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Abstract—Different from conventional deterministic 
binary computing, stochastic computing (SC) utilizes 
random binary bitstreams to implement arithmetic 
functions. It has shown advantages in hardware cost and 
fault tolerance in applications such as image processing. In 
contrast stretching and edge detection, specifically, division 
and absolute subtraction are important functions. However, 
it is challenging to directly compute these functions in SC, 
especially when uncorrelated bitstreams are used. In this 
paper, a counter-based unipolar scaled absolute subtractor 
(UCASub) is first proposed for using two uncorrelated 
bitstreams. Based on the UCASub, a bipolar scaled absolute 
subtractor and unipolar and bipolar dividers are further 
proposed for using uncorrelated bitstreams. Experimental 
results show that these circuits are more accurate with 
lower mean squared errors and similar hardware overhead 
when compared with previous designs. 

Index Terms—Stochastic computing, absolute subtractor, 
divider, uncorrelated bitstreams. 

I. INTRODUCTION
S a distinctive computing technique, stochastic computing 
(SC) has attracted increasing attention in recent years. The 

characteristics of SC lie in the representation of binary numbers 
by the probabilities of 1s occurring in random bitstreams, 
instead of binary radix representations [1]. For example, a 
bitstream 00100101=X  encodes the number 3/8 and 

10100001=Y  also encodes 3/8. This method brings two 
advantages to SC. First, simple logic gates can be used to realize 
complex functions (Fig. 1). For example, an AND gate 
performs multiplication. Second, since the weight of each bit in 
a bitstream is identical, SC has a high fault tolerance to errors 
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induced by bit flips [2, 3]. 
Generally, the random bitstreams are generated by stochastic 

number generators (SNGs), as shown in Fig. 2. A binary 
number n is compared with the pseudo-random numbers 
produced by a k-bit linear feedback shift register (LFSR) at a 
rate of one bit per clock cycle. In each clock cycle, the 
probability of generating a 1 is approximately n/2k. The value 
encoded by a generated bitstream is determined by the number, 
n, and the length of the bitstream, k. The higher the required 
accuracy, the longer a bitstream becomes, which in turn leads 
to a longer latency in computing [4]. There are two formats of 
bitstreams in SC: the unipolar and bipolar representations [5]. 
A number x in the unipolar format represented by a bitstream X 
is equal to the probability of 1s occurring in X, denoted by PX 
here, i.e., = Xx P . In the bipolar format, the number x 
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Fig. 1.  Basic stochastic components. (a) Unipolar and bipolar scaled adder. 
(b) Unipolar multiplier. (c) Bipolar scaled subtractor. (d) Bipolar multiplier. 

Fig. 2.  A stochastic number generator (SNG). 



represented by the bitstream X is 2 1−XP , i.e., 2 1= −Xx P . 
For instance, if X is “00101010”, 3 / 8=x  in the unipolar 
format and 2 / 8= −x  in the bipolar format.  

Stochastic computing correlation (SCC), including positive 
and negative correlations, can be exploited to realize some 
unique functions [6]. For example, when the input bitstreams 
are maximally positively correlated, an XOR gate performs the 
absolute subtraction in the unipolar format (UASub). However, 
this delicate correlation between bitstreams is hard to maintain 
and may be lost from one block to another in a large system [7]. 
Furthermore, correlations between bitstreams may affect the 
accuracy of some SC functions [8]. For instance, SC unipolar 
multiplication needs uncorrelated input bitstreams to correctly 
function. If they are maximally positively correlated, the result 
of the multiplication will mistakenly become the minimum of 
the inputs.  

