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Abstract—Recurrent neural networks (RNNs) are widely used
to solve a large class of recognition problems, including predic-
tion, machine translation, and speech recognition. The hardware
implementation of RNNs is, however, challenging due to the
high area and energy consumption of these networks. Recently,
stochastic computing (SC) has been considered for implementing
neural networks and reducing the hardware consumption. In
this paper, we propose an energy-efficient and noise-tolerant
long short-term memory based RNN using SC. In this SC-
RNN, a hybrid structure is developed by utilizing SC designs
and binary circuits to improve the hardware efficiency without
significant loss of accuracy. The area and energy consumption
of the proposed design are between 1.6%-2.3% and 6.5%-
11.2%, respectively, of a 32-bit floating-point implementation.
The SC-RNN requires significantly smaller area and lower energy
consumption in most cases compared to an 8-bit fixed point
implementation. The proposed design achieves a higher noise
tolerance compared to binary implementations. The inference
accuracy is from 10%-13% higher than a floating-point design
when the noise level is high in the computation process.

Index Terms—Stochastic computing, recurrent neural network,
long-short term memory, energy efficient, noise tolerance.

I. INTRODUCTION

AS a type of deep neural networks (DNNs), recurrent
neural networks (RNNs) are widely used for solving

prediction, machine translation, and speech recognition prob-
lems [1]. The long short-term memory (LSTM) structure has
been introduced to avoid catastrophic errors in the computation
process, so it leads to significant accuracy improvements for
RNNs [2]. Thus, it has become one of the most useful RNNs.

Recently, there have been multiple designs for improving
the hardware efficiency of an LSTM-RNN. A balance aware
pruning algorithm has been introduced to improve the parallel
processing efficiency [3]. The Fast Fourier Transform (FFT)
and inverse FFT have also been utilized to reduce the com-
plexity of matrix multiplication in the LSTM [4]. A structured
compression technique has been utilized to compress the
weight matrices [5]. However, it still remains a challenge to
implement an LSTM-RNN on resource-limited systems, such
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as a mobile device or an embedded system due to the high
computational complexity, area cost, and power consumption.

Recent advances in stochastic computing (SC) provide such
an opportunity to improve the hardware efficiency of NNs by
reducing the hardware of fundamental arithmetic circuits such
as adders, subtractors and multipliers [6] [7] [8]. Nonlinear
functions can be approximated by Bernstein polynomials and
Maclaurin series [9]. SC designs have been proposed to
implement radial basis function-based neural networks [10],
multilayer perceptrons (MLPs) [11] [12], convolutional neural
networks (CNNs) [13] [14] and deep belief networks (DBNs)
[15] [16]. The applicability of SC to RNNs has also been
briefly explored in [17]. In such applications, noise tolerance
is of ultimate importance.

In this paper, an energy-efficient LSTM-RNN is proposed
by leveraging the hardware efficiency of SC circuits. A hy-
brid structure utilizing SC and binary circuits are designed
to improve the hardware efficiency and retain the accuracy
in inference. The LSTM memory block is implemented by
binary circuits and approximate parallel counter based SC
circuits. To reduce the memory requirement, internal stochastic
sequences are converted into binary values for storage. Three
datasets are used for the evaluation of the RNN design: the
Reder grammar [18], Japanese vowels [19] and TIMIT [20].
Simulation results show that the proposed SC-RNN requires a
significantly smaller area, lower energy consumption in most
cases, and at the same time, achieves a comparable accuracy
and higher noise tolerance compared to conventional binary
implementations.

The remainder of this paper is organized as follows. Section
II introduces the background for RNNs, LSTM, and stochas-
tic logic. Section III presents the proposed design. Section
IV shows the application and simulation results. Section V
concludes the paper.

