
 Yuancheng Zhou
School of Microelectronics

Hefei University of Technology
Hefei, China

yczhou@mail.hfut.edu.cn

Guangjun Xie
School of Microelectronics

Hefei University of Technology
 Hefei, China

gjxie8005@hfut.edu.cn

Yongqiang Zhang
School of Microelectronics

Hefei University of Technology
Hefei, China

ahzhangyq@hfut.edu.cn

Jie Han
Department of Electrical and

Computer Engineering
University of Alberta
Edmonton, Canada
jhan8@ualberta.ca

Abstract—Different from conventional deterministic
binary computing, stochastic computing (SC) utilizes
random binary bitstreams to implement arithmetic
functions. It has shown advantages in hardware cost and
fault tolerance in applications such as image processing. In
contrast stretching and edge detection, specifically, division
and absolute subtraction are important functions. However,
it is challenging to directly compute these functions in SC,
especially when uncorrelated bitstreams are used. In this
paper, a counter-based unipolar scaled absolute subtractor
(UCASub) is first proposed for using two uncorrelated
bitstreams. Based on the UCASub, a bipolar scaled absolute
subtractor and unipolar and bipolar dividers are further
proposed for using uncorrelated bitstreams. Experimental
results show that these circuits are more accurate with
lower mean squared errors and similar hardware overhead
when compared with previous designs.

Index Terms—Stochastic computing, absolute subtractor,
divider, uncorrelated bitstreams.

I. INTRODUCTION
S a distinctive computing technique, stochastic computing
(SC) has attracted increasing attention in recent years. The

characteristics of SC lie in the representation of binary numbers
by the probabilities of 1s occurring in random bitstreams,
instead of binary radix representations [1]. For example, a
bitstream 00100101=X encodes the number 3/8 and

10100001=Y also encodes 3/8. This method brings two
advantages to SC. First, simple logic gates can be used to realize
complex functions (Fig. 1). For example, an AND gate
performs multiplication. Second, since the weight of each bit in
a bitstream is identical, SC has a high fault tolerance to errors

978-1-6654-0959-9/21/$31.00 @2021 IEEE

induced by bit flips [2, 3].
Generally, the random bitstreams are generated by stochastic

number generators (SNGs), as shown in Fig. 2. A binary
number n is compared with the pseudo-random numbers
produced by a k-bit linear feedback shift register (LFSR) at a
rate of one bit per clock cycle. In each clock cycle, the
probability of generating a 1 is approximately n/2k. The value
encoded by a generated bitstream is determined by the number,
n, and the length of the bitstream, k. The higher the required
accuracy, the longer a bitstream becomes, which in turn leads
to a longer latency in computing [4]. There are two formats of
bitstreams in SC: the unipolar and bipolar representations [5].
A number x in the unipolar format represented by a bitstream X
is equal to the probability of 1s occurring in X, denoted by PX
here, i.e., = Xx P . In the bipolar format, the number x

Absolute Subtraction and Division Circuits
Using Uncorrelated Random Bitstreams in

Stochastic Computing

A

Fig. 1. Basic stochastic components. (a) Unipolar and bipolar scaled adder.
(b) Unipolar multiplier. (c) Bipolar scaled subtractor. (d) Bipolar multiplier.

Fig. 2. A stochastic number generator (SNG).

represented by the bitstream X is 2 1−XP , i.e., 2 1= −Xx P .
For instance, if X is “00101010”, 3 / 8=x in the unipolar
format and 2 / 8= −x in the bipolar format.

Stochastic computing correlation (SCC), including positive
and negative correlations, can be exploited to realize some
unique functions [6]. For example, when the input bitstreams
are maximally positively correlated, an XOR gate performs the
absolute subtraction in the unipolar format (UASub). However,
this delicate correlation between bitstreams is hard to maintain
and may be lost from one block to another in a large system [7].
Furthermore, correlations between bitstreams may affect the
accuracy of some SC functions [8]. For instance, SC unipolar
multiplication needs uncorrelated input bitstreams to correctly
function. If they are maximally positively correlated, the result
of the multiplication will mistakenly become the minimum of
the inputs.