SC has successfully been applied to the fields that need many 
computing resources, such as image processing [6], neural 
networks [9, 10, 11], and digital filters [12]. In applications 
such as edge detection and contrast stretching, the 
implementations of the absolute subtraction and division are 
indispensable. Li et al. have proposed a bipolar scaled absolute 
subtractor (BASub) [13], in which a multiplexer implements the 
subtraction and a finite state machine (FSM) realizes the 
absolute function [14]. However, a unipolar absolute 
subtraction using uncorrelated bitstreams has not been studied. 
In addition, the unipolar and bipolar stochastic dividers, called 
ADDIE-based dividers, using uncorrelated bitstreams were first 
proposed in [1]. Those dividers are implemented using an up-
down counter with a feedback path. This design has the 
disadvantage that it takes a long convergence time to reach an 
approximate result [15]. 

In this paper, a counter-based unipolar scaled absolute 
subtractor (UCASub) is proposed for using uncorrelated 
bitstreams. A bipolar scaled absolute subtractor and unipolar 
and bipolar dividers are designed by utilizing the UCASub and 
uncorrelated bitstreams. Experimental results show that the 
proposed architectures are more accurate than previous designs 
with similar hardware overhead. 

The rest of this paper is organized as follows. The related 
work is reviewed in Section II. Section III presents the four 
proposed stochastic circuits. Section IV reports the 
experimental results. Section V concludes this paper. 

II. RELATED WORK

A. An FSM-Based Bipolar Scaled Absolute Subtractor
The architecture of the FSM-based bipolar scaled absolute

subtractor [11] is shown in Fig. 3, where PX, PY, and PZ are the 
probabilities of the input/output bitstreams, and PD is the 
probability of an internal signal. The MUX implements the 
bipolar scaled subtraction 2 1 0.5((2 1) (2 1))− = − − −D X YP P P , 
and the FSM realizes the absolute value function. The state 
transition diagram of the FSM is shown in Fig. 4, where the 
output Z is determined by the current state (0 1)≤ ≤ −iS i N  
[14]. If 0 / 2≤ ≤i N , the output is 1 when i is even; otherwise 
0. If / 2 1≤ ≤ −N i N , the output is 1 when i is odd; otherwise
0. The approximate function of the FSM is 2 1 | 2 1|− = −Z DP P .
Hence, 2 1 0.5 | (2 1) (2 1) |− = − − −Z X YP P P , so it implements
the bipolar scaled absolute subtraction.

B. An ADDIE-Based Unipolar Divider
The architecture of the ADDIE-based unipolar divider (UDiv)

is shown in Fig. 5 [16]. The probabilities of the input/output 
bitstreams are PX, PY, and PZ, respectively. Notice that the 
numbers in the unipolar format range in [0,1], so the divisor PX 
should be larger than 0 and greater than or equal to the dividend 
PY. A k-bit up-down counter is connected to an SNG, so the 
binary values in the counter can be converted to bitstreams. 
There is a feedback loop from the output PZ to be multiplied 
with PX. If >Y X ZP P P , the counter increases by 1. If

<Y X ZP P P , the counter decreases by 1. In other cases, the value 
in the counter remains unchanged. If the system is in 
equilibrium, =X Z YP P P , i.e., /=Z Y XP P P , so the unipolar 
division is implemented [1]. 

C. An ADDIE-Based Bipolar Divider
The numbers in the bipolar format range in [-1,1]. To design

Fig. 3.  The implementation of a bipolar scaled absolute subtractor [11]. 

Fig. 4.  The state transition diagram of the FSM for implementing the 
stochastic absolute value function in Fig. 3. 

Fig. 5.  The implementation of the ADDIE-based unipolar stochastic divider. 

Fig. 6.  The implementation of the ADDIE-based bipolar stochastic divider. 



a bipolar divider (BDiv) that computes 
2 1 (2 1) / (2 1)− = − −Z Y XP P P , | 2 1 |−XP  needs to be larger 
than 0 and greater than or equal to | 2 1 |−YP . This will result 
in strict restrictions on the relation between PY and PX, which is 
summarized as follows. If 0.5≥YP  and 0.5>XP , then

≤Y XP P . If 0.5<YP  and 0.5>XP , then 1+ ≥X YP P . If 
0.5<YP  and 0.5<XP , then >Y XP P . If 0.5≥YP  and 
0.5<XP , then 1+ ≤X YP P . 

