
JOURNAL OF JETCAS, IEEE 1

An Energy-Efficient Online-Learning
Stochastic Computational Deep Belief Network

Yidong Liu, Yanzhi Wang, Fabrizio Lombardi, Fellow, IEEE, and Jie Han, Senior Member, IEEE

Abstract—Deep neural networks (DNNs) are effective machine
learning models to solve a large class of recognition problems,
including the classification of nonlinearly separable patterns.
The training of DNNs is, however, particularly difficult due to
the large size and high energy consumption of the networks.
Recently, stochastic computation (SC) has been considered to
implement DNNs to reduce the hardware cost. However, it
requires a large number of random number generators (RNGs)
and long stochastic sequences that lower the energy efficiency
of the network. To overcome these limitations, we propose the
design of an energy-efficient deep belief network (DBN) with
online learning capacity based on stochastic computation. In
the SC-DBN, a reconfigurable structure is utilized to implement
the fast greedy learning algorithm and an adaptive moment
estimation (ADAM) circuit is designed to improve the speed
of the training process. An approximate SC activation unit
(A-SCAU) is further designed to implement different types of
activation functions in the neurons. The A-SCAU is immune
to signal correlations, so the RNGs can be shared among all
neurons in the same layer with no accuracy loss. The area and
energy of the proposed design are less than 5.5% and 3.7% (or
29.3% and 33.3%) of a pipelined 32-bit floating-point (or an 8-
bit fixed-point) implementation. The proposed SC-DBN design
achieves a higher classification accuracy compared to the fixed-
point implementation. The accuracy is in a range of 0.12% to
0.37% lower than the floating-point design with a significantly
lower (or slightly higher) energy consumption than the pipelined
(or non-pipelined) circuit for both online learning and inference
processes.

Index Terms—stochastic computing, deep belief network, rec-
tifier linear unit, cognitive computing.

I. INTRODUCTION

AS a type of deep neural networks (DNNs), a deep belief
network (DBN) substantially improves the performance

of conventional artificial neural networks such as a multilayer
perceptron [1]. A DBN can perform unsupervised learning and
solve nonlinearly separable pattern recognition problems such
as the classification of objects [2], speech [3] and handwritten
characters [4]. In the training process of DBNs, the fast greedy
learning algorithm is used to attain a faster computation than
the commonly-used gradient descent algorithm and a higher
network depth can be achieved in DBNs than in conventional

This work was supported in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada

Y. Liu, and J. Han are with Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB, T6G 1H9 Canada (email:
{yidong1, jhan8}@ualberta.ca).

Y. Wang is with Electrical Engineering and Computer Science Department,
Syracuse University, Syracuse, NY 13244, USA (email: ywang393@syr.edu)

F. Lombardi is with Department of Electrical and Computer Engineer-
ing, Northeastern University, Boston 02115, MA USA (e-mail: lom-
bardi@ece.neu.edu).

multilayer perceptrons. The DBN can also process unlabeled
samples in a dataset. However, the size of a DBN and the
number of parameters increase rapidly with the complexity
of a problem. A DBN requires a large memory for the
weights due to its low weight sharing rate. Therefore, it
results in a lower performance for image classification than
deep convolutional neural networks (DCNNs) [5]. Recently,
the depth of DBNs has been exceeded by long short-term
memory recurrent neural networks (LSTM RNNs) which show
significant advantages in time-related problems, such as speech
recognition and prediction [6]. Nevertheless, a DBN is useful
due to its unsupervised learning ability. The relatively easy-
to-implement structure also makes it suitable as a platform
to evaluate the performance of new design techniques such
as approximate computing and stochastic computing (SC).
However, an implementation of large DBNs requires a large
hardware and a high energy consumption. Hence, it is difficult
to implement a machine learning algorithm using a DBN
on a resource-limited system such as a mobile device or
an embedded system. It has become imperative to develop
efficient hardware design for implementing a DBN at a small
circuit area and low power consumption.

The recent resurgence of SC provides such an opportunity
[7] [8]: an SC circuit reduces the hardware footprint of many
fundamental arithmetic circuits, such as adders, subtractors [9]
[10] and multipliers [11] [12]. The hyperbolic tangent (tanh)
and exponential functions can be implemented by linear finite
state machines (LFSMs) [13]. Recently, SC designs have been
utilized to implement radial basis function neural networks
[14], a multilayer perceptron [15], a convolutional neural
network [16], a DBN [17] and other types of DNNs [18]
[19]. In these designs, the neural networks are pre-trained to
perform the nonlinear classification in hardware. As a result,
these networks are not applicable to problems that require real-
time or online learning.

In spite of the simple SC circuits, stochastic number
generators (SNGs), consisting of random number generators
(RNGs) and comparators, incur a large area and high power
consumption [18] [19], thus reducing the energy efficiency of
an SC design. Moreover, because different types of activation
functions are needed for various requirements in the training
process, the performance of SC-based DNNs is limited as it
is difficult to reconfigure the activation function without re-
implementing the design.

In this paper, a stochastic computational DBN (SC-DBN)
is proposed to overcome the above limitations. An approxi-
mate SC activation unit (A-SCAU) is proposed to implement
different types of activation functions such as the sigmoid,



JOURNAL OF JETCAS, IEEE 2

the rectifier linear and the pure line functions. In the SC-
DBN, the use of RNGs is shared among all neurons in the
same layer. Therefore, the circuit area and energy consumption
are significantly reduced. The Modified National Institute of
Standards and Technology (MNIST) dataset is used for the
evaluation of the proposed design. Some preliminary results
have been published in [20]. As a significant extension, this
paper presents an improved SC-DBN design with online
learning capacity. It makes the following novel contributions:
• A reconfigurable structure of the SC-DBN is proposed to

implement the fast greedy learning algorithm. The layer
weights are adaptively updated according to the learning
samples, thus it is capable of performing real-time online
learning.