SC has successfully been applied to the fields that need many
computing resources, such as image processing [6], neural
networks [9, 10, 11], and digital filters [12]. In applications
such as edge detection and contrast stretching, the
implementations of the absolute subtraction and division are
indispensable. Li et al. have proposed a bipolar scaled absolute
subtractor (BASub) [13], in which a multiplexer implements the
subtraction and a finite state machine (FSM) realizes the
absolute function [14]. However, a unipolar absolute
subtraction using uncorrelated bitstreams has not been studied.
In addition, the unipolar and bipolar stochastic dividers, called
ADDIE-based dividers, using uncorrelated bitstreams were first
proposed in [1]. Those dividers are implemented using an up-
down counter with a feedback path. This design has the
disadvantage that it takes a long convergence time to reach an
approximate result [15].

In this paper, a counter-based unipolar scaled absolute
subtractor (UCASub) is proposed for using uncorrelated
bitstreams. A bipolar scaled absolute subtractor and unipolar
and bipolar dividers are designed by utilizing the UCASub and
uncorrelated bitstreams. Experimental results show that the
proposed architectures are more accurate than previous designs
with similar hardware overhead.

The rest of this paper is organized as follows. The related
work is reviewed in Section II. Section III presents the four
proposed stochastic circuits. Section IV reports the
experimental results. Section V concludes this paper.

II. RELATED WORK

A. An FSM-Based Bipolar Scaled Absolute Subtractor
The architecture of the FSM-based bipolar scaled absolute

subtractor [11] is shown in Fig. 3, where PX, PY, and PZ are the
probabilities of the input/output bitstreams, and PD is the
probability of an internal signal. The MUX implements the
bipolar scaled subtraction 2 1 0.5((2 1) (2 1))− = − − −D X YP P P ,
and the FSM realizes the absolute value function. The state
transition diagram of the FSM is shown in Fig. 4, where the
output Z is determined by the current state (0 1)≤ ≤ −iS i N
[14]. If 0 / 2≤ ≤i N , the output is 1 when i is even; otherwise
0. If / 2 1≤ ≤ −N i N , the output is 1 when i is odd; otherwise
0. The approximate function of the FSM is 2 1 | 2 1|− = −Z DP P .
Hence, 2 1 0.5 | (2 1) (2 1) |− = − − −Z X YP P P , so it implements
the bipolar scaled absolute subtraction.

B. An ADDIE-Based Unipolar Divider
The architecture of the ADDIE-based unipolar divider (UDiv)

is shown in Fig. 5 [16]. The probabilities of the input/output
bitstreams are PX, PY, and PZ, respectively. Notice that the
numbers in the unipolar format range in [0,1], so the divisor PX
should be larger than 0 and greater than or equal to the dividend
PY. A k-bit up-down counter is connected to an SNG, so the
binary values in the counter can be converted to bitstreams.
There is a feedback loop from the output PZ to be multiplied
with PX. If >Y X ZP P P , the counter increases by 1. If

<Y X ZP P P , the counter decreases by 1. In other cases, the value
in the counter remains unchanged. If the system is in
equilibrium, =X Z YP P P , i.e., /=Z Y XP P P , so the unipolar
division is implemented [1].

C. An ADDIE-Based Bipolar Divider
The numbers in the bipolar format range in [-1,1]. To design

Fig. 3. The implementation of a bipolar scaled absolute subtractor [11].

Fig. 4. The state transition diagram of the FSM for implementing the
stochastic absolute value function in Fig. 3.

Fig. 5. The implementation of the ADDIE-based unipolar stochastic divider.