The architecture of the ADDIE-based bipolar divider is 
shown in Fig. 6 [1]. The ADDIE-based bipolar divider similarly 
uses a feedback loop and an up-down counter to realize the 
division. The numbers in the bipolar format can be negative, so 
2 1 (2 1)(2 1)− = − −Y Z XP P P does not guarantee 2 1ZP − =

(2 1) / (2 1)Y XP P− − . Thus, the control signal of the counter is 
changed from 2 1−YP  and (2 1)(2 1)− −Z XP P  to (2 1)XP −

(2 1)YP −  and 2(2 1)(2 1)− −Z XP P , respectively. When the 
system is in equilibrium [17], (2 1)(2 1) (2 1)X Y ZP P P− − = −

2(2 1)XP − , that is 2 1 (2 1) / (2 1)− = − −Z Y XP P P , so the bipolar 
division is realized. 

III. PROPOSED DESIGNS

A. A Counter-Based Unipolar Scaled Absolute Subtractor
Implementing the absolute value subtraction between two

uncorrelated bitstreams is a challenging task because the 0s and 
1s in those bitstreams are randomly distributed. A counter-

based unipolar scaled absolute subtractor (UCASub) is 
proposed to use an LFSR, a counter, and a comparator, as 
shown in Fig. 7. PX and PY are the probabilities of the input 
bitstreams which are connected to the Up and Down pins of the 
counter respectively. The counter increases by 1 when X=1 and 
Y=0, and decreases by 1 when X=0 and Y=1. In other cases, the 
counter remains unchanged. The most significant bit (MSB) of 
the counter is connected to an input of an XNOR gate, and the 
other input is connected to one of the remaining outputs of the 
counter. The outputs of the XNOR gates then serve as an input 
to the comparator. 

Assume the length of the input bitstreams is 2k, then a k+1-
bit counter and a k-bit LFSR are needed, with the initial value 
of the counter set to 2k. For example, when computing the 
absolute value between two uncorrelated bitstreams with a 
length of 256 bits, a 9-bit counter and an 8-bit LFSR are needed, 
with the initial value of the counter set to 256. The UCASub 
can compute the function 0.5 | |= −Z X YP P P . 

B. An UCASub-Based Bipolar Scaled Absolute Subtractor
A new nonscaled adder (NSAdd) is proposed first. For the

general unipolar addition, there is a scaling operation to 
guarantee that the results are in the unit interval [0,1]. If the sum 
of inputs is not greater than 1, the scaling operation can be 

Fig. 10.  The proposed counter-based unipolar scaled absolute subtractor 
(UCASub). 

Fig. 11.  The state transition diagram of a nonscaled adder (NSAdd). 

 

Fig. 7.  The proposed UCASub-based bipolar scaled absolute subtractor. 

Fig. 8.  The proposed UCASub-based unipolar divider. 

Fig. 9.  The proposed UCASub-based bipolar divider. 



omitted [16]. Given two bitstreams X and Y encoding 
probabilities PX and PY. The NSAdd produces a nonscaled 
output encoding PX+PY. The state transition diagram of the 
NSAdd is shown in Fig. 8. When the input bits are both 1s, one 
of the 1s is saved and the other is output. When both inputs are 
0, the output is 1 if there are 1s that have been saved; otherwise 
0. If the inputs are different, the NSAdd simply outputs the sum, 
so all of the 1s in the inputs are recorded.

The design of the proposed UCASub-based bipolar scaled 
absolute subtractor is shown in Fig. 9, where the output of the 
UCASub, 0.5 | |−X YP P , is connected to the NSAdd. Since 
0.5 | | 0.5− ≤X YP P  , we have 

0.5 | | 0.5Z X YP P P= − + . (1) 
Thus, 

2 1 0.5 | (2 1) (2 1) |Z X YP P P− = − − − , (2) 
so the bipolar scaled absolute subtraction is realized. 