II. BACKGROUND

A. Recurrent Neural Networks (RNNs)

The structure of a typical fully connected RNN (FCRNN)
is shown in Fig. 1 [21]. The FCRNN consists of two layers: a
concatenated input-feedback layer (C-layer) and a processing
layer (P-layer). If the longest delay of an input is set to p
and each delayed external signal is assigned to a neuron, p
neurons results in total. Assume that the P-layer consists of
N neurons, the inputs of each neuron in the P-layer consist
of N dimensional feedback signals yq(t− 1), q = 1, 2, ..., N ,
p dimensional delayed external signals s(t− j), j = 1, 2, ..., p
and a bias. For the nth neuron in the P-layer, the layer
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weights form a (N + p + 1) dimensional weight vector
Wn = [wn,1, wn,2, ..., wn,N+p+1].

The real-time recurrent learning (RTRL) algorithm is one
of the most widely used learning algorithms for RNNs [21].
In the RTRL, the inference process is similar to that in a
conventional multilayer perceptron. For the nth neuron, the
output is given by

yn(t) = Φ(vn(t)), n = 1, 2, ..., N (1)

and

vn(t) =

N+p+1∑
l=1

wn,l(t) · ul(t). (2)

where Φ(·) is the activation function and ul(t) ∈ {y1(t −
1), y2(t−1), ..., yN (t−1), 1, s(t−1), s(t−2), ..., s(t−p)}, l =
1, 2, ..., N + p+ 1 [21].

B. Long-short Term Memory (LSTM)

The LSTM is one of the most widely-used learning algo-
rithms for RNNs. Different from the FCRNN, it utilizes gate
units to constrain the feedback signals, so the gradient does not
either quickly reduce or increase during the feedback process
[2], so the entire process is rather stable. It is reported that the
LSTM achieves higher performance compared to conventional
RNN learning algorithms [2] [22].

In the LSTM-RNN, the neurons are implemented by mem-
ory blocks. A single-cell memory block stores the current
internal state and includes three types of gate units, an input
gate (in), an output gate (out) and a forget gate (ϕ) (Fig. 2).
In this work, we follow the algorithm introduced in [2] and
[22]. The gate units implement the same activation function
as

f(x) =
1

1 + e−x
, f(x) ∈ [0, 1]. (3)

Fig. 1: Structure of a fully connected RNN, with the C nodes
denoting neurons in the concatenated input-feedback layer (C-
layer) and the P nodes denoting neurons in the processing layer
(P-layer).

Fig. 2: Functions of a memory cell for LSTM-RNNs [22]. f
is the activation function implementing the gates defined by
(3). g and h are activation functions defined by (8) and (10).
Il (l ∈ {cell, in, out, ϕ}) are the input signals of the cell and
gates. yin, yout and yϕ are the output signals generated by the
gate units. Ocell is the output signal of the cell. s represents
the internal state of the cell. The cell kernel is introduced in
Section 3.

Assume that k is the index of memory blocks, v is the
index of cells in the kth block, cvk is the vth cell in the kth

block. wp,q is the layer weight between unit p and unit q. Il(t)
(l ∈ {out, in, ϕ}) represents all the input signals connected
to the gates at time t, including the outputs from other cells
and the feedback signals from the gates in the cell. The gating
signals of the input, output and forget gates at time t are given
by

yl(t) = f(netl(t)), l ∈ {out, in, ϕ}, (4)

where

netl(t) =
∑

wl · Il(t), l ∈ {out, in, ϕ}. (5)

The input signals of the cell are defined as Icell(t− 1) and
the layer weights are defined as wcell, so

netcvk(t) =
∑

wcell · Icell(t). (6)

The internal state of the cell Scvk is determined by the input
signals of the cell, the input gate, the forget gate and the
previous internal states:

Scvk(t) =

{
0 t = 0,

yϕk
(t) · Scvk(t− 1) + yink

(t) · g(netcvk(t)) t > 0,
(7)

where g(·) is defined as

g(x) =
4

1 + e−x
− 2 = 2 · tanh(

x

2
), g(x) ∈ [−2, 2]. (8)
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Fig. 3: Structure of a multi-cell memory block in the SC RNN. The multipliers are implemented by SC circuits. The A-SCAU
implements the gate units. The Btanh circuit implements the activation function g defined by (8). The cell kernel updates
the internal state and computes the output of a cell. PE is the probability estimator that converts stochastic sequences into
binary values. SNG is the stochastic number generator. The circuits in grey are implemented by or for SC. The cell kernel is
implemented by both SC and binary circuits.

