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ABSTRACT 

As reliability becomes a major concern with the continuous 
scaling of CMOS technology, several computational 
methodologies have been developed for the reliability evaluation 
of logic circuits. Previous accurate analytical approaches, 
however, have a computational complexity that generally 
increases exponentially with the size of a circuit, making the 
evaluation of large circuits intractable. This paper presents novel 
computational models based on stochastic computation, in which 
probabilities are encoded in the statistics of random binary bit 
streams, for the reliability evaluation of logic circuits. A 
computational approach using the stochastic computational 
models (SCMs) accurately determines the reliability of a circuit 
with its precision only limited by the random fluctuations inherent 
in the representation of random binary bit streams. The SCM 
approach has a linear computational complexity and is therefore 
scalable for use for any large circuits. Our simulation results 
demonstrate the accuracy and scalability of the SCM approach, 
and suggest its possible applications in VLSI design.  

Categories and Subject Descriptors 

B.8.1 [Performance and Reliability]: Reliability, Testing, and 
Fault-Tolerance; F.1.2 [Modes of Computation]: Probabilistic 
computation  

General Terms 

Algorithms, Design, Performance, Reliability, Theory 

Keywords 

Stochastic computation, Stochastic computational model, Fault 
tolerance, Reliability evaluation, Logic circuits 

1. INTRODUCTION 
The design of reliable VLSI circuits becomes more challenging as 
CMOS feature sizes keep scaling in the nanometer regime. This 
downscaling makes circuits more susceptible to various factors 
that lead to manufacturing defects and interferences with noisy 
environments that lead to transient soft errors. A variety of novel 
devices such as carbon nanotubes, silicon nanowires, graphene 
and molecular electronics, have been investigated for future 
nanoelectronics. However, their non-deterministic characteristics 
and the uncertainty inherent in their manufacturing processes will 

inevitably render low circuit reliability. Therefore, the reliability 
of nanoelectronic circuits has increasingly been a concern, and 
will become a major design metric as performance and power are 
for today. This increasing demand on reliability design calls for 
accurate evaluation tools for the analysis of circuit reliability [1].  

Several analytical approaches, such as those using probabilistic 
transfer matrices (PTMs) [2], probabilistic gate models (PGMs) [3, 
4] and probabilistic decision diagrams (PDDs) [5], provide an 
accurate analysis of circuit reliability, however they suffer from 
the problem of having an exponential complexity and are 
therefore practically infeasible to be used for large circuits. While 
some other techniques also provide highly accurate results [6 - 9], 
they were aimed at achieving a tradeoff between accuracy and 
complexity. In [6], a probabilistic model based on Bayesian 
networks is proposed for the handling of large circuits using an 
approximate inference scheme. Authors in [7] present models 
using Boolean difference calculus, which is applied to 
probabilistic analysis of logic circuits. In [8], circuit 
transformations are used to calculate the signal probabilities of all 
internal nodes of logic circuits. In [9], three scalable algorithms 
are proposed for reliability analysis, but for large circuits, 
accuracy is obtained with constraints on error conditions.   

In this paper, we propose an accurate approach using stochastic 
computation for the reliability analysis of logic circuits. This 
stochastic approach uses a random bit stream to encode signal 
probability [10, 11]. Stochastic computational models (SCMs) are 
constructed to implement the probabilistic analyses performed by 
PGMs. An algorithm using PGMs allows for an accurate 
reliability evaluation by identifying reconvergent fanouts and 
decomposing a circuit for each reconvergent fanout [4]. In the 
worst case, however, the PGM algorithm has a computational 
complexity that increases exponentially with the number of 
dependent reconvergent fanouts. In this paper, we show that the 
proposed stochastic approach handles the signal dependencies 
introduced by reconvergent fanouts gracefully and eliminates the 
need to deal with the complexity problem encountered in the 
PGM algorithm. In contrast to methods based on the simple 
simulation of random vectors, SCMs explicitly denote signal 
probabilities, so they are generic and versatile for use in both 
algorithmic development and practical applications. These 
advantages of the stochastic approach make it potentially suitable 
for various VLSI applications. 

