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Abstract—Stochastic computation has recently been proposed for implementing artificial neural networks with reduced hardware and
power consumption, but at a decreased accuracy and processing speed. Most existing implementations are based on pre-training such
that the weights are predetermined for neurons at different layers, thus these implementations lack the ability to update the values of
the network parameters. In this paper, a stochastic computational multi-layer perceptron (SC-MLP) is proposed by implementing the
backward propagation algorithm for updating the layer weights. Using extended stochastic logic (ESL), a reconfigurable stochastic
computational activation unit (SCAU) is designed to implement different types of activation functions such as the tanh and the rectifier
function. A triple modular redundancy (TMR) technique is employed for reducing the random fluctuations in stochastic computation. A
probability estimator (PE) and a divider based on the TMR and a binary search algorithm are further proposed with progressive
precision for reducing the required stochastic sequence length. Therefore, the latency and energy consumption of the SC-MLP are
significantly reduced. The simulation results show that the proposed design is capable of implementing both the training and inference
processes. For the classification of nonlinearly separable patterns, at a slight loss of accuracy by 1.32%-1.34%, the proposed design
requires only 28.5%-30.1% of the area and 18.9%-23.9% of the energy consumption incurred by a design using floating point
arithmetic. Compared to a fixed-point implementation, the SC-MLP consumes a smaller area (40.7%-45.5%) and a lower energy
consumption (38.0%-51.0%) with a similar processing speed and a slight drop of accuracy by 0.15%-0.33%. The area and the energy
consumption of the proposed design is from 80.7%-87.1% and from 71.9%-93.1%, respectively, of a binarized neural network (BNN),
with a similar accuracy.

Index Terms—Stochastic computation, binary search, neural network, probability estimator, multi-layer perceptron.

F

1 INTRODUCTION

AMULTI-LAYER perceptron (MLP) is a type of artificial
neural network (ANN) in which neurons are intercon-

nected in several layers. It can solve problems such as the
approximation (or fitting) of functions and the classification
of nonlinearly separable patterns. Compared to a traditional
software implementation, the hardware implementation of
an ANN offers the advantages of an inherently high degree
of parallelization and faster training speed. Unfortunately,
a complex hardware is likely required in an MLP sys-
tem, because thousands of neurons are involved in solving
problems such as classification [1] [2] [3]. In contrast to a
conventional binary circuit design, a stochastic computing
(SC) circuit requires a low hardware complexity with a
high fault tolerance to computation and soft errors [4]; such
features make it feasible to implement a robust MLP at a
lower hardware cost.

Stochastic neural computation was introduced in [5]
[6]. Several fundamental computational elements, including
adders, multipliers and squaring circuits, have been dis-
cussed for stochastic logic and a stochastic computational
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neural network has been built on a soft competitive learning
algorithm. To reduce the area and energy consumption
of a stochastic circuit, random number generators (RNGs)
are shared in the generation of stochastic input sequences
without affecting the computation accuracy [7]. A hardware
implementation of a neural network has been developed for
the radial basis function algorithm, for which multiplication
is implemented using SC circuits [8]. The extended stochas-
tic logic (ESL) is introduced into a probabilistic neural
network implementation in [9]. Let the bit-width of a binary
number be N ; ESL expands the conventional stochastic
computational domain from [−1,+1] in the bipolar rep-
resentation to (−2N − 1, 2N + 1) by using two stochastic
sequences to encode a real number [9]. Integral stochastic
computing can also extend the computation domain of SC,
but the number of required sequences increases with the
range of encoded values [10]. SC circuits have also been
used to implement the forward propagation in deep neural
networks for character recognition [11] [12] [13]. However,
the weights at different layers of the neural networks are
predetermined and cannot be updated during the computa-
tion process.