• The adaptive moment estimation (ADAM) algorithm is
implemented in SC circuits. The energy consumption and
latency of the training process are reduced by 74.8%
and 65.2% compared to the SC-DBN without the ADAM
circuit.

• For both pre-trained and online learning implementations,
the SC-DBN achieves a smaller area, lower power and
energy consumption with a similar accuracy and compu-
tation speed compared to conventional pipelined floating-
and fixed-point implementations.

The remainder of this paper is organized as follows. Section
II introduces the background for the learning algorithms used
in a DBN and stochastic logic. Section III presents the pro-
posed design. Section IV shows the application and simulation
results. Section V concludes the paper.

II. REVIEW

A. The structure of DBNs

A DBN consists of one input layer, multiple hidden layers
and one output layer (Fig. 1). One of the most widely-used
learning algorithms for a DBN is the fast greedy learning algo-
rithm [1]. In this algorithm, the training process is divided into
unsupervised and supervised phases. During the unsupervised
phase, each pair of layers in the network forms an encoder-
decoder pair. The layers are trained as restricted Boltzmann
machines (RBMs) [21]. The neurons in the encoder encode
the input data, whereas the neurons in the decoder decode the
computed results. By comparing the decoded result with the
original input, the RBM adjusts the layer weights for each
training process.

In the encoding process, assume that the input data are given
by a row vector X with D dimensions and the encoder in
the current layer consists of E neurons; xj is then the jth

dimensional value in X , and W is the matrix of layer weights
with wij denoting the weight for xj and the ith neuron (i =
1, 2, ..., E). Assume the output of the encoder is a row vector
YE with E dimensions, the computed result of the ith neuron
in the encoder is given by

yei = ϕ(

D∑
j=1

xj · wij), i = 1, 2, ..., E, (1)

where ϕ(·) is the activation function [1].

Fig. 1. A DBN consisting of one input layer with D neurons,
L hidden layers with each layer consisting of Ei neurons (i =
1, 2, ..., L) and one output layer with K neurons.

The encoder computes the positive part of the difference in
the updated layer weight, as

δP =XTYE , (2)

where XT is the transpose of X .
The decoder is used to convert the output of the encoder YE

back to a D-dimensional signal, so it consists of D neurons.
The output of the decoder YD is computed from YE and the
layer weight W T , the computed result of the ith neuron in
the decoder is given by

ydi = ϕ(

E∑
j=1

yej · wTij), (3)

where i = 1, 2, ..., D is the index to each neuron in the decoder
and j = 1, 2, ..., E is the index to YE . Note that the layer
weights W T are from the transpose of W . The decoded result
YD is sent back to the encoder to generate an encoded signal
YE2 . The computed result of the kth signal in YE2 is given
by

ye2k = ϕ(

D∑
j=1

ydj · wkj), (4)

where k = 1, 2, ..., E. The decoder computes the negative
part of the difference in the updated layer weight as

δN = Y T
D YE2 , (5)

where Y T
D is the transpose of YD. At the completion of this

process, the layer weights at epoch t are updated on the basis
of the positive and negative parts of the difference, i.e.

W (t) = µW (t− 1) + ε(δP − δN), (6)

where µ and ε are the learning rates, µ, ε ∈ (0, 1) [1]. This
process is known as the one-time Gibbs sampling. The Gibbs
sampling is repeated until either the maximum allowed number



JOURNAL OF JETCAS, IEEE 3

(a)
(b)

(c) (d)

Fig. 2. (a) A bipolar stochastic multiplier: P (S1) = 1/2, P (S2) = −1/3, and P (S3) = P (S1) · P (S2) = −1/6. (b) A
stochastic adder: P (S1) = 2/3, P (S2) = −1/3, and P (S3) = 0.5× (P (S1) +P (S2)) = 1/6. (c) A bipolar stochastic divider
[9], with INT denoting an integrator. (d) An SC square root circuit [7].

of samplings is reached, or the value of δP − δN is lower
than a pre-determined threshold [1].

After the unsupervised phase, the supervised phase is im-
plemented to adjust the layer weights based on the backward
propagation algorithm [22].

For inference, assume that the number of neurons in layer
l − 1 and l are M and E, wlij denotes the weight between
neuron j in layer l − 1 and neuron i in layer l. The output
signal of neuron i in layer l at epoch t, yli(t), is given by

yli(t) = ϕ(

M∑
j=1

yl−1j (t) · wlij), i = 1, 2, ..., E, (7)

B. Activation function

In a DBN, different activation functions can be utilized for
various requirements in the training process. One of the most
widely used activation function is the sigmoid function [22],
defined as

ϕ(x) =
1

1 + exp(−x)
=

1

2
(tanh

x

2
+ 1). (8)

Recently, deep sparse rectifier neural networks (DSRNNs)
have been proposed to improve the performance of conven-
tional DBNs [23]. In a DSRNN, the activation function is
given by the rectifier linear function

ϕ(x) = min(1,max(0, x)). (9)

A rectifier linear unit (ReLU) allows a network to eliminate
the random fluctuation generated during the Gibbs sampling
process [23]. This unit requires a simple circuit by avoiding
the implementation of a complex activation function.

Another widely used activation function is the pure line
function [22], defined as

ϕ(x) = min(1,max(−1, x)). (10)

C. Adaptive moment estimation (ADAM)

In a DBN, the backward propagation algorithm is performed
in multiple epochs. In each epoch, the network is trained on the
training dataset. The backward propagation requires multiple
epochs for convergence, resulting in high latency and energy
consumption.