The remainder of this paper is organized as follows. Section 2 
reviews the PGM and its analytical approaches. In section 3, we 
propose stochastic computational models (SCMs), and a 
computational approach using SCMs. The accuracy and 
complexity issues, as well as detailed error analyses, are also 
presented in this section. Simulation results are presented in 
Section 4. Section 5 gives conclusions and future work.  
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2. RELIABILITY EVALUATION USING          

PROBABILISTIC GATE MODELS 

2.1 Background 
Most faults in combinational circuits are either inherently 
probabilistic or modeled probabilistically. Therefore, the 
reliability analysis of logic circuits has been based on the 
probabilistic treatment of signals in combinational logic networks 
[12]. The signal probability of an input or output of a logic gate is 
defined as the probability that the signal is a logical 1. A logic 
function provides a transform from its input to output probabilities. 
The reliability of an output is obtained as the probability of the 
output if the output is expected to be a logical 1, or its 
complement otherwise. Given independent inputs, Boolean 
functions can be mapped to the arithmetic operations of signal 
probabilities, according to the following rules [12, 13]: 

Rule I: Boolean “NOT,” or B � A�, corresponds to                                                 

                     b � 1 	 a  

where b � P�B � 1
 and a � P�A � 1
. 

Rule II: Boolean “AND,” or C � AB, corresponds to  

                     c � a · b 

where  c � P�C � 1
, b � P�B � 1
 and a � P�A � 1
. 

Rule III: Boolean “OR,” or C � A � B, corresponds to  

                     c � a � b 	 a · b 

where  c � P�C � 1
, b � P�B � 1
 and a � P�A � 1
. 

By applying “AND,” “OR” and “NOT,” any type of Boolean 
logic can be mapped to an arithmetic equation of signal 
probabilities. 

Example: Boolean “XOR” expressed as  C � AB� � A�B 
corresponds to  

                     c � a · �1 	 b
 � �1 	 a
 · b 

where  c � P�C � 1
, b � P�B � 1
 and a � P�A � 1
. 

2.2 Probabilistic Gate Models 
A probabilistic gate model (PGM) relates a gate’s output 
probability to its input and error probabilities, according to the 
function and malfunction of the gate [3]. In general, the output 
probability of a gate can be calculated by the following equation, 

Z = P (output “1”|gate faulty) P (gate faulty) +  

P (output “1”|gate not faulty) P (gate not faulty)       (1)                                                                       
Assume a  von Neumann error, which flips a gate’s correct output 
and resembles the behavior of a soft error, with an error rate ε; let 
ε � P�gate faulty
 and p � P�output “1”|gate not faulty
, we 
obtain the following equation for any logic gate/function, 

            Z! � �1 	 p
 · ε � p · �1 	 ε
                                          (2) 

For a two-input AND gate, for example, if X# and  X$ represent 
the input signal probabilities, the output signal probability is 
then  X# X$  for a fault-free gate. Given a probabilistic von 
Neumann error, the output probability of an AND gate is then 
Z! � �1 	 X#X$
ε � X#X$�1 	 ε
.                                     

2.3 Computational Algorithms Using PGMs 
A simple algorithm can be obtained by the iterative execution of a 
gate’s PGM according to the specific structure of a circuit. The 
executions of PGMs from a circuit’s primary inputs to its outputs 
produce the signal probability of each output. An overall 

reliability is obtained by multiplying the reliabilities of all outputs. 
In this simple PGM algorithm, it is assumed that all signals under 
consideration are mutually independent. However, this is not true 
when there are reconvergent fanouts and thus the signals are 
correlated rather than independent. Hence, the simple PGM 
algorithm, albeit simplistic to implement, results in an 
approximate evaluation.  

An accurate algorithm accounts for the signal dependencies in a 
circuit. In a circuit without feedbacks, if all the inputs are 
mutually independent, reconvergent fanouts are the only 
topological structures that introduce signal dependencies into the 
circuit. Fig. 1 (a) shows a simple reconvergent fanout. The fanout 
originates at point B and reconverges at point D.   