C. An UCASub-Based Unipolar Divider
The design of the proposed UCASub-based unipolar divider

is shown in Fig. 10, where PY is the dividend and PX is the 
divisor. The JK flip flop implements the function 

/ ( )= +Z J J KP P P P  as an approximate division as long as PJ is 
much smaller than PK [1]. The output of the AND gate is 
connected to the port J and the output of the UCASub is 
connected to the port K. Accordingly, 

0.5J YP P= , (3) 
0.5 | | 0.5( )K X Y X YP P P P P= − = − . (4) 

Thus, 
/ ( ) /Z J J K Y XP P P P P P= + = , (5) 

so the unipolar division is realized. 

D. An UCASub-Based Bipolar Divider
The design of the proposed UCASub-based bipolar divider is

shown in Fig. 11, where PY is the dividend and PX is the divisor. 
Thus, 

0.5 | 0.5( ) 0.5 |J Y XP P P= + − , (6) 
0.25 | |K X YP P P= − . (7) 

Due to the aforementioned restrictions (see Section II), the 
output PZ of the JK flip flop is related with PX and PY as follows. 
If 0.5≥YP  and 0.5>XP , or 0.5<YP  and 0.5>XP , then 

0.5(0.5( ) 0.5)J X YP P P= + − , (8) 
0.25( )K X YP P P= − . (9) 

Thus, 
2 1 (2 1) / (2 1)Z Y XP P P− = − − . (10) 

If 0.5<YP  and 0.5<XP , or 0.5≥YP  and 0.5<XP , then 
0.5(0.5 0.5( ))J X YP P P= − + , (11) 

0.25( )K Y XP P P= − . (12) 
Thus, 

TABLE I 
THE MSE OF THE UNIPOLAR SCALED ABSOLUTE SUBTRACTION FOR DIFFERENT VALUES OF PX USING 1024-BIT STREAMS 

PX 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
MSE (×10-2) 0.0053 0.0065 0.0069 0.0065 0.0077 0.0058 0.0069 0.0084 0.0076 0.0067 0.0051 

TABLE II 
THE MSE OF THE BIPOLAR SCALED ABSOLUTE SUBTRACTION FOR DIFFERENT VALUES OF PX USING 256-BIT STREAMS 

PX 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
UCASub-based 0.0142 0.0067 0.004 0.0027 0.0019 0.0014 0.0019 0.0024 0.0041 0.0071 0.0129 

FSM-based 0.0167 0.0157 0.0156 0.0155 0.0154 0.0152 0.0152 0.0149 0.0148 0.0148 0.0149 

Fig. 12.  Mean squared error for (a) the UCASub-based and FSM-based bipolar subtractors, (b) the UCASub-based and ADDIE-based unipolar dividers, and (c) 
the UCASub-based and ADDIE-based bipolar dividers. 



2 1 (2 1) / (2 1)Z Y XP P P− = − − . (13) 
In conclusion, the output PZ returns the result of the bipolar 

division. 

IV. EXPERIMENTAL RESULTS

A. Accuracy Comparison
Firstly, the accuracy of the proposed UCASub is measured

by using the mean squared error (MSE). TABLE I lists the MSE 
of the UCASub in percentage for different values of PX by 
randomly sampling PY in the unit interval [0,1]. It shows that 
the accuracy of the UCASub is quite steady for those values of 
PX. Consider the unipolar scaled absolute subtraction 

0.5 | |= −Z X YP P P . The value of PX is given by 0:0.01:1, and 
the value of PY is given by 0.3, 0.5, 0.7, and 1.0, respectively. 
Fig. 13 shows the simulation results of the UCASub with 1024-
bit streams. The results generated by the UCASub are close to 
the exact results. 