Recent researches have shown that the stochastic optimiza-
tion methods, (including the adaptive subgradient method
(AdaGrad) [24] and adaptive moment estimation (ADAM)
[25]) can significantly reduce the number of epochs in the
training process by adjusting the learning rates, thereby im-
proving the energy efficiency of the neural networks.

Considering the computational complexity and overall per-
formance, ADAM is considered as an improved stochastic
optimization method. In ADAM, assume α is a pre-determined
step size, β1 ∈ [0, 1) and β2 ∈ [0, 1) are the exponential
decay rates and f(θ) is the loss function with parameter θ
and gt is the gradient. Let the moment vector mt, vt and the
computation time step t initialized to 0. For each time step,
the parameter θ is updated by:

t = t+ 1,
gt = 5θft(θt−1),
mt = β1 ·mt−1 + (1− β1) · gt,
vt = β2 · vt−1 + (1− β2) · g2t ,
m̂t = mt/(1− βt1),
v̂t = vt/(1− βt2),
θt = θt−1 − α · m̂t/(

√
v̂t + ε).

(11)

The typical parameter values are given by α = 0.001, β1 =
0.9, β2 = 0.999 and ε = 10−8 as recommended in [25].

D. Stochastic logic elements

In SC, assume that there are a 1’s in a random binary bit
stream with a length of b bits; the bit stream encodes the
value of a/b within [0, 1] in the unipolar representation or
(2a − b)/b within [−1, 1] in the bipolar representation [7]
[8]. Some fundamental computational elements can be imple-
mented by simple circuits. For example, a bipolar multiplier



JOURNAL OF JETCAS, IEEE 4

Fig. 3. An SC implementation of the Btanh function, consist-
ing of an accumulative parallel counter (APC) and an up/down
counter [18]. The input sequence is D dimensional and Xj is
the jth(j = 1, 2, ..., D) input bit stream.

is implemented by an XNOR gate (Fig. 2 (a)) and an adder is
implemented by a multiplexer with the select signal encoding
a probability of 0.5 (Fig. 2 (b)) [9]. Fig. 2 (c) and (d) show
the designs of a bipolar stochastic divider and a square root
circuit. The designs are based on integrators (denoted by INT),
which can be implemented by an up/down counter and an
SNG [7]. Compared to conventional binary designs, the area
and power consumption of these simple stochastic circuits are
significantly smaller.

A linear finite state machine (LFSM) is another useful
stochastic circuit that can be used to implement the tanh
function in neural networks [9]. As per (8), the sigmoid
function can be implemented by stochastic multipliers, adders
and the tanh function. A bounded random walking based tanh
(Btanh) function can be implemented by an accumulative
parallel counter (APC) and an up/down counter (Fig. 3) [18].
This circuit achieves a high accuracy at a low latency due
to the high level of parallelization in computation. Unfortu-
nately, the computed result of this circuit is severely affected
by correlations between the input sequences. Therefore, a
straightforward use of shared RNGs for generating the input
sequences would significantly decrease the accuracy of the
computation.

III. DESIGN OF THE SC-DBN

A. Overall structure

An SC-DBN structure is proposed to implement the learning
and inference processes. The number of neurons in each layer
and the values of weights are both reconfigurable in the
proposed structure.

The proposed SC-DBN structure consists of six compo-
nents: an encoder-decoder pair, a layer weight updater, output
converters, input converters, weight buffers and data buffers
(Fig. 4). The layer weights and internal data are stored in
buffers as binary values. The encoder-decoder pair and the
layer weight updater are based on SC designs. Every time
a training process begins, the binary values are converted
into stochastic sequences by the output converters. Then, the
encoder-decoder pair reconfigures the structure of the current
layer and performs the fast greedy learning algorithm in SC
circuits. Following the training process, the layer weights are
updated by the layer weight updater. As per (6), the layer
weight updater is implemented by SC adders, subtractors and
multipliers. The updated layer weights are then converted into
binary values by the input converters and stored in the weight

buffers. At each epoch, the encoder processes all samples
and stores the intermediate results in the data buffers. For
inference, the data buffers store the output signals of the
neurons in each layer. The SC-DBN computes the output
signals layer-by-layer based on the stored data.

In the Gibbs sampling process, the computation in the
next encoder-decoder pair pauses until the computation in
the current pair is completed; therefore, only one RBM is
active and all the other RBMs are inactive during the training
process. It is highly inefficient to implement this process layer-
by-layer in hardware; so, the encoder-decoder pairs in the
reconfigurable SC-DBN structure are reused to implement
each layer in the SC-DBN. Therefore, it must be able to
implement the largest layer in the network. That is, the number
of neurons in the encoder-decoder pair is the same as the
number of neurons in the largest layer of the network. For
example, 784 neurons are needed in the encoder-decoder pair
for the DBN with the configuration of 784-400-200-10; it
would require 1394 neurons in a conventional structure.

B. Encoder-decoder design

The designs of the encoder and decoder are shown in Fig.
5. An encoder includes five components: two SNG arrays,
two SC multiplier array and an A-SCAU array (Fig. 5 (a)).
The SNG arrays convert the binary input signals and the layer
weights to stochastic sequences.

(1) is implemented by an SC multiplier array and an A-
SCAU array. Another multiplier array is used to compute the
positive part of the difference in the updated layer weights as
per (2). The MUX is used to select the input signals to the
SC multiplier array between the input data X and the output
signal YD of the decoder.

As per (3), (4) and (5), the structure of the decoder (Fig.
5 (b)) is similar to that of the encoder. The transpose of the
layer weight matrix is computed by the decoder.