The output signal of the cell Ocell in the hidden layer is
computed through the memory cell to the output gate. It is
defined as Ocvk(t) for cell cvk at time t, and computed as

Ocvk(t) = youtj (t) · h(Scvk(t)), (9)

where h(·) is the activation function defined as

h(x) = tanh(
x

2
), h(x) ∈ [−1, 1]. (10)

In Fig. 2, the function h, the internal state of the cell s
and the multiplication are considered as the cell kernel for the
convenience of hardware implementation. The design of the
cell kernel is introduced in Section 3.

C. Stochastic Computing

In stochastic computing (SC), assume that there are p 1’s
in a q-bit random binary bit stream, the stream then encodes
the value p/q in the unipolar representation, and the value
(2p − q)/q in the bipolar representation [7] [23]. The bit
stream is generated by a stochastic number generator (SNG),
consisting of a random number generator (RNG) and a com-
parator [24] (Fig. 5). The SC encoding significantly reduces

(a)

(b)

Fig. 4: (a). The SC multiplier in the unipolar representation.
(b) The SC multiplier in the bipolar representation [7].

the complexity of an arithmetic circuit compared to binary
designs. For example, a bipolar multiplier is implemented
by an XNOR gate and a weighted adder is implemented by
a multiplexer, as shown in Fig. 4. The tanh function can
be implemented by a finite state machine (FSM) with the
state transition diagram shown in Fig. 6 [7]. However, the
computation range of SC is limited in [0, 1] in the unipolar
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Fig. 5: Design of an SNG, consisting of an RNG and a
comparator [24].

Fig. 6: The state transition diagram of the FSM-based tanh
circuit, implementing y = tanh(N2 x). X indicates that the
input bit is ‘1’ and X̄ indicates that the input bit is ‘0’. Y is
the output bit [7].

representation and [−1,+1] in the bipolar representation.

III. SC-RNN DESIGN

A. Overall Design

In the proposed design, the computational components are
implemented by a hybrid structure consisting of SC and binary
circuits. The inference data and the network structure (weights)
are stored in external memory elements. The training is
performed by utilizing Matlab functions and the layer weights
are saved. The inference process is implemented by SC and
binary circuits with the computed layer weights.

B. Hybrid Structure of the Memory Block

The SC-RNN design is based on a multi-cell memory block
[22]. The output of the memory block is defined as the sum
of the output of each memory cell in the block. The structure
of a multi-cell memory block is shown in Fig. 3. The block
includes p cells. The outputs of the input gates (yin) and forget
gates (yϕ) are shared among the cells in the same memory
block, as shown in Fig. 3. The input signals of different cells
(Ikcell, k ∈ 1, 2, ..., p) are separated. The gate units are
implemented by the approximate SC activation unit (A-SCAU)
[16]. The activation function g in (8) is implemented by the
Btanh circuit [25]. The values of the signals of the gates
and the layer weights are encoded by stochastic sequences in
the bipolar representation. Note that the probabilities encoded
in the sequences for the input vectors (Iin, Iout, Iϕ, and
Ikcell, k ∈ 1, 2, ..., p) are the same as per the LSTM definition
[22]. However, the sequences are generated separately to
reduce the correlation.

The cell kernel is utilized to update the value of the internal
state Scvk in (7) and compute the output signal of the cell

following (9) and (10). The probability estimator (PE) is
utilized to convert the stochastic sequences into binary values
[12]. In the memory cell, the PE, the A-SCAU, the Btanh
function and the multiplication are implemented by SC circuits
while the cell kernel is designed using binary and SC methods.
The variable q in Fig. 3 is computed using binary adders. The
register storing the value of q is also used as the memory
element of the intermediate computation result [26]. Thus, the
system stores intermediate computation results in the binary
format to reduce the required memory overhead instead of
storing the stochastic sequences. The binary results are then re-
converted to stochastic sequences by SNGs. The output signals
of the memory block are used as inputs to the other memory
blocks, thus interacting with the internal states of the cells in
the other memory blocks.