In this paper, a stochastic computational multi-layer
perceptron (SC-MLP) is proposed to overcome the above
limitations. The proposed design utilizes an SC activa-
tion unit (SCAU) based on accumulative parallel counters
(APCs) and finite state machines (FSMs). Albeit using ESL,
a hybrid SC network structure is introduced for an efficient
implementation. To further reduce energy consumption, the
designs of a probability estimator (PE) and a stochastic
divider are proposed using a triple modular redundancy
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(TMR) and a binary search based algorithm with progres-
sive precision. This work makes the following contributions:

• A hybrid SC network structure: In this hybrid SC-
MLP structure, ESL is employed in the computa-
tion of the neurons within the input layer during
the forward propagation, as well as in the gradient
computation and layer weights updating during the
backward propagation. The other computations are
implemented by using conventional SC to reduce
area and energy consumption without sacrificing
classification accuracy.

• Reconfigurable activation functions: The SCAU can
be reconfigured to implement different types of ac-
tivation functions such as the tanh and the rectifier
function. The adders and subtractors in the SCAU
are replaced with shift registers and comparators to
further reduce circuit area and energy consumption.

• TMR-based probability estimator and divider: By uti-
lizing a TMR voting structure in the PE and divider,
the error due to stochastic fluctuations in the binary
search process is significantly reduced. Therefore, the
latency and energy consumption are also reduced. To
the best of the authors knowledge, this is the first
application of TMR and a binary search algorithm in
a stochastic circuit design.

• Efficient utilization of progressive precision in SC:
The operation of the perceptron is divided into a
computation phase and a stabilized phase. The initial
part of the stochastic sequences that carry inaccurate
statistics during the computation phase is ignored,
and only the latter part of the sequences that carry
more accurate statistics is used in the stabilized
phase. Therefore, the accuracy of the proposed de-
sign is significantly improved with a higher energy
efficiency.

• Implementation of the backward propagation algo-
rithm: A backward propagation module is designed
to implement the learning algorithm in the percep-
tron made of hybrid SC circuits using ESL and con-
ventional SC.

The proposed design is evaluated on the Modified Na-
tional Institute of Standards and Technology (MNIST) [14]
and the Street View House Numbers (SVHN) [15] datasets.
It achieves similar accuracy with lower area and energy
consumption compared to conventional floating and fixed-
point implementations. These results show that the pro-
posed design is advantageous for implementations of ma-
chine learning algorithms in resource-limited systems such
as mobile and embedded systems.

The remainder of this paper is organized as follows.
Section II provides the background on the design of a multi-
layer perceptron, basic stochastic logic elements, and ex-
tended stochastic logic. Section III introduces the proposed
design. Section IV shows the applications and simulation
results. Section V gives the conclusion.

2 BACKGROUND REVIEW

2.1 Multi-layer Perceptron
The structure of a multi-layer perceptron (MLP) is shown in
Fig. 1. The MLP includes one input layer, at least one hidden

layer and one output layer. Each layer consists of multiple
neurons as the fundamental computation units. One of
the most widely-used learning algorithms is the backward
propagation (BP) algorithm. This algorithm proceeds in
two phases: the forward propagation and the backward
propagation [1]. The forward propagation generates output
signals based on the current inputs and layer weights. In the
backward propagation, error signals are first obtained from
the output signals (generated by forward propagation) with
class labels of the training datasets; then the layer weights
are updated using the error signals.

The BP algorithm is performed in multiple epochs. In
each epoch, the perceptron is trained on the training dataset.
Let ylj(n) be the output signal of neuron j in layer l at epoch
n, and wlji(n) be the layer weight between the neuron j at
layer l and the neuron i in the previous layer l−1. The layer
l− 1 consists of m neurons. In the forward propagation, the
layer weights remain unaltered and the output signals are
computed on a neuron-by-neuron basis as

ylj = φ(vlj(n)). (1)

where φ is the activation function and vlj(n) is defined as

vlj(n) =
m∑
i=1

wljiy
l−1
i (n). (2)

The hyperbolic tangent function (tanh) is a commonly
implemented activation function in SC for solving non-
linear classification problems [5]. It is defined as

φ(vj(n)) = tanh(2vj(n)). (3)

The rectifier linear unit (ReLU) function is another
widely used activation function [16]. In this paper, the range
of the output signal is limited to [0, 1] for SC representation.
The function of the clamped ReLU is defined as

φ(vj(n)) = min(1,max(0, vj(n))). (4)