 

Fig. 1 (a) A reconvergent fanout; (b) A fanout decomposition 

If the input to a fanout has a deterministic value, i.e., "1" or "0", 
the statistical dependence of the two fanout branches is effectively 
eliminated. Per the definition of statistical independence, we have 
P(B1=1, B2=1) = P(B1=1) P(B2=1) if and only if P(B=1) equals to 
1 or 0. As shown in Fig. 1 (b), the fanout is decomposed into two 
equivalent circuits with deterministic inputs “1” and “0”, virtually 
containing no fanouts. In this way, signal dependencies are 
eliminated by the fanout decomposition. Subsequently, the simple 
PGM algorithm is used to calculate the output probabilities of the 
two circuits. These obtained output probabilities are then used to 
evaluate the signal probability at point D, by Z � Z#P � Z'�1 	
P
, where Z1 and Z0 are output probabilities when the fanout input 
is set to "1" and "0", and P is the signal probability at point B.  

Given a circuit, signals are traced back from each primary output 
and all reconvergent fanouts in the paths leading to that output are 
identified. For each reconvergent fanout, the circuit is 
decomposed into two sub-circuits as shown above. This process is 
repeated for every reconvergent fanout until all the reconvergent 
fanouts are eliminated in the sub-circuits. Finally, the simple 
PGM algorithm is used to obtain the output probabilities of each 
sub-circuit and the input probability of each reconvergent fanout, 
which are then used to obtain the final reliability of the circuit.  

As the computation required in the accurate algorithm presented 
above doubles for each dependant reconvergent fanout, the 
computational complexity of the algorithm is exponential in the 
number of dependant reconvergent fanouts, or a complexity 

of (�N2+, 
, where N is the total number of gates and N- is the 
number of dependent reconvergent fanouts. Like all other accurate 
algorithms, it makes the analysis of VLSI circuits intractable. 

3. RELIABILITY EVALUATION USING 

STOCHASTIC COMPUTATIONAL    
MODELS  

3.1 Background 

3.1.1 Stochastic Computation 
Stochastic computation was first introduced in the 1960s for logic 
circuit design [10, 11], but its origin can be traced back to von 
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Neumann’s seminal work on fault tolerance [15]. In stochastic 
computation, real numbers are represented by random binary bit 
streams, which are usually generated by a Bernoulli process. 
Information is carried in the statistics of the binary streams [16]. 
Stochastic computation has such advantages as computational 
simplicity, fault tolerance and high speed [17], which, as will be 
shown, apply to our approach to reliability evaluation. The 
essential components of stochastic computation include stochastic 
processing elements and stochastic sequence generators [16]. As 
to our application, we use uniformly distributed random bit 
streams to encode signal probabilities. A certain probability is 
represented by a proportional number of bits set to a specific 
value, which is usually the proportion of the mean number of 1’s 
in a bit stream. Basic stochastic processing elements are used to 
construct stochastic computational models (SCMs). In stochastic 
computation, an analysis is simplified by using time redundancy. 

3.1.2 Computation based on Stochastic Logic 
Instead of representing signal probabilities as real numbers in the 
unit interval �0,1
, stochastic logic encodes signal probabilities 
into binary bit streams serially in the time domain. Fig. 2 
illustrates a stochastic encoding [14].  

 

Fig. 2 A stochastic encoding 

Stochastic computation transforms Boolean logic operations into 
probabilistic computations in the real domain. Although each bit 
is processed by a logic gate, signal operations are no longer 
Boolean but are probabilistic computations by stochastic logic. 
For instance, multiplication can be implemented by an AND gate 
[16], as shown in Fig. 3 (a). In section 2.1, it is shown that 
Boolean logic operations are mapped to arithmetic operations. 
Here we observe that an AND gate implements the multiplication 
of Rule II. Similarly, any logic gate can implement a 
corresponding probabilistic operation as dictated by a mapping 
rule or a combination of the rules. Fig. 3 (b) shows the stochastic 
operation performed by an XOR gate. This computational 
capacity of stochastic logic elements guides us to pursue using 
stochastic computational models for the numerical evaluation of 
circuit reliability. An important feature in stochastic computation 
is that it propagates probabilistic values rather than deterministic 
ones, which results in inevitable random fluctuations in the 
representation of probabilities. 