1) Gate units: As per (3), the gate units (including the
input, output and forget gates) can be implemented by an SC
circuit for the sigmoid activation function. The gate units are
implemented by the approximate SC activation unit (A-SCAU)
in [16] (Fig. 3). The A-SCAU is utilized to implement multiple
types of activation functions and reduce at the same time
the hardware overhead. The design of the A-SCAU is shown
in Fig. 7. The linear approximation unit (LAU) implements
multiple activation functions with the generalized form of

ψ(x) = min(1,max(p,
1

r
x+ s)), (11)

where p, r and s are configurable parameters. The sigmoid
function (3) can be approximated by setting the configuration
to {p = 0, r = 4, s = 1/2}; the ReLU function can be imple-
mented by setting the configuration to {p = 0, r = 1, s = 0}.
It is shown in [16] that the output of the LAU is determined by
the sum of the probabilities of the input stochastic sequences.
As a result, the circuit is immune to correlations between the
input sequences. Therefore, the RNGs for generating the input
sequences can be shared among different neurons with no
loss in computation accuracy. Because the RNGs are one of
the most costly units in SC circuits [24], the sharing strategy
significantly reduces the hardware cost.

2) Cell kernel: The cell kernel in Fig. 3 updates the
internal state and the output signal of the cell. The SNG and
multiplication are implemented for SC. The FSM is utilized to
implement SC Btanh function and generates the SC sequence

Fig. 7: Design of the A-SCAU [16], including an accumulative
parallel counter (APC), a linear approximation unit (LAU), an
RNG and a comparator. Ki, i = 1, 2, ..., D, is the input
stochastic sequence. The circuits in grey are implemented by
or for SC.
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as the output signal. The accumulative parallel counter (APC)
and state processing unit (SPU) are based on binary circuits.
According to (7), when t 6= 0, there exists

Scvk(t) = yϕk
(t) · Scvk(t− 1) + yink

(t) · g(netcvk(t))

= yϕk
(t) · Scvk(t− 1) + yink

(t) · 2 · tanh(
netcvk(t)

2
)

= yϕk
(t) · Scvk(t− 1) + yink

(t) · tanh(
netcvk(t)

2
)

+ yink
(t) · tanh(

netcvk(t)

2
).

(12)

It shows that the internal state Scvk(t) can be computed by
SC circuits with the value of each addend in (12) restricted
within [−1,+1]. The design for the cell kernel is shown in
Fig. 8.

In Fig. 8, to update Scvk(t), the signal y encodes the value
of yϕk

(t) and is multiplied with the signal encoding the value
of Scvk(t − 1) by the SC multiplier, resulting in a signal
x encoding the value of yϕk

(t) · Scvk(t − 1) in the bipolar
representation. The signals z and z′ encodes the same value
of yink

(t) · tanh(
netcv

k
(t)

2 ) in the bipolar representation but
they are generated independently. All the signals are set as
inputs of the APC.

The SPU is designed to compute the value of Scvk(t) at
each step of the updating process. It is implemented by binary
circuits. The design of the SPU is explained as follows.
According to (12), the value of Scvk(t) is computed by the
sum of the values encoded by the signal x, z, and z′ in Fig. 8
in the bipolar representation. Assume that the number of the
input signals is D (here, D = 3) and that each input signal is
parallelized to α folds, which means that each input signal is
generated by α synchronized SNGs with the same probability.
Assume that the number of 1’s in the jth sequence for the ith

signal is Qi,j after parallelization, the number of 1’s in the
input sequences is computed by the APC as

∑D
i=1

∑α
j=1Qi,j .

Fig. 8: Design of the cell kernel, including an SC multiplier,
an APC, an SNG, an FSM for implementing the SC Btanh
function and an SPU for updating the internal state. Cout is the
output sequence, encoding the value of h(Scvk(t)). The circuits
in grey are implemented by or for SC. The internal design of
the SPU is shown in Fig. 10.

Fig. 9: The algorithmic flowchart for the SPU. T, T’: tem-
porary variables used to store the intermediate results in the
computation. The definitions of other signals are the same as
those in (17) and (18).