After the positive and negative parts of the difference are
obtained, the layer weights are updated by the layer weight
updater as per (6).

Fig. 4. Design of the reconfigurable SC-DBN structure, with
signals following the same definitions in (2) to (7).



JOURNAL OF JETCAS, IEEE 5

C. Design of the reconfigurable A-SCAU

The A-SCAU consists of an accumulative parallel counter
(APC), a linear approximation unit (LAU), an RNG and a
comparator (Fig. 6). The D-dimensional input sequences of
the A-SCAU (Ki, i = 1, 2, ...D) are generated by the SC
multiplier arrays in Fig. 5. The A-SCAU first computes the
sum of the values encoded in the sequence Ki in the bipolar
representation (ki), following

x =

D∑
i=1

ki, i = 1, 2, ..., D. (12)

x is given by the output of the APC and serves as the
input to the LAU. The LAU then computes different activation
functions such as (8), (9) and (10). An activation function
implemented by the LAU has the generalized form of

ψ(x) = min(1,max(p,
1

r
x+ s)), (13)

where p, r and s are parameters that can be configured to
implement different functions.

For the sigmoid function (8), for example, the output range
is [0,+1]. If x = 0, ψ(x) = ϕ(x) = 1/2. Therefore, p and s

(a)

(b)

Fig. 5. The system diagram of (a) an encoder; and (b) a
decoder. The signal definitions are the same as for (1) to (6).

Fig. 6. Design of the A-SCAU, including an APC, an LAU,
an RNG and a comparator.

are set to 0 and 1/2, respectively, and a search is conducted
to find the optimal value of r. Fig. 7 shows the mean squared
error (MSE) between the computed results by the sigmoid
function and (13) when r varies in [+2,+10] with a step size
of 0.01. As can be seen, r = 5.27 leads to the minimum MSE,
6.16 × 10−4, between ψ(x) and ϕ(x). The value of r is set
to 4 to simplify the hardware implementation. Hence, (8) is
approximated by

ψ(x) = min(1,max(0,
1

4
x+

1

2
)). (14)

As a result, the sigmoid function is approximated by using
the configuration p = 0, r = 4 and s = 1/2 in the LAU.

The ReLU function (9) can be directly implemented by the
LAU with the configuration p = 0, r = 1 and s = 0. The
pure line function (10) is implemented by the configuration
p = −1, r = 1 and s = 0.

Note that the LAU implements an approximate model of the
sigmoid function but accurate models of the rectifier linear and
pure line functions. Fig. 8 shows the simulation results of the
A-SCAU with different configurations of the LAU. The range
of the signal x in (12) is set to [−10,+10]. With a sequence
length of 4096 bits, the MSEs are 1.1×10−3, 6.1×10−4 and
8.9 × 10−4; the maximum errors are 0.076, 0.051 and 0.087
for the sigmoid, ReLU and pure line functions. Table I shows
the MSEs of the A-SCAU with different sequence lengths and
activation functions.

TABLE I. MSEs of the A-SCAU (×10−3)

sequence length
(bits) 512 1024 2048 4096

sigmoid 7.41 2.81 2.08 1.10
ReLU 3.33 1.69 1.12 0.61

pure line 4.58 1.41 1.32 0.89

D. Immune-to-correlation feature

As the core component in the A-SCAU, the LAU is imple-
mented using a binary circuit (Fig. 6). As a result, the accuracy
of the LAU is not affected by the correlations in the stochastic
sequences.

In the A-SCAU, each input is implemented by a paral-
lelization of q levels. For D-dimensional input sequences
Ki (i = 1, 2, ..., D), the APC converts every qD-bit input

Fig. 7. Search result of optimal approximation parameters for
the sigmoid function. The MSE is between (8) and (13).



JOURNAL OF JETCAS, IEEE 6

(a) (b) (c)

Fig. 8. The simulation results of the A-SCAU for (a) the sigmoid function, (b) the ReLU function and (c) the pure line function.

combination into a binary vector of m bits as inputs to the
LAU.

For the n-bit stochastic sequences, the APC outputs n m-bit
binary integers in series. Then, the LAU accumulates n cycles
of the output from the APC and updates the output. Let the
jth binary integer generated by the APC be cj and let ki and
ki
′ be the ith values encoded in the sequence Ki in the bipolar

and unipolar representations (Fig. 6). Following the definition
in (12), x can be approximated by the output of the APC, as

x =

D∑
i=1

ki =

D∑
i=1

(2ki
′ − 1) ≈ 2

n∑
j=1

cj
n
−D. (15)

The range of ψ(x) is [0, 1] for the sigmoid and ReLU
functions, and [−1, 1] for the pure line function, encoded in
the bipolar representation. Because the SNG in the A-SCAU
requires unsigned integers to generate stochastic sequences,
the LAU needs to produce an integer output for the value of
ψ(x) interpreted as the unipolar representation. This value is
given by

ψ′(x) =
1

2
(ψ(x) + 1). (16)

For an m-bit LAU, the integer output, Ψ(x), is given by

Ψ(x) = (2m − 1)× ψ′(x) = (2m − 1)× (
ψ(x) + 1

2
). (17)

A stochastic sequence is then generated for Ψ(x) by the RNG
and comparator as the output of the A-SCAU.

Applying (13), (15) to (17), the output of the LAU is given
by

Ψ(x) = (2m − 1)×

min(1,max(
p+ 1

2
,

2
∑n
j=1 cj + nr(s+ 1)− nD

2nr
)).