Fig. 3 (a) Stochastic multiplication; (b) Stochastic XOR logic 

3.2 Stochastic Computational Models 
Stochastic computational models (SCMs) are based on the 
operations of stochastic logic and the notions of PGMs. As shown 
in section 2.2, any gate affected by a von Neumann error can be 
modeled using the PGM equation (2). In fact, equation (2) can be 
implemented by a stochastic logic of XOR as follows:  

        XOR012�p, ε
 � p�1 	  ε
 � �1 	 p
ε                                 (3)                                        

where p is the fault-free output probability and ε the gate error 
rate. Equation (3) shows that the PGM equation (2) can be 

implemented by a stochastic XOR logic regardless of the type of 
logic gate modeled by the PGM. Therefore, an SCM can be 
obtained by adding an XOR gate to an unreliable gate and using 
the XOR to implement the gate error rate. This is shown in Fig. 4.  

Fig. 4 (a) An unreliable AND gate; (b) A stochastic logic 
implementation; (c) An SCM implementation with XOR 

Fig. 4 shows an unreliable AND gate and its SCM implementation, 
for which we have 

         p � X#X$                                                                                      �4
 

         XOR012�p, ε
 � p�1 	  ε
 � �1 	 p
ε                                (5) 

As indicated by equation (5), an SCM is universal in the sense 
that it can be constructed for an arbitrary logic gate. An SCM 
significantly reduces the computational complexity of a 
probabilistic analysis by using redundancy in the time domain and 
the XOR logic for processing the gate error rate.  

3.3 A Computational Approach Using SCMs 
A stochastic computational network can be constructed using the 
SCMs of gates in a circuit for the reliability evaluation of the 
circuit. The computational network is a nonlinear structure 
constituted by SCMs. Feeding stochastic input sequences into the 
network and propagating them from primary inputs to outputs 
give the output probabilities. A distinguishing feature of the SCM 
approach is that it handles reconvergent fanouts effortlessly. As 
shown in section 2.3, the statistical dependence of a fanout’s 
branches is eliminated if and only if the input to the fanout is 1 or 
0. When signals are processed in the form of binary bit streams, 
which consist of 1’s and 0’s, logic operations do not need to 
consider the correlations caused by reconvergent fanouts. Instead, 
signal dependencies are inherently maintained in the distribution 
patterns of the random binary bit streams. This can be seen as 
follows. If an AND gate has two independent random bit streams 
4# and 4$ as inputs, its output will be a bit sequence encoding  
5 � 4#4$ � 0.81  for 4# � 4$ � 0.9 . If the inputs are not 
independent, the output will depend on the correlation of the two 
input signals. Fig. 5 shows an example where the two inputs are 
totally dependent, which results in 5 � 4# � 4$ � 0.9 . In 
stochastic processing, signal dependencies are well maintained 
and propagated to the next logic level.  

 

Fig. 5 Signal correlations maintained in stochastic logic processing 

We demonstrate the SCM approach by taking the benchmark 
circuit C17 as an example. Fig. 6 shows the schematic of C17. 

63



First, a stochastic computational circuit is obtained by adding an 
XOR gate to each of the gates in C17, as shown in Fig. 7. Then 
input signals, as well as the gate error rate, which is now an input 
to the XOR gates, are initialized by generating random bit 
streams. The streams are then propagated through the circuit. In 
the end, the output bit sequences are read out and decoded into 
probabilities and reliability. 

            

          Fig. 6 Schematic of C17 

 

                     Fig. 7 Stochastic C17 using SCMs 

As shown in Fig. 7, a fanout F2 originates at node N17 and 
reconverges at node N30. In one of our experiments, we observed 
two sequences representing the same probability 0.095 at nodes 
N24 and N25, as well as an output sequence at N30 standing for a 
probability 0.9064. However, if the two signals at N24 and N25 
are independent, we should have got an output probability of 
0.991 at Node 30. This confirms that the signal correlations due to 
reconvergent fanouts are well maintained in the stochastic 
computational network.  