Fig. 6. The implementation of the ADDIE-based bipolar stochastic divider.

a bipolar divider (BDiv) that computes
2 1 (2 1) / (2 1)− = − −Z Y XP P P , | 2 1 |−XP needs to be larger
than 0 and greater than or equal to | 2 1 |−YP . This will result
in strict restrictions on the relation between PY and PX, which is
summarized as follows. If 0.5≥YP and 0.5>XP , then

≤Y XP P . If 0.5<YP and 0.5>XP , then 1+ ≥X YP P . If
0.5<YP and 0.5<XP , then >Y XP P . If 0.5≥YP and
0.5<XP , then 1+ ≤X YP P .

The architecture of the ADDIE-based bipolar divider is
shown in Fig. 6 [1]. The ADDIE-based bipolar divider similarly
uses a feedback loop and an up-down counter to realize the
division. The numbers in the bipolar format can be negative, so
2 1 (2 1)(2 1)− = − −Y Z XP P P does not guarantee 2 1ZP − =

(2 1) / (2 1)Y XP P− − . Thus, the control signal of the counter is
changed from 2 1−YP and (2 1)(2 1)− −Z XP P to (2 1)XP −

(2 1)YP − and 2(2 1)(2 1)− −Z XP P , respectively. When the
system is in equilibrium [17], (2 1)(2 1) (2 1)X Y ZP P P− − = −

2(2 1)XP − , that is 2 1 (2 1) / (2 1)− = − −Z Y XP P P , so the bipolar
division is realized.

III. PROPOSED DESIGNS

A. A Counter-Based Unipolar Scaled Absolute Subtractor
Implementing the absolute value subtraction between two

uncorrelated bitstreams is a challenging task because the 0s and
1s in those bitstreams are randomly distributed. A counter-

based unipolar scaled absolute subtractor (UCASub) is
proposed to use an LFSR, a counter, and a comparator, as
shown in Fig. 7. PX and PY are the probabilities of the input
bitstreams which are connected to the Up and Down pins of the
counter respectively. The counter increases by 1 when X=1 and
Y=0, and decreases by 1 when X=0 and Y=1. In other cases, the
counter remains unchanged. The most significant bit (MSB) of
the counter is connected to an input of an XNOR gate, and the
other input is connected to one of the remaining outputs of the
counter. The outputs of the XNOR gates then serve as an input
to the comparator.

Assume the length of the input bitstreams is 2k, then a k+1-
bit counter and a k-bit LFSR are needed, with the initial value
of the counter set to 2k. For example, when computing the
absolute value between two uncorrelated bitstreams with a
length of 256 bits, a 9-bit counter and an 8-bit LFSR are needed,
with the initial value of the counter set to 256. The UCASub
can compute the function 0.5 | |= −Z X YP P P .

B. An UCASub-Based Bipolar Scaled Absolute Subtractor
A new nonscaled adder (NSAdd) is proposed first. For the

general unipolar addition, there is a scaling operation to
guarantee that the results are in the unit interval [0,1]. If the sum
of inputs is not greater than 1, the scaling operation can be

Fig. 10. The proposed counter-based unipolar scaled absolute subtractor
(UCASub).

Fig. 11. The state transition diagram of a nonscaled adder (NSAdd).

Fig. 7. The proposed UCASub-based bipolar scaled absolute subtractor.

Fig. 8. The proposed UCASub-based unipolar divider.

Fig. 9. The proposed UCASub-based bipolar divider.

omitted [16]. Given two bitstreams X and Y encoding
probabilities PX and PY. The NSAdd produces a nonscaled
output encoding PX+PY. The state transition diagram of the
NSAdd is shown in Fig. 8. When the input bits are both 1s, one
of the 1s is saved and the other is output. When both inputs are
0, the output is 1 if there are 1s that have been saved; otherwise
0. If the inputs are different, the NSAdd simply outputs the sum,
so all of the 1s in the inputs are recorded.

The design of the proposed UCASub-based bipolar scaled
absolute subtractor is shown in Fig. 9, where the output of the
UCASub, 0.5 | |−X YP P , is connected to the NSAdd. Since
0.5 | | 0.5− ≤X YP P , we have

0.5 | | 0.5Z X YP P P= − + . (1)
Thus,

2 1 0.5 | (2 1) (2 1) |Z X YP P P− = − − − , (2)
so the bipolar scaled absolute subtraction is realized.