For n-bit sequences and due to the bipolar representation, the
value of Scvk computed by the APC, S, is expected to be

S =
1

α

D∑
i=1

α∑
j=1

(2
Qi,j
n
− 1). (13)

Note that the range of S is [−D,+D]. In the SPU design,
the value of S is considered to be clamped into [−1,+1] for
the bipolar representation in SC. The clamped value, Sc, is
given by

Sc =

−1, S 6 −1,
+1, S > +1,
S, others,

(14)

However, according to (9), the output of the network is
not affected because it is only determined by the activation
function h(Scvk(t)), which produces a similar output value for
the clamped input. Taking (13) into (14) gives us

Sc =


−1, 2

∑D
i=1

∑α
j=1Qi,j + nα 6 nαD,

+1, 2
∑D
i=1

∑α
j=1Qi,j − nαD > nα.

S, others,

(15)

Let T = 2
∑D
i=1

∑α
j=1Qi,j + nα and T ′ = T − nαD, by

scaling the value of 1
2 (Sc+1) into an m-bit binary vector, the

output of the SPU, SB , is obtained as

SB =

 0, T 6 nαD,
2m − 1, T ′ > 2nα,
SB
′, others,

(16)

where SB ′ is given by

SB
′ =

⌊
(2m − 1) · S+1

2

⌋
=
⌊
(2m−1)
2nα (2

∑D
i=1

∑α
j=1Qi,j + nα(1−D))

⌋
.

(17)
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SB is the integer approximation of Scvk(t) in Fig. 8 and SB ′

is approximated by

SB
′ =

⌊
(2m − 1) · 1

2nα
· T ′
⌋
≈
⌊

2m−1 · 1

nα
· T ′
⌋
. (18)

The algorithmic flowchart of the SPU is shown in Fig. 9.
When n and α are set to values in a power of 2, the multipliers
and dividers in the SPU can be implemented by shift registers.
The computation circuit of T and T ′ is implemented by an
accumulator, an adder, a subtractor and shift registers. The
circuit design is shown in Fig. 10.

The output of the cell (Cout in Fig. 8) is implemented by
the Btanh circuit [25], which consists of an APC and an FSM
in Fig. 8. The output signal encodes the value of h(Scvk(t))
in the bipolar representation. The FSM is implemented by an
up-down counter following the algorithm in [25]. The APC is
reused between the SPU and the Btanh circuit, thus reducing
the hardware cost.

The APC can be replaced by an approximate parallel
counter using a similar design method of [27] to further reduce
the hardware cost. Assume that there are 9 input sequences
for the APC, the design of the approximate parallel counter is
shown in Fig. 11.

Table I shows the detailed area breakdown of the cell
kernel, including three parallelization configurations: 1-fold
(no parallelization), 4-fold, and 8-fold parallelization. It means
that each input signal is generated by 1, 4, and 8 synchronized
SNGs with the same probability. By an 8-fold parallelization,
for example, a 256-bit sequence is implemented by eight 32-bit
sequences (generated by independent SNGs) in parallel. The
areas of the FSM, the accumulator in the SPU, and the control
unit of the cell kernel are listed separately while the areas of
the other parts of the SPU are divided into combinational and
sequential circuits. The second column in the table represents
the percentage of the area of each component in the cell kernel.
Note that the control unit of the cell kernel requires 27.7%

Fig. 10: The circuit design of the SPU. CMP: comparator. <<:
left-shift register. APC out is the output signal of the APC.
The definitions of the signals are the same as those in (17)
and (18).

Fig. 11: Design of the approximate parallel counter with
9 input sequences. HA represents the half adder and FA
represents the full adder.

of the total area when there is no parallelization due to the
complex operations in the cell kernel and the SPU. This drops
to 19.0% and 12.8% with 4-fold and 8-fold parallelization.
As the core of the LSTM, the cell kernel can be adjusted and
utilized to implement different types of LSTM models such
as the convolutional LSTM network [28], combined with the
SC components in CNNs [13].

