmoid function but accurate models of the rectifier linear
and pure line functions. Fig. 3 shows the simulation results of
the A-SCAU with different configurations. The range of the
input signal x is set to [−10, 10]. With a sequence length of
4096 bits, the MSEs of the implementations are 1.1 × 10−3,
6.1 × 10−4 and 8.9 × 10−4 for the sigmoid, ReLU and pure
line functions.

C. Immune-to-correlation feature

As the core component in the A-SCAU, the LAU computes
the output of the A-SCAU using a binary circuit (Fig. 4).
As a result, the accuracy of the LAU is not affected by the
correlations in the stochastic sequences.

In the A-SCAU, each input is implemented by a paralleliza-
tion of q levels. For a D-dimensional input K encoded in



(a) (b) (c)

Fig. 3. The simulation results of the A-SCAU for (a) the sigmoid function, (b) the ReLU function and (c) the pure line function.

Fig. 4. Circuit design of the LAU. CMP: comparator. <<:
shift register. The width of the output signal is set to m.

stochastic sequences, the APC converts every qD-bit input
combination into a binary vector of m bits (m = dlog2(qD)e).

For n-bit stochastic sequences, the APC outputs n m-bit
binary integers in series (denoted by C in Fig. 4). Then, the
LAU accumulates n cycles of the output from the APC. Note
that the range of ψ(x) is [0, 1] for the sigmoid and ReLU
functions, and [−1, 1] for the pure line function. The LAU
converts the accumulated value into an integer for the desired
ψ(x), and a stochastic sequence is generated by the RNG and
comparator as the output of the A-SCAU (Fig. 2). The circuit
design of the LAU is shown in Fig. 4. The sequence length n
and the parameter r are set to values in powers of 2, so the
multipliers and dividers are simplified to shift registers.

Note that the output of the LAU is only determined by the
number of 1’s computed by the APC in the input sequences,
regardless of the bit correlations. Therefore, the computation
accuracy is not affected by the correlations due to the sharing
of RNGs in the circuit.

This immune-to-correlation feature of the A-SCAU makes
it possible to dramatically reduce the number of RNGs in
the circuit. In the simulation, sequences for 10-dimensional
input signals are generated by shared RNGs but different
comparators. The parallelization is set to 16× and sequence
length is set to 256 bits, so in total 256 × 16 = 4096 bits
for each input. The simulation results of the A-SCAU and
the bounded random walking based tanh (Btanh) [16] based
sigmoid functions are shown in Fig. 5. As can be seen, the

Fig. 5. Simulation results of the A-SCAU and the Btanh based
sigmoid functions. Both use shared RNGs.

Btanh circuit does not produce correct results, whereas the A-
SCAU achieves a good accuracy. The RNGs are shared among
parallel A-SCAU components without loss of computation
accuracy. Therefore, the RNGs can not only be shared among
the signals in a single neuron, but also among all neurons in
the same layer.

IV. EVALUATION

A. Accuracy

The SC-DBN is evaluated on the MNIST dataset [20].
The samples are grayscale images with 28 × 28 pixels of 10
different hand written characters labeled as ’0’ to ’9’. The
structure of the network is optimized by the pruning algorithm
[21], consisting of one input layer with 784 neurons, two
hidden layers with 100 and 200 neurons, and one output layer
with 10 neurons. An 8-bit fixed-point and a 32-bit floating-
point implementation with the same configuration are also
evaluated on the dataset.

The classification error rates of the different implementa-
tions are shown in Table I. It can be seen that the classification
accuracy improves rapidly when the sequence length is under
256 bits, increasing from 89.9% (by 32 bits) to 98.9% (by
128 bits). Using 64-bit sequences (×16 parallel processes), the
proposed design achieves a higher accuracy than the results in
the literature [15] [16] [17] [22]. Note that most of the designs
in the literature require larger latency than the proposed design
(from 1024 bits to 4096 bits) except for the integral stochas-
tic implementation [17]. Moreover, with a 256-bit sequence
length, the SC-DBN achieves a higher classification accuracy
than an 8-bit fixed-point implementation, which is only 0.12%
lower than a 32-bit floating-point implementation.



TABLE I. Accuracy Comparison

Network sequence length (bit) accuracy (%)

SC-DBN
(16× parallelization)

32 89.90
64 97.78
128 98.90
256 99.15

8-bit fixed point – 98.10
32-bit floating-point – 99.27

integral stochastic NN [17] 64 97.73
SC DNN [16] 1024 97.59

FPGA-RBM [22] 1024 94.28
FPGA-DBN [15] 4096 94.10

TABLE II. Hardware Efficiency Comparison

SC DBN Fixed-point
(8 bits)