An evaluation procedure using the SCM approach is as follows: 

1.     Construct the stochastic computational circuit by adding an 
XOR gate to each of the logic gates in the circuit; 

2.  Generate initial random bit streams encoding signal 
probabilities of primary inputs and the error rate of each 
gate in the circuit; 

3.      Propagate the binary streams from the primary inputs to the 
outputs and obtain a random bit stream for each output;  

4.      Decode the signal probability and calculate the reliability of 
each output from the obtained random bit stream.   

3.4 Performance 

3.4.1 Accuracy 
In SCMs, signal probabilities are carried in the random binary bit 
streams and signal dependencies are accounted for in the 
stochastic logic processing network. Hence, the reliability 
obtained using the SCM approach is accurate and its precision is 
only limited by such factors as the resolution in the representation 
of the bit streams, the random permutation and random fluctuation 

of the stochastic sequences. A detailed error analysis is given in 
section 3.5. 

3.4.2 Complexity 
There are two major steps in the stochastic computation for circuit 
reliability: one is the generation of input random bit streams, 
which consumes over 90% of the total run time, and the other is 
the propagation of the bit sequences through the circuit. For the 
random sequence generation, the SCM approach has a linear 
complexity with the number of 1’s in the sequence needed to be 
generated, which is proportional to the sequence length for a fixed 
error rate. Thus it often has a linear complexity with the sequence 
length. For sequence propagations, the SCM approach has a 
complexity that increases linearly with the number of gates in a 
circuit, as well as the length of the random bit sequences.  

3.5 Error Analysis 

3.5.1 Resolution 
The sequence length is an important parameter since it determines 
the resolution of the results. If we choose a sequence length L of 
10, for example, the resolution is 0.1. This means that any 
probability less than 0.1 cannot be represented. An error due to a 
limited resolution is illustrated in Fig. 8. Fig. 8 (a) shows a case 
where X1=0.2 and X2=1. Since Z= X1 X2, it can be obtained that 
Z=0.2 from the output binary stream. This is an accurate result. 
Fig. 8 (b) shows a scenario where X1=0.8 and X2=0.8, for which 
we obtain an output Z=0.6, while the correct output should be 
0.64. In our experiments, we used a sequence of 1000, which 
gives a resolution of 0.001. Since the result is rounded to its 
nearest available representation, the maximum error due to this 
resolution is 0.0005. This indicates that the results we obtained in 
a single experiment will have a precision error of up to 0.0005. 

Fig. 8 Resolutions in stochastic computation (a) A desired output;        
(b) An output imprecision due to a limited resolution 

3.5.2 Random Permutation 
Errors can also be caused by the random permutation of bits in a 
sequence. Fig. 9 illustrates an example of a randomized 
permutation. The logic operation in Fig. 9 (a) gives the desired 
output value, while the operation in Fig. 9 (b) gives what we 
consider as an error. In general, longer sequences tend to be better 
randomized. However, random permutations are probabilistic in 
nature and therefore they do not always provide the desired results. 
The error due to random permutation is considered as “noise” and 
contributes to the facts that the output values are probabilistic 
rather than deterministic in a stochastic network. This is explained 
in the following subsection. 

 

Fig. 9 Random permutations in stochastic computation (a) A 

desired permutation; (b) A permutation resulting in what is 
considered as an error 
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3.5.3 Inherent Random Fluctuation 
Random fluctuation is an inherent feature in stochastic 
computation [14]. Simulations of C17 show that the result of 
every experiment fluctuates around the expected mean value, as 
shown in Fig. 10. The result of an experiment is an output 
sequence obtained for a given input combination. This type of 
error can be analyzed quantitatively by investigating the mean and 
variance. The law of large numbers states that the average result 
obtained from a large number of experiments is close to their 
mean value. Assuming each experiment X9 is a random variable 

with the same mean μ and variance σ$, we have 

      < =#
> ∑ 4@

>
@A# B � #

> ∑ <C4@D � #
> Eμ � μ>

@A#                           (6) 

      <C�F 	 μ
$D � GHI J#
> ∑ 4@

>
@A# K � LM

>                                   (7) 

The error can be measured by the standard deviation,                   

      e � |F 	 μ| ≈
L

√O                                                                   (8) 

where n is the number of experiments performed. From equation 

(8) we obtain that the error is proportional to #
√O. Therefore, a 

higher accuracy can be obtained by increasing the number of 
experiments. Note that, as the precision is limited by the 
resolution, increasing the number of experiments does not always 
give a better accuracy.  