In the backward propagation, the layer weight wlji(n) is
adjusted on a layer-by-layer basis as

wlji(n+ 1) = wlji(n) + η∆wlji(n). (5)

where
∆wlji(n) = δlj(n) · yl−1i (n). (6)

Fig. 1. Structure of the multi-layer perceptron (MLP).
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η is the learning rate, initialized to 0.01, and δlj(n) is the
local gradient, defined as

δlj(n) =

{
(dj(n)− olj)φ′(vlj(n)), output layer;

φ′(vlj(n))
∑p
i=1 δ

l+1
i wl+1

ij (n), hidden layer.
(7)

In (7), if the lth layer is the output layer, olj is equivalent
to ylj in (1). dj(n) is the jth variable in the class label of
a training sample, so dj(n) − olj indicates the error signal
generated by the perceptron based on the current layer
weights. However, if the lth layer is a hidden layer and that
the (l + 1)th layer consists of p neurons, the local gradient
is determined by the sum-of-products of δl+1

i and wl+1
ij .

In both cases, φ′(vlj(n)) is the derivative of the activation
function with respect to vlj(n). The signal-flow graphs of
the backward propagation neurons at different layers are
shown in Fig. 2.

After updating the layer weights in the backward propa-
gation, the forward propagation is repeated to generate the
new error signals for the next loop and the error signals
are expected to be reduced at each iteration. The forward
and backward propagation processes are repeated until the
maximum allowed number of epochs is reached, or the early
stopping is reported [17].

Batch normalization has been used to accelerate the
convergence by fixing the means and variances of the
layer inputs [18]. For a layer with a d-dimensional input
x = (x(1), x(2)...x(d)), each dimension is normalized inde-
pendently by

n(x(k)) =
x(k) − E[x(k)]√

var[x(k)]
, k = 1, 2...d. (8)

As per (8), the mean of the inputs is normalized to zero
and the variance to 1. In the SC-MLP, the batch normal-
ization is utilized in the input layer but eliminated in the
other layers to keep the computation within [−1,+1] for SC
implementation.

(a)

(b)

Fig. 2. Signal-flow graphs of the backward propagation
process in (a) the output layer neuron and (b) the hidden
layer neuron.

2.2 Binarized neural networks (BNNs)
Binarized neural networks (BNNs) have been proposed to
obtain a tradeoff between accuracy and energy consumption
[19]. In a BNN, the layer weights and the intermediate
computation results are converted from a real value to +1
or −1 by either a deterministic binarization function:

b(w) = sign(w) =

{
+1 if w ≥ 0

−1 otherwise
, (9)

or a stochastic binarization function:

b̂(w) =

{
+1 with probability p = σ(w)

−1 with probability 1− p
, (10)

where

σ(x) = max(0,min(1,
x+ 1

2
)). (11)

After the binarization, the multiplications in (2) (5) (6) and
(7) can be eliminated by utilizing XNOR operations.

In general, there are two types of binarized neural net-
works, the BinaryConnect [20] and the BinaryNet [19]. In the
BinaryConnect algorithm, the layer weights are copied and
binarized. The binarized layer weights are then used in the
forward propagation (as per (1) and (2)), while the original
real-valued weights are used and updated in the backward
propagation (as per (5), (6) and (7)). In the BinaryNet algo-
rithm, the ylj(n) in (1) is binarized and used in (2) with the
binarized layer weights to compute the outputs in the next
layer during the forward propagation. The binarized ylj(n)
and the binarized layer weights are used in (7) to compute
the local gradient, while the original real-valued parameters
are used in (5) for updating the layer weights.

In inference, the binarized output of a neuron, abn, is
computed by

abn = b(n(x)), (12)

where x is the sum-of-product of the input data and the
layer weights of the neuron. n(x) is the batch normalized
result following (8). Applying (8) and (9) into (12), the
binarized output of neuron n is given by

abn = sign(
x− E(x)√
var(x)

)

= sign(x− E(x)).

(13)

Similar to [21], the computation of batch normalization
and binarization can be implemented by using comparators,
without actually computing var(x) in inference. However,
as the local gradient (7) is not binarized, the batch normal-
ization is usually computed in the training process.