Floating-point
(32 bits)

area (µm2) 23062.61 86875.05 437767.22
power (mW) 1.12 4.01 24.86

frequency (MHz) 134.7 167.3 159.7
cycle (/sample) 256 296 412

latency (µs/sample) 1.90 1.77 2.58
Energy (pJ/sample) 2.12 7.10 64.14

B. Hardware efficiency

ASIC implementations of the DBNs are assessed in area,
power and energy consumption using VHDL synthesized by
the Synopsys Design Compiler with ST’s 28 nm technology
library. The sequence length of the SC-DBN is set to 256 bits
with 16× parallelization. As shown in Table II, the simulation
results indicate that the SC-DBN requires the smallest area,
lowest power and energy consumption among the different
implementations. It takes 5.27%, 4.49% and 3.31% of the
area, power and energy consumption of the 32-bit floating-
point implementation. These figures of merit are 26.55%,
27.82% and 29.89% when compared to the 8-bit fixed-point
implementation. The SNGs take 16.92% and 19.31% of the
circuit area and power consumption of the SC-DBN, and
achieve approximately reductions of 1.5× in area and 2× in
energy consumption when compared to the design in [16].
Overall, the proposed design is 2× smaller in area and 2.5×
lower in energy consumption compared to the design in [16].

In spite of the latency challenge for SC [6] [23], the SC-
DBN achieves a similar performance with 16× parallelization
compared to conventional binary designs, thus significantly
reducing the latency of an SC circuit.

V. CONCLUSION

In this paper, an energy-efficient stochastic computational
deep belief network (SC-DBN) is proposed to implement the
forward propagation process for inference. An approximate
SC activation unit (A-SCAU) is reconfigurable to implement
different activation functions. It also leverages the shared use
of RNGs among neurons in the same layer, so significantly
smaller area and lower energy consumption are obtained for
the proposed design. The classification accuracy of the SC-
DBN is higher than a fixed-point implementation and slightly
lower than a floating-point implementation. Compared to the
conventional binary implementations, however, the proposed

design achieves significantly smaller area, lower power and
energy consumption with a similar processing speed.

REFERENCES

[1] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[2] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” in Advances in Neural Information Processing Systems,
pp. 2553–2561, 2013.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 20,
no. 1, pp. 30–42, 2012.

[4] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in IEEE Conf. on. Computer Vision
and Pattern Recognition (CVPR), pp. 3642–3649, 2012.

[5] B. R. Gaines et al., “Stochastic computing systems,” Advances in
information systems science, vol. 2, no. 2, pp. 37–172, 1969.

[6] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
TECS, vol. 12, no. 2s, p. 92, 2013.

[7] B. D. Brown and H. C. Card, “Stochastic neural computation. I.
computational elements,” IEEE Transactions on Computers, vol. 50,
no. 9, pp. 891–905, 2001.

[8] B. D. Brown and H. C. Card, “Stochastic neural computation. II. soft
competitive learning,” IEEE Transactions on Computers, vol. 50, no. 9,
pp. 906–920, 2001.

[9] J. P. Hayes, “Introduction to stochastic computing and its challenges,”
in DAC, p. 59, 2015.

[10] A. Alaghi and J. P. Hayes, “Dimension reduction in statistical simulation
of digital circuits,” in Proceedings of the Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium, pp. 1–8,
2015.

[11] P. Li, W. Qian, M. D. Riedel, K. Bazargan, and D. J. Lilja, “The synthesis
of linear finite state machine-based stochastic computational elements,”
in IEEE ASP-DAC, pp. 757–762, 2012.

[12] Y. Ji, F. Ran, C. Ma, and D. J. Lilja, “A hardware implementation of a
radial basis function neural network using stochastic logic,” in DATE,
pp. 880–883, 2015.

[13] J. L. Rosselló, V. Canals, and A. Morro, “Probabilistic-based neural
network implementation,” in IEEE IJCNN, pp. 1–7, 2012.

[14] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, “Dscnn: hardware-
oriented optimization for stochastic computing based deep convolutional
neural networks,” in IEEE ICCD, pp. 678–681, 2016.

[15] K. Sanni, G. Garreau, J. L. Molin, and A. G. Andreou, “FPGA imple-
mentation of a deep belief network architecture for character recognition
using stochastic computation,” in IEEE CISS, pp. 1–5, 2015.

[16] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in DAC, p. 124, 2016.

[17] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“VLSI implementation of deep neural network using integral stochastic
computing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2017.

[18] S. S. Haykin, Neural networks and learning machines, vol. 3. Pearson
Upper Saddle River, NJ, USA, 2009.

[19] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pp. 315–323, 2011.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[21] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems, pp. 1135–1143, 2015.

[22] B. Li, M. H. Najafi, and D. J. Lilja, “An FPGA implementation of a
restricted boltzmann machine classifier using stochastic bit streams,” in
IEEE Conf. on. Application-specific Systems, Architectures and Proces-
sors (ASAP), pp. 68–69, 2015.

[23] R. Wang, J. Han, B. F. Cockburn, and D. G. Elliott, “Stochastic circuit
design and performance evaluation of vector quantization for different
error measures,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 10, pp. 3169–3183, 2016.