  

      Fig. 10 Random fluctuations in stochastic computation 

Fig. 11 shows the distribution of the results from 1000 
experiments. According to the Central Limit Theorem, the 
distribution of a large number of samples approaches a Gaussian 
distribution as the sample size increases. Here we show that a 

Gaussian distribution with the mean and variance calculated from 
the experimental data fits the distribution of the data very well. 
The deterministic input signals have been affected by noise and 
become probabilistic in the stochastic processing network. 

 

        Fig.11 Output distributions are approximately Gaussian 

4. SIMULATION RESULTS 
A number of LGSynth91 and ISCAS-85 benchmark circuits [18] 
are used to evaluate the performance of our proposed approach. 
The simulations were run on a 2.66-GHz Pentium microprocessor 
with 2 GB memory. The accurate PGM algorithm is used for 
comparison with the SCM approach and the results are shown in 
Table 1. Large benchmarks in ISCAS-85 are simulated to 
demonstrate the efficiency of the SCM approach. The runtime 
indicates that the SCM approach has significant advantages in 
dealing with large circuits.  

4.1 Accuracy Comparison 
An accuracy comparison is performed between the accurate PGM 
algorithm and the SGM approach. Table 1 shows overall 
reliabilities for ε=0.05. A maximum of 1000 inputs are used. As 
can be seen, the SCM approach shows highly accurate results - the 
maximum relative error is around 0.1% for using a sequence 
length of 1000. The accuracy can be further improved by either 
increasing the sequence length, or increasing the number of 
experiments for each input combination. However, these methods 
significantly increase the runtime, while they only improve the 
accuracy slightly, as is dictated by equation (8). Since the 
runtimes of PGM do not include the longer time needed for 
identifying and decomposing reconvergent fanouts, they appear to 
be less in Table 1 than those of SCM for circuits of such sizes.  

                                                 Table 1 Accuracy comparisons between the PGM and SCM approaches 

 
 

Circuits 

Characteristics PGM 

ε=0.05 

SCM   ε=0.05 

 
gates 

 
inputs 

 
outputs 

Sequence length  1000 Sequence length  10000 

Reliability Runtime Reliability 
Relative 

error 
Runtime Reliability 

Relative 
error 

Runtime 

C17 6 5 2 0.7582 0.00073s 0.7574 0.106% 0.109s 0.7580 0.0264% 4.016s 

cu 43 14 11 0.3865 0.10063s 0.3862 0.0776% 14.154s 0.3866 0.0259% 374.818s 

z4ml 45 7 4 0.2546 0.05183s 0.2548 0.0786% 1.906s 0.2543 0.118% 51.322s 

pcle 61 19 9 0.2342 0.06808s 0.2343 0.0427% 21.531s 0.2342 0% 559.093s 

decod 22 5 16 0.3426 0.001s 0.3430 0.117% 0.586s 0.3423 0.088% 6.893s 

parity 15 16 1 0.6029 0.01251s 0.6027 0.0332% 5.186s 0.6028 0.017% 143.649s 

majority 10 5 1 0.8623 0.00049s 0.8633 0.116% 0.206s 0.8627 0.046% 5.223s 

pm1 41 16 13 0.3886 0.02685s 0.3886 0% 14.773s 0.3887 0.026% 390.948s 

x2 38 10 7 0.3822 0.21819s 0.3821 0.0262% 12.568s 0.3820 0.052% 364.524s 

mux 50 21 1 0.7920 0.09827s 0.7915 0.0631% 16.382s 0.7920 0% 440.123s 
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                             Table 2 Reliability evaluation of ISCAS85 circuits using the SCM approach

                         

An observation is that the runtime is dominated by the procedure 
of generating random bit sequences. If we choose fault-free 
deterministic inputs, the only sequences need to be randomized 
as initial inputs are the gate error rates. As they are independent 
processes, it would be possible to further reduce the run time on 
random bit generations by using parallel processings whenever 
possible. 