TABLE I: Area breakdown of the cell kernel (µm2)

Paral. FSM
(%)

Accum.
(%)

Contr.
(%)

Combi.
(%)

Seque.
(%) total

1 214.3
(19.7%)

392.9
(36.1%)

301.6
(27.7%)

59.5
(5.5%)

119.1
(11.0%) 1087.4

4 357.2
(17.9%)

654.9
(33.1%)

377.0
(19.0%)

198.4
(10.0%)

396.9
(20.0%) 1984.4

8 535.8
(18.1%)

851.3
(28.8%)

377.0
(12.8%)

396.9
(13.4)

793.8
(26.9%) 2954.8

IV. EXPERIMENTS

The SC-RNN is utilized for the prediction of symbol
generation using the Reder grammar dataset [18], and speech
recognition using the Japanese vowels [19] and TIMIT datasets
[20]. The performances of the SC-RNN and binary LSTM
RNNs are assessed with respect to accuracy, area and energy
consumption.

A. Reder Grammar Problems

The symbol generating rules for the Reder grammar is
shown in Fig. 12. The Reder grammar sequentially generates
symbol strings from the left node by following the edges and
appending the associated symbols to the current string until
the right-most node is reached. Edges are randomly chosen
by the probability of 50%. In inference, the networks read
strings, one symbol at a time to predict the next symbol.

Similarly to [22], 256 strings are randomly generated with
an average length of 16 as the testing dataset. The training
of the RNN is implemented in binary circuits by 10-fold
validation, with each fold including 105 randomly generated
strings as training datasets. The LSTM is set into two different
structures, which, respectively, consist of 3 and 4 memory
blocks with 2 and 1 memory cells within each block. The
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TABLE II: Inference accuracy comparison for Reder Grammar
dataset

Method Structure
(block, cell)

Length
(bits)

Acc (%)
(no noise)

Acc (%)
(10 dB
noise)

SC RNN

(3, 2)
32 21 0
64 73 30
128 100 85

(4, 1)
32 20 0
64 73 25
128 100 83

32-bit FP (3, 2), (4, 1) n/a 100 60
8-bit FxP (3, 2), (4, 1) n/a 100 60

inference circuits are implemented by 32-bit floating-point
(FP), 8-bit fixed point (FxP) and SC designs. Noises are added
in the computation process as soft errors (or flipping faults)
with the signal-to-noise ratio (SNR) computed by

SNR (dB) = 10 · log10(
Ps
Pn

), (19)

where Ps is the power of the signal and Pn is the power of
noise. The inference accuracy is shown in Table II.

With no noise in the computation process, both the 8-bit
FxP design and the 32-bit FP design achieve 100% in inference
accuracy for the (3, 2) and (4, 1) structures. For the SC design,
a longer sequence length leads to a higher precision, thus
improving the computation accuracy. Therefore, the inference
accuracy of the SC-RNN increases with sequence length,
from 21% to 100% when the sequence length varies from
32 to 128 bits. With 128 bits, the SC RNN achieves the
same accuracy as any of the binary implementations in both
considered structures. However, with an SNR of 10 dB in the
computation process, the inference accuracy of the SC-RNN is
85% whereas the accuracy of the binary designs is reduced to
60%. This result indicates that the SC-RNN achieves a higher
noise tolerance.

B. Voice Recognition: Japanese Vowels

The Japanese vowels dataset includes 9 male speakers
uttering the Japanese vowel /ae/ successively. Each instance
consists of 12 features (cepstral coefficients) with the length
of 14 to 26 in time series. The training dataset includes 270

Fig. 12: The symbol generating rules for the Reder grammar.

instances (30 utterances by 9 speakers) and the testing dataset
includes 370 instances (24 − 88 utterances by the same 9
speakers). In inference, each testing sample is classified to
the correct speaker, resulting in 9 labels in total.

The network has a 12-120-9 structure, i.e., with 12 neurons
in the input layer, 120 LSTM neurons in the hidden layer
and 9 neurons in the output layer. The training process is
performed by utilizing Matlab functions and the inference
process is performed in SC, 8-bit FxP, and 32-bit FP circuits,
respectively, for comparison. The sequence length of the SC
implementation for the Japanese vowel dataset is 256 bits prior
to parallelization.