(18)

Define an internal signal T as

T = 2

n∑
j=1

cj + nr(s+ 1)− nD, (19)

(18) can be approximated by

Ψ(x) = (2m − 1)×min(1,max(
p+ 1

2
,
T

2nr
))

= min(2m − 1,max(
2m − 1

2
· (p+ 1),

2m − 1

2nr
· T )

≈ min(2m − 1,max(2m−1 · (p+ 1),
2m−1

nr
· T )).

(20)

Fig. 9. An algorithmic flowchart for the LAU. T: a temporary
variable used to store the intermediate result in the computa-
tion. The definitions of other signals are the same as for (18)
and (20).

From (20), it can be seen that the output of the LAU can be
one of the three 3 different values: 2m−1, 2m−1 · (p+ 1) and
2m−1 ·T/nr. The circuit can be implemented by accumulators,
subtractors, multipliers and dividers. An algorithmic flowchart
is shown in Fig. 9 and a circuit design is shown in Fig. 10. In
the SC implementation, the n is set to 16 and the parameter
r is set to a value in a power of 2 in both the SC and
binary implementations, so the multipliers and dividers are
implemented by using shift registers. As the internal signals
encode unsigned integers, an additional comparator is used to
prevent the overflow in subtractions as well as to determine
the final output. Note that T in (19) is implemented by an
accumulator, an adder, a subtractor and shift registers, as
shown in Fig. 10.

As per (18), the output of the LAU is only determined by the
number of 1’s computed by the APC in the input sequences,
regardless of the bit correlations. Therefore, the computation
accuracy of the A-SCAU is not affected by the correlations
due to the sharing of RNGs in the circuit.

This immune-to-correlation feature makes it possible to
dramatically reduce the number of RNGs in the circuit. Fig.



JOURNAL OF JETCAS, IEEE 7

Fig. 10. Circuit design of the LAU. CMP: comparator. <<:
shift register. The width of the output signal is set to m. The
definitions of the signals are the same as for (18).

11 shows the test circuit for comparing the proposed A-SCAU
with the Btanh based sigmoid design. In the simulation,
sequences for D-dimensional input signals are generated by
shared RNGs but different comparators. The parallelization is
set to 16× and sequence length is set to 256 bits, so in total
256×16 = 4096 bits for each input. The simulation results of
the A-SCAU and the Btanh based circuit are shown in Fig.
12. As can be seen, the Btanh circuit does not produce correct
results, whereas the A-SCAU achieves a good accuracy.

E. RNG sharing

The SNG array in Fig. 5 is utilized for a parallel op-
eration to reduce the computation latency. The design also
reduces the area and energy cost of the encoder-decoder pair
by sharing the RNGs. In the SNG array, each signal in a
D-dimensional input is converted into q parallel stochastic
sequences to reduce latency, see Fig. 13. As the A-SCAU is
immune to the correlations among input stochastic sequences,
the RNGs are shared among parallel A-SCAU components

Fig. 11. Test circuit for the A-SCAU and the Btanh based
sigmoid functions.

Fig. 12. Simulation results of the A-SCAU and the Btanh
based sigmoid circuit. Both use shared RNGs.

without loss of computation accuracy. The RNGs can not
only be shared among the signals in a single neuron, but also
among all neurons in the same layer. Therefore, the number of
RNGs is changed to 1/D of those required in a conventional
design with the same level of parallelization but no sharing
structure. The RNGs are implemented using different initial
seeds and feedback polynomials to avoid generating correlated
sequences, thus reducing the autocorrelation in the output
sequences.

Consider a 2-layer network with 784 neurons in the input
layer and 100 neurons in the output layer; the dimension of the
input signals, the output signals and the layer weights are 784,
100, and 78400. Without considering the parallelization, 79284
RNGs are required in a conventional design with no sharing
structure. In the proposed design, however, because the RNGs
can be shared among neurons, it only requires 3 RNGs to gen-
erate the input, output and layer weight sequences, resulting
in significant savings in area and energy consumption.

F. Design of ADAM circuits

As per (11), the ADAM algorithm can be implemented by
SC circuits, including adders/subtractors, multipliers/dividers,
square root and power function circuits. The ADAM circuits
are shown in Fig. 14.

The circuit in Fig. 14 (a) updates the moment vector mt. The
updater for mt is implemented by SC adders, subtractors and
multipliers. Note that the output is 0.25mt because two SC
adders are connected in series. Therefore, the scaling factor
0.25 is eliminated prior to the computation of m̂t in (11).
The updater for vt has a similar structure as for mt, with
the computation of g2t implemented by an XNOR gate and a
D-flipflop (dashed in Fig. 14 (a)).

Fig. 14 (b) shows the power function circuit to compute βt.
Assume the sequence length is set to k bits and the value
encoded in the input sequence is set to β in the bipolar
representation for each computation step t. The k-bit shift
register is initialized to be all ones when t = 0. During
computation, each bit of the XNOR gate is stored in the LSB
of the register and the register is left-shifted. At the end of the
computation in step t, the k-bit output sequence is stored in the
shift register and then is used to multiply the input sequence
encoding β in step t + 1. It can be seen that for each t, the
value encoded in the output sequence follows f(β) = βt in
the bipolar representation. The result is then used to update the



JOURNAL OF JETCAS, IEEE 8

Fig. 13. An SNG array in the encoder-decoder pair with an input dimension D and parallelization level q. CMP: comparator.
Bi (i = 1, 2, ..., D) is the ith binary value of the input signal. sij is the jth parallel stochastic output sequence of Bi (i =
1, 2, ..., D; j = 1, 2, ..., q).

value of m̂t and v̂t by following (11), using an SC subtractor
and a divider. For each computation with a sequence length
of 4096 bits and 16× parallelization, an array of 16 power
function circuits is implemented with k set to 256 bits.

Fig. 14 (c) shows the circuit computing the value of
√
v̂t+ε.