4.2 Implementations on Large Benchmarks 
The SCM approach is readily applicable to large scale logic 
circuits. We chose to use a sequence length of 1000 since it 
gives an average relative error less than 0.1%, and at the same 
time requires a relatively short execution time. The simulation 
results are shown in Table 2. We show the outputs’ overall 
reliability, defined as the product of all output reliabilities, and 
the average reliability for ε=0.005, ε=0.01 and ε=0.05. The 
obtained overall reliabilities are very low since many circuits 
have a large number of outputs. The least runtime is obtained for 
ε=0.005 as it requires the least time for initiating random bit 
streams. 

5. CONCLUSION AND FUTURE WORK 
There has increasingly been a need for accurate and efficient 
reliability evaluation tools for the design and test of VLSI 
circuits. In this paper, a novel computational approach using 
stochastic computation is proposed for the reliability evaluation 
of logic circuits. This approach uses stochastic computational 
models (SCMs) and accurately evaluates a circuit’s reliability 
with a precision limit imposed by factors such as the resolution, 
random permutation and random fluctuation of the random 
binary bit streams used in stochastic computation. Simulation 
results indicate an average error rate less than 0.1% for the 
LGSynth91 benchmark circuits. 

The proposed SCM approach has a computational complexity 
that increases linearly with the length of the random bit 
sequences and the number of gates in a circuit. Compared to the 
simple simulation of random vectors, the stochastic approach is 
advantageous in terms of efficiency and scalability. It is 
therefore potentially useful in the design and test of VLSI 
circuits and systems. The SCM also provides a general 
framework for the computational modeling of complex systems. 
Our ongoing work includes an extension of the current 
reliability evaluation approach to include more fault models and 
an exploration of the use of stochastic computational elements in 
other applications such as the testing and diagnosis of VLSI 
circuits and systems.   
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Circuits 
Characteristics ε=0.005 ε=0.01 ε=0.05 

gates inputs outputs Average 
Reliability 

Overall 
Reliability 

Time Average 
Reliability 

Overall 
Reliability 

Time Average 
Reliability 

Overall 
Reliability 

Time 

C880 383 60 26 0.9219 9.17 Q 10R$ 25.1s 0.8914 3.94 Q 10R$ 33.7s 0.7440 1.10 Q 10RT 119.6s 

C1355 546 41 32 0.9245 5.10 Q 10R$ 32.6s 0.9011 2.29 Q 10R$ 47.6s 0.7509 8.35 Q 10RV 169.5s 

C1908 880 33 25 0.8624 1.50 Q 10R$ 55.6s 0.8175 5.40 Q 10R$ 76.3s 0.6956 1.69 Q 10RX 271.2s 

C2670 1193 157 64 0.9336 6.70 Q 10RT 77.7s 0.9047 7.94 Q 10RX 105.8s 0.7875 8.52 Q 10RY 370.0s 

C3540 1669 50 22 0.7978 3.90 Q 10RT 99.8s 0.7466 9.44 Q 10RX 144.3s 0.6687 1.10 Q 10RX 517.6s 

C5315 2307 178 123 0.9419 7.67 Q 10RX 157.2s 0.9102 2.92 Q 10RV 209.7s 0.7773 9.44 Q 10R#T 745.7s 

C6288 2416 32 32 0.6887 3.68 Q 10RZ 147.9s 0.6168 1.00 Q 10R[ 214.9s 0.5479 3.09 Q 10R\ 756.5s 

C7552 3512 207 108 0.9203 5.44 Q 10RV 216.9s 0.8797 2.76 Q 10R[ 314.1s 0.7544 2.08 Q 10R#V 1108.5s 
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