In inference, Gaussian white noise is added to the datasets
and the computation process for evaluating the noise tolerance
of different implementations. The inference accuracy is shown
in Fig. 13. The simulation results with no noise are plotted at
an SNR of 20 dB for easier illustration and readability.

Two cases are considered in the experiment. For SC1 and
Binary1 in the first case, the Gaussian white noise is added in
the computation process, but no noise in the dataset. For the
same SNR, the inference accuracy of the SC-RNN is higher
than that of the FP implementation, except for the noise-free
result. With no noise, the SC-RNN achieves a lower accuracy
(93.8%) than the FP design (94.9%). For an SNR of 5 dB, the
accuracy of the FP design is 73.4%, whereas the accuracy of
the SC-RNN is 86.6%.

For SC2 and Binary2 in the second case, a 5 dB noise is
added to the dataset, in addition to the noise in the computation
process. The average accuracy of Binary2 is higher than that
of Binary1, indicating that the noise in the training dataset
improves the inference accuracy in the FP implementation due
to regularization [29] [30] [31]. The inference accuracy for
SC2 (89.3− 93.8%) is slightly higher than that for SC1. The
inference accuracy for SC2 exceeds that for Binary2 when
the SNR is lower than 12 dB. In both cases, the noise in the
computation process significantly affects the accuracy of the
FP circuit; therefore, the SC design achieves a higher noise
tolerance than the binary designs.

C. Voice Recognition: TIMIT

The TIMIT dataset has been designed for the develop-
ment and evaluation of automatic speech recognition systems.

Fig. 13: The Inference accuracy of networks for the Japanese
vowels dataset with noise at different SNRs.
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TABLE III: Hardware efficiency for the Reder grammar networks

SC-RNN
(4, 1)

SC-RNN
(3, 2)

FP RNN
(4, 1)

FP RNN
(3, 2)

FxP RNN
(4, 1)

FxP RNN
(3, 2)

Area
(µm2) 513.0 568.0 7380.1 8662.7 1844.1 2011.1

Power
(mW) 0.025 0.031 0.419 0.491 0.085 0.093

Latency
(µs/sample) 1.34 1.45 1.12 1.17 0.47 0.53

Energy
(nJ/sample) 0.034 0.045 0.47 0.57 0.039 0.049

TABLE IV: Hardware efficiency for the Japanese vowel and TIMIT networks

Area
(×106 µm2)

Energy
(µJ)

Latency
(µs)

Structure SC
(4-fold)

SC
(8-fold) FP FxP SC

(4-fold)
SC
(8-fold) FP FxP SC

(4-fold)
SC
(8-fold) FP FxP

12-120-9 0.35 0.56 16.6 4.68 0.03 0.03 0.25 0.02 0.51 0.33 0.46 0.15
12-(250, 250)-48 1.46 2.32 65.9 17.8 0.12 0.13 1.23 0.12 1.03 0.65 0.58 0.17
12-(500, 500)-48 3.52 5.80 212.8 59.6 0.46 0.48 7.08 0.61 1.24 0.75 0.75 0.20
12-(250, 250)-
(250, 250)-48 2.93 4.64 124.7 37.4 0.31 0.34 3.48 0.28 1.67 1.05 0.86 0.25

Fig. 14: The inference accuracy of networks for the TIMIT
dataset with noise at different SNRs.

TIMIT contains a total of 6300 sentences, 10 sentences spoken
by each of 630 speakers from 8 major dialect regions of the
United States.

The training process of the network is performed by uti-
lizing Matlab functions. For inference, both the SC and the
binary circuits (32-bit FP and 8-bit FxP) are implemented for
this network. The sequence length of the SC-RNN is given by
256 bits prior to parallelization. The structure of the network
is given by 12-(250, 250)-(250, 250)-48, that is, the network
consists of one 12-neuron input layer, one 48-neuron output
layer and 2 hidden layers with 250 memory blocks and each
memory block including 8 cells.