(a)

(b)

(c)

Fig. 14. Design of the ADAM circuits. (a) Moment vector
updater, (b) Power function circuit for computing βt1 and βt2.
(c) The circuit to compute pτ + (1 − p)

√
v̂t, τ = ε/p. All

signals are encoded in stochastic sequences in the bipolar
representation, following the same definitions as in (11).

It consists of an SC square root circuit and an adder. The
binary search algorithm [7] [26] is utilized in the SC square
root circuit to reduce the computation latency. Assume that
the values encoded in the input sequences are τ and v̂t in the
bipolar representation, the probability of the select signal in
the MUX is p and the value encoded in the output signal in
the bipolar representation follows

h(v̂t, τ) = (1− p)
√
v̂t + pτ, p, τ > 0. (21)

When p is set to a small value close to 0, there exists

lim
p→0

h(v̂t, τ) =
√
v̂t + pτ, τ > 0. (22)

The value of pτ has the same role as ε in (11), leading to
ε = pτ . For an N -bit sequence, τmin = 2/N for the bipolar
representation and the resolution of the select signal is pmin =
1/N . As a result,

εmin =
2

N2
, (23)

which determines the minimum value of ε that can be im-
plemented by using N -bit sequences. For N = 4096 bits,
εmin = 1.19 × 10−7 is used in the design. With a shorter
sequence length, the value of εmin is increased and the
performance of ADAM is reduced.

The MSEs of the ADAM circuits are listed in Table II. In
the simulation of the power function, the value of β is set to
0.9 and the value of t is set to 31, which are the same as used
in the SC-DBNs for the MNIST dataset. The power function
circuit has the highest MSE among the components, and the
change in the sequence length has no significant effect on the
accuracy. The MSEs of the square root and divider circuits are
low because of the binary search algorithm which improves
both the computation accuracy and speed.

IV. EVALUATION

A. Accuracy

The SC-DBN is evaluated on the MNIST dataset [27] using
(8) as the activation function. The samples are grayscale
images with 28× 28 pixels of 10 different handwritten char-
acters labeled as ’0’ to ’9’. The structure of the network is



JOURNAL OF JETCAS, IEEE 9

TABLE II. MSEs of the ADAM circuits (×10−4)

sequence length
(bits) 256 512 1024 2048 4096

moment vector
updater 0.18 0.20 0.35 0.06 0.06

power function 8.74 8.51 8.26 8.35 7.90
square root 38.0 11.1 4.1 1.7 1.3

binary search
divider [26] 11.7 7.0 5.1 5.2 4.8

optimized by the pruning algorithm [28], consisting of one
input layer with 784 neurons, two hidden layers with 100 and
200 neurons, and one output layer with 10 neurons. An 8-bit
fixed-point and 32-bit floating-point (FP) implementation with
the same configuration are also evaluated on the dataset.

The SC-DBN is implemented with both pre-trained weights
and online learning. For the pre-trained networks, Table III
shows the classification error rates of the different imple-
mentations for inference. It can be seen that for the SC-
DBN, the classification accuracy improves rapidly when the
sequence length is under 256 bits, increasing from 89.9%
(by 32 bits) to 98.9% (by 128 bits). Using 64-bit sequences
(×16 parallelization), the proposed design achieves a higher
accuracy than the results in the literature [17] [18] [19] [29].
Note that most of the designs in the literature require a larger
latency than the proposed design (from 1024 bits to 4096 bits)
except for the integral stochastic implementation [19] and the
hybrid stochastic-binary network [30]. The network in [30] is
based on SC CNN, so different from the other networks in
Table III. Moreover, with a sequence no less than 128-bit, the
SC-DBN achieves a higher classification accuracy than an 8-
bit fixed-point implementation, which is only 0.12% to 0.37%
lower than a 32-bit FP implementation.

TABLE III. Pre-trained Networks Accuracy Comparison

Network sequence length (bit) accuracy (%)

SC-DBN
(16× parallelization)

32 89.90
64 97.78
128 98.90
256 99.15

8-bit fixed point – 98.10
32-bit floating-point – 99.27

Integral stochastic NN [19] 64 97.73
Hybrid SC-binary NN [30] 128 99.01

SC DNN [18] 1024 97.59
FPGA-RBM [29] 1024 94.28
FPGA-DBN [17] 4096 94.10

For the SC-DBN with online learning, the number of
learning epochs is initially set to 200. The sequence length
varies from 64 to 256 bits for learning and from 32 to 256 bits
for inference, both with 16× parallelization. The classification
accuracy of the different implementations is shown in Fig. 15.

The classification accuracy rapidly improves by increasing
the sequence length for learning. For example, with a 32-bit
sequence for inference, the classification accuracy is improved
from 51.50% to 78.60% when the sequence length increases
from 128 to 256 bits in the training process. Similarly, with a
256-bit sequence for inference, the accuracy is improved from
83.46% to 98.55%. With 256-bit sequences for both learning
and inference, the SC-DBN achieves a higher accuracy than

Fig. 15. Classification accuracy of different implementations
of the DBN. SC-DBN cfg1: the pre-trained SC-DBN; cfg2:
SC-DBN with 256-bit sequences for learning; cfg3: SC-DBN
with 128-bit sequences for learning.

the 8-bit fixed point implementation (98.10%), and it is only
0.60% and 0.72% lower than the pre-trained SC-DBN and
the FP implementation results. This suggests that a 256-bit
sequence for learning is sufficient for this application. With
this configuration, the online learning SC-DBN achieves an
accuracy similar to the pre-trained implementations. However,
with a 64-bit sequence in training, the computation of the SC-
DBN fails and the accuracy for inference is around 10.00%
(not shown in Fig. 15).