Secondly, the accuracy comparison is made between the 
UCASub-based and FSM-based bipolar scaled absolute 
subtractors, the UCASub-based and ADDIE-based unipolar 
dividers, and the UCASub-based and ADDIE-based bipolar 
dividers. One thousand pairs of PX and PY values are randomly 
sampled in the unit interval [0,1]. The experiment is repeated 
for different bitstream lengths. Fig. 12 shows that the proposed 
designs have lower MSEs than the other designs. In addition, 

Fig. 15.  Simulation results of the UCASub-based and ADDIE-based unipolar 
dividers for different values of PX. (a) PX=0.3. (b) PX=0.5. (c) PX=0.7. (d) 
PX=1.0. 

Fig. 16.  Simulation results of the UCASub-based and ADDIE-based bipolar 
dividers for different values of PX. (a) PX=0. (b) PX=0.25. (c) PX=0.75. (d) 
PX=1.0. 

Fig. 13.  Simulation results of the UCASub for different values of PY. (a) 
PY=0.3.  (b) PY=0.5. (c) PY=0.7. (d) PY=1.0. 

Fig. 14.  Simulation results of the UCASub-based and FSM-based bipolar 
scaled absolute subtractors for different values of PY. (a) PY=0.3. (b) PY=0.5. 
(c) PY=0.7. (d) PY=1.0. 



TABLE II presents a detailed comparison between the 
UCASub-based and FSM-based bipolar scaled absolute 
subtractors for different values of PX by randomly sampling PY

in the unit interval [0,1]. It shows that the MSE of the UCASub-
based bipolar scaled absolute subtractor is always lower than 
that of the FSM-based one for those values of PX.  

Lastly, simulations are performed to assess the accuracy of 
the aforementioned designs. The bitstream length is 1024 and 
the sampling interval is 0.01, as shown in Fig. 14, Fig. 15, and 
Fig. 16. It can be seen that the proposed designs generate results 
that are closer to the exact results than the other designs. A 
longer convergence time is required for the ADDIE-based 
dividers, resulting in a longer bitstream length. The length of 
the bitstreams used in the simulations are the same so that the 
ADDIE-based dividers have not reached the convergence. This 
leads to a significant deviation between the ADDIE-based 
results and the exact results. 

B. Hardware Evaluation
TABLE III shows the comparisons of the hardware usage

between the proposed designs and the other ones by using the 
Synopsys Design Compiler with TSMC’s 40 nm library. The 
first column in TABLE III lists the aforementioned three 
functions. Note that the delay in this table is the critical path 
delay. Although the delays of the proposed dividers are slightly 
higher than those of their counterparts, the dividers achieve 
lower MSEs using the same bitstream length. Hence, the 
computing latency of the ADDIE-based dividers is much longer 
than that of the proposed UCASub-based dividers for obtaining 
the results with the same accuracy.  

V. CONCLUSION

In this paper, a counter-based unipolar scaled absolute 
subtractor (UCASub) is proposed to offer a new way to 
compute the absolute difference between two uncorrelated 
bitstreams. A bipolar scaled absolute subtractor and unipolar 
and bipolar dividers are then designed with improved 
performance using uncorrelated bitstreams. Simulation results 
show that the proposed architectures can achieve lower MSEs 
than previous designs at a cost of a marginal increase in 
hardware. Future work will focus on optimizing these designs 
and exploring their applications. 
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TABLE III 
THE CIRCUIT AREA, POWER, AND DELAY FOR DIFFERENT DESIGNS 

Function Design Area (µm2) Power (µW) Delay (ns) 

BASub 
FSM-based 88.20 4.62 0.47 

UCASub-based 138.30 10.14 0.89 

UDiv 
ADDIE-based 105.13 6.84 1.07 

UCASub-based 123.66 9.11 1.09 

BDiv 
ADDIE-based 119.25 7.90 1.16 

UCASub-based 240.79 16.44 1.22 
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