C. An UCASub-Based Unipolar Divider
The design of the proposed UCASub-based unipolar divider

is shown in Fig. 10, where PY is the dividend and PX is the
divisor. The JK flip flop implements the function

/ ()= +Z J J KP P P P as an approximate division as long as PJ is
much smaller than PK [1]. The output of the AND gate is
connected to the port J and the output of the UCASub is
connected to the port K. Accordingly,

0.5J YP P= , (3)
0.5 | | 0.5()K X Y X YP P P P P= − = − . (4)

Thus,
/ () /Z J J K Y XP P P P P P= + = , (5)

so the unipolar division is realized.

D. An UCASub-Based Bipolar Divider
The design of the proposed UCASub-based bipolar divider is

shown in Fig. 11, where PY is the dividend and PX is the divisor.
Thus,

0.5 | 0.5() 0.5 |J Y XP P P= + − , (6)
0.25 | |K X YP P P= − . (7)

Due to the aforementioned restrictions (see Section II), the
output PZ of the JK flip flop is related with PX and PY as follows.
If 0.5≥YP and 0.5>XP , or 0.5<YP and 0.5>XP , then

0.5(0.5() 0.5)J X YP P P= + − , (8)
0.25()K X YP P P= − . (9)

Thus,
2 1 (2 1) / (2 1)Z Y XP P P− = − − . (10)

If 0.5<YP and 0.5<XP , or 0.5≥YP and 0.5<XP , then
0.5(0.5 0.5())J X YP P P= − + , (11)

0.25()K Y XP P P= − . (12)
Thus,

TABLE I
THE MSE OF THE UNIPOLAR SCALED ABSOLUTE SUBTRACTION FOR DIFFERENT VALUES OF PX USING 1024-BIT STREAMS

PX 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MSE (×10-2) 0.0053 0.0065 0.0069 0.0065 0.0077 0.0058 0.0069 0.0084 0.0076 0.0067 0.0051

TABLE II
THE MSE OF THE BIPOLAR SCALED ABSOLUTE SUBTRACTION FOR DIFFERENT VALUES OF PX USING 256-BIT STREAMS

PX 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
UCASub-based 0.0142 0.0067 0.004 0.0027 0.0019 0.0014 0.0019 0.0024 0.0041 0.0071 0.0129

FSM-based 0.0167 0.0157 0.0156 0.0155 0.0154 0.0152 0.0152 0.0149 0.0148 0.0148 0.0149

Fig. 12. Mean squared error for (a) the UCASub-based and FSM-based bipolar subtractors, (b) the UCASub-based and ADDIE-based unipolar dividers, and (c)
the UCASub-based and ADDIE-based bipolar dividers.

2 1 (2 1) / (2 1)Z Y XP P P− = − − . (13)
In conclusion, the output PZ returns the result of the bipolar

division.

IV. EXPERIMENTAL RESULTS

A. Accuracy Comparison
Firstly, the accuracy of the proposed UCASub is measured

by using the mean squared error (MSE). TABLE I lists the MSE
of the UCASub in percentage for different values of PX by
randomly sampling PY in the unit interval [0,1]. It shows that
the accuracy of the UCASub is quite steady for those values of
PX. Consider the unipolar scaled absolute subtraction

0.5 | |= −Z X YP P P . The value of PX is given by 0:0.01:1, and
the value of PY is given by 0.3, 0.5, 0.7, and 1.0, respectively.
Fig. 13 shows the simulation results of the UCASub with 1024-
bit streams. The results generated by the UCASub are close to
the exact results.