B. Hardware efficiency for pre-trained implementations

ASIC implementations of the DBNs are assessed in area,
power and energy consumption using VHDL synthesized by
the Synopsys Design Compiler with ST’s 28 nm technology
library. The sequence length of the SC-DBN is set to 128
and 256 bits with 16× parallelization. The conventional FP
design is implemented with and without pipelining. In the
non-pipelined implementation, it requires 1 clock cycle for
the computation in each layer, resulting in 4 cycles to process
each sample. In the pipelined FP DBN, 6 clock cycles are
required for an adder, 4 cycles for a multiplier and 24 cycles
for an activation function. These numbers are 4, 4 and 10 for
the pipelined fixed-point design.

In Table IV, the simulation results indicate that the SC-
DBN requires the smallest area and lowest power among the
different implementations. With 256-bit sequences, the SC
circuit takes 5.3%, 4.5%, 3.3% and 73.6% of the area, power,
energy consumption and latency (per sample) of the pipelined
32-bit FP implementation. These figures of merit are 26.9%,
27.8%, 29.9% and 107.3% when compared to the 8-bit fixed-
point implementation. With 128-bit sequences, the latency
and energy cost of the SC-DBN is approximately reduced by
50%, while incurring a loss of accuracy by only 0.25%. The
proposed circuit takes 6.5% and 6.1% of the area and power
of the non-pipelined 32-bit FP implementation, with a 1.3×
energy consumption and 21× latency. The high latency is a
general challenge for SC designs [8] [31].

Note that although the number of cycles to process a single
sample is significantly increased by pipelining (from 4 to 412),
the total computation latency is decreased because of the lower



JOURNAL OF JETCAS, IEEE 10

TABLE IV. Hardware Efficiency (Inference)

SC-DBN
8-bit

fixed-point
circuit

32-bit floating-point
circuit

(pipelined, non-pipelined)
Area

(µm2) 23345 86875 (437767, 357548)

Power
(mW) 1.12 4.01 (24.86, 18.32)

Frequency
(MHz) 134.7 167.3 (159.7, 90.2)

Cycle
(/sample) 128/256 296 (412, 4)

Latency
(µs/sample) 0.94/1.90 1.77 (2.580, 0.044)

Energy
(nJ/sample) 1.05/2.12 7.10 (64.14, 0.81)

throughput. With a dataset of 10000 samples in the MNIST, the
total computation latency of the pipelined FP implementation
is approximately 14.7% of that of the non-pipelined design.

To compare the proposed SC-DBN with other types of SC
NN designs, we considered an SC-DCNN [32] and performed
simulation using the 28 nm technology library. With 256-
bit sequences, the classification accuracy is 98.26% on the
MNIST dataset and the energy consumption is 281 nJ/sample,
much higher than that of the SC-DBN. The main reason for the
higher energy consumption in the SC-DCNN is the inherently
higher computation complexity of the DCNN required to
achieve a high accuracy. However, the neurons in the fully
connected layers of the SC-DBN have more inputs than the
neurons in the convolutional layers of the SC-DCNN, so the
inaccuracy in the SC computation can be better mitigated
inside the neurons, resulting in a better performance in the
SC-DBN.

C. Hardware efficiency for online learning

The area and energy consumption of the SC-DBN for online
learning are reported in Table V. All the binary implementa-
tions are based on pipelined circuits for their higher efficiency
in total computation time. The proposed encoder-decoder pair
is reused in both the training and inference processes. The
back-propagation and learning control unit are implemented
to perform the backward propagation in the training process.
Note that due to the complex timing control of SC circuits
and the conversion between stochastic sequences and binary
integers, the learning control unit of the SC-DBN is twice as
large as that of the fixed- and floating-point implementations.

The SC-DBN with online learning achieves the lowest area,
which is only 29.3% and 5.5% of the fixed- and floating-point
implementations. The energy consumption of the online learn-
ing is significantly increased from that for inference. In the
training process with 200 epochs, the SC-DBN takes 4.37 µJ to
process each sample. However, the SC-DBN still achieves the
lowest energy consumption among different implementations,
which is 33.3% and 3.7% of the fixed- and floating-point
implementations. The latency of the SC-DBN is 1.52 ms,
approximately 110% and 80.9% of that of the fixed- and
floating-point implementation. Similar as for the pre-trained
implementations, the proposed design shows no significant

TABLE V. Hardware Efficiency (Online Learning)

SC-DBN
8-bit

fixed-point
circuit

32-bit
floating-point

circuit
Back-propagation circuit

area (µm2) 33150 116413 656651

Learning control unit
area (µm2) 3525 1785 1829

Total area (µm2) 60019 205072 1096247
Latency per epoch (µs) 7.60 6.92 9.43

Total latency
(200 epochs) (ms) 1.52 1.38 1.88

Energy per sample (µJ) 4.37 13.11 117.40

disadvantage in performance compared to conventional binary
designs.

D. SC-DBN with the ADAM circuit

The ADAM improves the convergence speed of the back-
ward propagation during the training process [25], thus de-
creasing the energy consumption and latency. With the ADAM
circuit, the number of epochs in the training process can be re-
duced from 200 to 31 without losing inference accuracy on the
MNIST dataset. However, the SC implementation of ADAM
significantly increases the area and power consumption of the
backward propagation circuit and requires extra computation
cycles to update the learning rates. The total area and energy
consumption of the SC-DBN with the ADAM circuit is shown
in Table VI.