Gaussian white noise is added to the computation process,
with the SNR varying from 5 dB to 15 dB. The results
are shown in Fig. 14. The simulation results with no noise
are plotted at an SNR of 15 dB for easier illustration and
readability. With no noise, the highest accuracy of the FP
implementation is 81.9%, similar to those in [3] [4] [32] [33]
while the accuracy of the SC design is 10% lower. However,
the SC design achieves a higher accuracy when the SNR is
lower than 12 dB. For an SNR of 5 dB, the accuracy of the
SC-RNN is 57%, which is more than 10% higher than the FP

implementation with the same SNR. The simulation results
show that the SC design achieves a significantly higher noise
tolerance than the conventional FP implementation.

D. Hardware Efficiency

The ASIC design of the SC-RNNs and binary Reder gram-
mar networks are assessed with respect to area and energy
consumption for inference. All designs use VHDL models
synthesized by the Synopsys Design Compiler in ST’s 28 nm
technology library. The power consumption of the circuit is
measured by the synthesis tool. The computation time is com-
puted by the working frequency and computation cycles and
the energy is computed based on the power and computation
time. For the networks solving the Reder grammar prediction
problem, the sequence length of the SC-RNN is given by 128
bits, with no accuracy loss compared to the binary designs.
The results are shown in Table III. The latency and energy
consumption are obtained for processing one sample through
the network.

The synthesis results indicate that the proposed design
requires lower area and energy consumption compared to the
32-bit FP circuits. The (4, 1) network achieves lower area and
energy consumption than the (3, 2) network. The area, power,
and energy of the SC-RNN are respectively 6.6% − 7.0%,
6.0%− 6.3% and 7.2%− 7.9% of the FP design for different
network configurations. The computation latency of the SC-
RNN is similar to the FP circuit due to the parallelization.
The area of the proposed design is 27.9%−28.2% of the FxP
design, with a longer computation latency (ranging between
2.7×−2.9×). Overall, the energy of the SC-RNN is slightly
lower at 87%− 92% of the 8-bit FxP design.

The hardware requirement of the networks for the Japanese
vowel and TIMIT dataset is also found for inference and is
shown in Table IV. The sequence length of the SC-RNN is
given by 256 bits prior to parallelization. The structure of the
Japanese vowel is set as 12-120-9. The structures of the TIMIT
network are set as 12-(250, 250)-48, 12-(500, 500)-48, and 12-
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(250, 250)-(250, 250)-48. The SC networks are implemented
with 4-fold and 8-fold parallelization, represented by SC (4-
fold) and SC (8-fold) in Table IV. The SC RNNs operate at
200 MHz while the operating frequency of the FP and FxP
circuit is 100 MHz. The binary circuits are not pipelined.

The latency and energy consumption in Table IV are ob-
tained on average for processing one sample through one
neuron. The synthesis results indicate that with 4-fold par-
allelization, the SC-RNN incurs a lower area (1.6% − 2.3%)
and smaller energy consumption (6.5%− 11.2%) than the FP
circuit for different network structures. These figures of merits
are 5.9% − 8.2% and 75.4% − 128.5% of that of the 8-bit
FxP designs. The latency of the proposed design is 2× of the
FP implementation and 5× of the FxP implementation due to
the long stochastic sequences. The proposed design achieves
significantly lower power consumption, but at a lower number
of frames per second due to the slower computation speed,
compared to the designs of [5] [33]. However, the latency of
the SC design can be further reduced by using a higher level of
parallelization. For example, with an 8-fold parallelization in
the SC network, the energy consumption is almost identical
but the computation speed of the SC RNN is improved by
35.0%− 39.5% with an increase in area, compared to that of
the SC network with a 4-fold parallelization.

V. CONCLUSION

In this paper, an SC design is proposed to reduce the area
and energy consumption of RNNs. The circuits are imple-
mented by SC for inference. The proposed design requires
significantly smaller area and lower energy consumption in
most cases at a higher latency compared to conventional binary
implementations. The SC-RNN shows significant advantages
in noise tolerance by achieving higher accuracy than binary
designs when noise is present in the computation process.
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