Secondly, the accuracy comparison is made between the
UCASub-based and FSM-based bipolar scaled absolute
subtractors, the UCASub-based and ADDIE-based unipolar
dividers, and the UCASub-based and ADDIE-based bipolar
dividers. One thousand pairs of PX and PY values are randomly
sampled in the unit interval [0,1]. The experiment is repeated
for different bitstream lengths. Fig. 12 shows that the proposed
designs have lower MSEs than the other designs. In addition,

Fig. 15. Simulation results of the UCASub-based and ADDIE-based unipolar
dividers for different values of PX. (a) PX=0.3. (b) PX=0.5. (c) PX=0.7. (d)
PX=1.0.

Fig. 16. Simulation results of the UCASub-based and ADDIE-based bipolar
dividers for different values of PX. (a) PX=0. (b) PX=0.25. (c) PX=0.75. (d)
PX=1.0.

Fig. 13. Simulation results of the UCASub for different values of PY. (a)
PY=0.3. (b) PY=0.5. (c) PY=0.7. (d) PY=1.0.

Fig. 14. Simulation results of the UCASub-based and FSM-based bipolar
scaled absolute subtractors for different values of PY. (a) PY=0.3. (b) PY=0.5.
(c) PY=0.7. (d) PY=1.0.

TABLE II presents a detailed comparison between the
UCASub-based and FSM-based bipolar scaled absolute
subtractors for different values of PX by randomly sampling PY

in the unit interval [0,1]. It shows that the MSE of the UCASub-
based bipolar scaled absolute subtractor is always lower than
that of the FSM-based one for those values of PX.

Lastly, simulations are performed to assess the accuracy of
the aforementioned designs. The bitstream length is 1024 and
the sampling interval is 0.01, as shown in Fig. 14, Fig. 15, and
Fig. 16. It can be seen that the proposed designs generate results
that are closer to the exact results than the other designs. A
longer convergence time is required for the ADDIE-based
dividers, resulting in a longer bitstream length. The length of
the bitstreams used in the simulations are the same so that the
ADDIE-based dividers have not reached the convergence. This
leads to a significant deviation between the ADDIE-based
results and the exact results.

B. Hardware Evaluation
TABLE III shows the comparisons of the hardware usage

between the proposed designs and the other ones by using the
Synopsys Design Compiler with TSMC’s 40 nm library. The
first column in TABLE III lists the aforementioned three
functions. Note that the delay in this table is the critical path
delay. Although the delays of the proposed dividers are slightly
higher than those of their counterparts, the dividers achieve
lower MSEs using the same bitstream length. Hence, the
computing latency of the ADDIE-based dividers is much longer
than that of the proposed UCASub-based dividers for obtaining
the results with the same accuracy.

V. CONCLUSION

In this paper, a counter-based unipolar scaled absolute
subtractor (UCASub) is proposed to offer a new way to
compute the absolute difference between two uncorrelated
bitstreams. A bipolar scaled absolute subtractor and unipolar
and bipolar dividers are then designed with improved
performance using uncorrelated bitstreams. Simulation results
show that the proposed architectures can achieve lower MSEs
than previous designs at a cost of a marginal increase in
hardware. Future work will focus on optimizing these designs
and exploring their applications.

REFERENCES
[1] B. Gaines, "Stochastic computing systems," Advances in information

systems science, Advances in information systems science J. T. Tou,
ed., pp. 37-172: Springer, Boston, MA, 1969.

[2] P. Li, D. Lilja, W. Qian, M. Riedel, and K. Bazargan, “Logical
computation on stochastic bit streams with linear finite-state machines,”
IEEE Trans. Comput., vol. 63, no. 6, pp. 1473-1485, Jun. 2014.

[3] F. Neugebauer, I. Polian, and J. Hayes, “On the maximum function in
stochastic computing,” in the Proceedings of the 16th ACM
International Conference on Computing Frontiers, pp. 59-66, 2019.

[4] S. Liu, and J. Han, “Toward energy-efficient stochastic circuits using
parallel Sobol sequences,” IEEE Trans. Very Large Scale Integr. VLSI
Syst., vol. 26, no. 7, pp. 1326-1339, Jul. 2018.