Compared to Table V, the area of the ADAM is comparable
to that of the back-propagation circuit in the SC-DBN. There-
fore, the total area of the SC-DBN is increased by 45.5%,
from 60019 µm2 to 87200 µm2. The latency in each epoch is
increased by 8.53 µs due to the ADAM circuit. However, the
number of learning epochs is reduced by 84.5% (from 200 to
31), so the energy consumption of processing each sample is
reduced by 74.8%, i.e. from 4.37 µJ to 1.10 µJ per sample.
The total latency of processing each sample is also reduced
by 65.2%, from 1.52 ms to 529.1 µs. Although the latency in
a single epoch and the area are increased, the SC-DBN with
the ADAM circuit achieves significant advantages in overall
energy consumption and computation speed.

TABLE VI. Hardware Efficiency of the SC-DBN with the
ADAM circuit

ADAM area (µm2) 27181
Total area (µm2) 87200

Total latency
(31 epochs) (µs) 529.1

Energy per sample (µJ) 1.10

V. CONCLUSION

In this paper, an SC-DBN is proposed to reduce the area
and energy consumption of DNNs. A reconfigurable structure
is proposed to implement the fast greedy learning algorithm
and enable the sharing of hardware by reusing the encoder-
decoder pair. An ADAM circuit is utilized to improve the
energy efficiency by significantly reducing the number of



JOURNAL OF JETCAS, IEEE 11

epochs in the training process. An A-SCAU is reconfigurable
to implement different activation functions; it also leverages
the shared use of RNGs among neurons in the same layer,
so significantly smaller area and lower energy consumption
are obtained for the proposed design. For both pre-trained
(inference) and online learning (training), the classification
accuracy of the SC-DBN is higher than a fixed-point design
and slightly lower than a floating-point design. Compared
to the conventional binary implementations, the proposed
design requires significantly smaller area and lower power.
The energy consumption of the SC-DBN is significantly lower
than that of the pipelined 32-bit FP design and slightly higher
than the non-pipelined design.

REFERENCES

[1] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[2] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” in Advances in Neural Information Processing Systems,
pp. 2553–2561, 2013.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 20,
no. 1, pp. 30–42, 2012.

[4] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in IEEE Conf. on. Computer Vision
and Pattern Recognition (CVPR), pp. 3642–3649, 2012.

[5] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] B. R. Gaines et al., “Stochastic computing systems,” Advances in
information systems science, vol. 2, no. 2, pp. 37–172, 1969.

[8] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
TECS, vol. 12, no. 2s, p. 92, 2013.

[9] B. D. Brown and H. C. Card, “Stochastic neural computation. I.
computational elements,” IEEE Transactions on Computers, vol. 50,
no. 9, pp. 891–905, 2001.

[10] B. D. Brown and H. C. Card, “Stochastic neural computation. II. soft
competitive learning,” IEEE Transactions on Computers, vol. 50, no. 9,
pp. 906–920, 2001.

[11] J. P. Hayes, “Introduction to stochastic computing and its challenges,”
in DAC, p. 59, 2015.

[12] A. Alaghi and J. P. Hayes, “Dimension reduction in statistical simulation
of digital circuits,” in Proceedings of the Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium, pp. 1–8,
2015.

[13] P. Li, W. Qian, M. D. Riedel, K. Bazargan, and D. J. Lilja, “The synthesis
of linear finite state machine-based stochastic computational elements,”
in IEEE ASP-DAC, pp. 757–762, 2012.

[14] Y. Ji, F. Ran, C. Ma, and D. J. Lilja, “A hardware implementation of a
radial basis function neural network using stochastic logic,” in DATE,
pp. 880–883, 2015.

[15] J. L. Rosselló, V. Canals, and A. Morro, “Probabilistic-based neural
network implementation,” in IEEE IJCNN, pp. 1–7, 2012.

[16] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, “Dscnn: hardware-
oriented optimization for stochastic computing based deep convolutional
neural networks,” in IEEE ICCD, pp. 678–681, 2016.

[17] K. Sanni, G. Garreau, J. L. Molin, and A. G. Andreou, “FPGA imple-
mentation of a deep belief network architecture for character recognition
using stochastic computation,” in IEEE CISS, pp. 1–5, 2015.

[18] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in DAC, p. 124, 2016.

[19] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“VLSI implementation of deep neural network using integral stochastic
computing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2017.

[20] Y. Liu, Y. Wang, F. Lombardi, and J. Han, “An energy-efficient stochastic
computational deep belief network,” in DATE, pp. 1175–1178, IEEE,
2018.

[21] Y. W. Teh and G. E. Hinton, “Rate-coded restricted Boltzmann machines
for face recognition,” in Advances in neural information processing
systems, pp. 908–914, 2001.

[22] S. S. Haykin, Neural networks and learning machines, vol. 3. Pearson
Upper Saddle River, NJ, USA, 2009.

[23] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pp. 315–323, 2011.

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A stochastic
computational multi-layer perceptron with backward propagation,” IEEE
Transactions on Computers, 2018.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[28] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems, pp. 1135–1143, 2015.

[29] B. Li, M. H. Najafi, and D. J. Lilja, “An FPGA implementation of a
restricted boltzmann machine classifier using stochastic bit streams,” in
IEEE Conf. on. Application-specific Systems, Architectures and Proces-
sors (ASAP), pp. 68–69, 2015.

[30] V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient
hybrid stochastic-binary neural networks for near-sensor computing,” in
DATE, pp. 13–18, 2017.

[31] R. Wang, J. Han, B. F. Cockburn, and D. G. Elliott, “Stochastic circuit
design and performance evaluation of vector quantization for different
error measures,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 10, pp. 3169–3183, 2016.

[32] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan,
“Sc-dcnn: Highly-scalable deep convolutional neural network using
stochastic computing,” in ASPLOS, pp. 405–418, 2017.