[5] A. Alaghi, and J. Hayes, “Exploiting correlation in stochastic circuit
design,” in the 2013 IEEE 31st International Conference on Computer
Design (ICCD), Asheville, NC, USA, 2013, pp. 39-46.

[6] A. Alaghi, L. Cheng, and J. Hayes, “Stochastic circuits for real-time
image-processing applications,” in the 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC), Austin, TX, USA, 2013, pp.
1-6.

[7] H. Abdellatef, M. Khalil-Hani, and N. Shaikh-Husin, “Accurate and
compact stochastic computations by exploiting correlation,” Turk. J
Electr. Eng. Comput. Sci., vol. 27, no. 1, pp. 547-564, 2019.

[8] M. Najafi, and M. Salehi, “A fast fault-tolerant architecture for sauvola
local image thresholding algorithm using stochastic computing,” IEEE
Trans. Very Large Scale Integr. VLSI Syst., vol. 24, no. 2, pp. 808-812,
Feb. 2016.

[9] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. Gross,
“VLSI implementation of deep neural network using integral
stochastic computing,” IEEE Trans. Very Large Scale Integr. VLSI
Syst., vol. 25, no. 10, pp. 2688-2699, Oct. 2017.

[10] V. Canals, A. Morro, A. Oliver, M. Alomar, and J. Rossello, “A new
stochastic computing methodology for efficient neural network
implementation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no.
3, pp. 551-64, Mar. 2016.

[11] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A survey of
stochastic computing neural networks for machine learning
applications,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7,
pp. 2809 - 2824, Jul. 2021.

[12] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, “Compact
and accurate digital filters based on stochastic computing,” IEEE
Trans. Emerging Top. Comput., vol. 7, no. 1, pp. 31-43, Mar. 2019.

[13] P. Li, D. Lilja, W. Qian, K. Bazargan, and M. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE
Trans. Very Large Scale Integr. VLSI Syst., vol. 22, no. 3, pp. 449-462,
Mar. 2014.

[14] P. Li, and J. Lilja, “A low power fault-tolerance architecture for the
kernel density estimation based image segmentation algorithm,” in the
IEEE International Conference on Application-specific Systems,
Architectures and Processors, Santa Monica, CA, USA, 2011, pp. 161-
168.

[15] S. I. Chu, “New divider design for stochastic computing,” IEEE Trans.
Circuits Syst. II Express Briefs, vol. 67, no. 1, pp. 147-151, Jan. 2020.

[16] B. Gaines, “Stochastic computing,” in the Proceedings of the April 18-
20, 1967, spring joint computer conference on - AFIPS '67 (Spring),
Atlantic City, New Jersey, 1967, pp. 149-156.

[17] T. Chen, and J. Hayes, “Design of division circuits for stochastic
computing,” in the 2016 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), Pittsburgh, PA, USA, 2016, pp. 116-121.

TABLE III
THE CIRCUIT AREA, POWER, AND DELAY FOR DIFFERENT DESIGNS

Function Design Area (µm2) Power (µW) Delay (ns)

BASub
FSM-based 88.20 4.62 0.47

UCASub-based 138.30 10.14 0.89

UDiv
ADDIE-based 105.13 6.84 1.07

UCASub-based 123.66 9.11 1.09

BDiv
ADDIE-based 119.25 7.90 1.16

UCASub-based 240.79 16.44 1.22

	I. INTRODUCTION
	II. Related Work
	A. An FSM-Based Bipolar Scaled Absolute Subtractor
	B. An ADDIE-Based Unipolar Divider
	C. An ADDIE-Based Bipolar Divider

	III. Proposed Designs
	A. A Counter-Based Unipolar Scaled Absolute Subtractor
	B. An UCASub-Based Bipolar Scaled Absolute Subtractor
	C. An UCASub-Based Unipolar Divider
	D. An UCASub-Based Bipolar Divider

	IV. Experimental Results
	A. Accuracy Comparison
	B. Hardware Evaluation

	V. Conclusion
	References