2.3 Stochastic logic elements
In stochastic computation, the presence of p 1’s in a random
binary bit stream with length q encodes the value p/q in
the unipolar representation, or the value (2p − q)/q in
the bipolar representation. Therefore, a stochastic sequence
represents a real number in [0, 1] in the unipolar representa-
tion, or a number in [−1,+1] in the bipolar representation.
Stochastic computation is generally executed on a bit-wise
basis for both combinational and sequential circuits. It sig-
nificantly reduces the complexity of an arithmetic circuit;
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(a) (b)

Fig. 3. (a) A bipolar stochastic multiplier: P (S1) = 1/2, P (S2) = −1/3, and P (S3) = P (S1) · P (S2) = −1/6. (b) A
stochastic adder: P (S1) = 2/3, P (S2) = −1/3, and P (S3) = 0.5× (P (S1) + P (S2)) = 1/6.

(a) (b)

(c) (d)

Fig. 4. (a) A digital-to-probability converter (DPC), (b) a conventional probability estimator (PE) [5], (c) a PE using flip-flops,
and (d) a conventional bipolar stochastic divider [5].

for example, an XNOR gate computes the product of two
numbers in the bipolar representation (Fig. 3 (a)). Moreover,
a stochastic adder is implemented by a multiplexer with the
select signal encoding a probability of 0.5 (Fig. 3 (b)) [5].

A digital-to-probability converter (DPC) is commonly
used to convert a real number into a stochastic sequence
[22] [23]. It consists of a linear feedback shift register
(LFSR) and a comparator (Fig. 4 (a)). Another important
component used in SC is the probability estimator (PE);
the PE determines the probability encoded by a specific
stochastic sequence. A conventional PE (Fig. 4 (b)) is imple-
mented by a counter and a DPC [5]. The conventional PE is
based on the gradient descent algorithm. It first generates
a stochastic sequence using the DPC and then uses an
up/down counter to compare the probabilities encoded in
the generated and input sequences. Subsequently, the PE
adjusts the probability encoded in the generated sequence
by increasing (or decreasing) the value in the counter if the
probability encoded in the generated sequence is smaller
(or larger) than the value encoded in the input sequence.
When the same probability is obtained for the input and
generated sequences, the probability estimator records the

binary value in the counter to estimate the probability (Pest)
encoded in the input sequence.

A different implementation of a PE using flip-flops is
introduced in [24]. In Fig. 4 (c), Nsto is the number of
clock cycles (equal to the sequence length) required for
stochastic computation. In each cycle, the flip-flop based PE
counts the number of 1’s in the input sequence to estimate
the probability. This PE requires smaller hardware than a
conventional PE. However, it needs a total of Nsto cycles for
computation.

Fig. 4 (d) shows the implementation of a conventional
bipolar stochastic divider; this design is based on the same
gradient descent algorithm used in a conventional PE. In
general, a conventional PE incurs a high latency when the
input probability is substantially different from the initial
probability of the generated sequence; this feature signif-
icantly decreases the speed of computation. A stepped ve-
locity algorithm is introduced in [5] to address this problem.
In the stepped velocity algorithm, the value of the counter
is processed in multiple steps, starting with 2N−1 and 2N−2

as the step size, where N is the bit width of the counter.
Each time, the step size is decreased by half until it reaches
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(a) (b)

Fig. 5. (a) An extended stochastic logic (ESL) multiplier, with P (S1) · P (S2) = P (S1h)
P (S1l)

· P (S2h)
P (S2l)

= P (S3h)
P (S3l)

= P (S3) [9], and

(b) an ESL adder, with P (S1) + P (S2) = P (S1h)
P (S1l)

+ P (S2h)
P (S2l)

= P (S1h)·P (S2l)+P (S1l)·P (S2h)
P (S1l)·P (S2l)+0 = P (S3h)

P (S3l)
= P (S3) [9].

1. This binary search based algorithm significantly reduces
the sequence length, however the errors due to random
fluctuations in the stochastic sequences may lead to an
incorrect search direction. If an incorrect direction occurs
in an early step, it will result in a considerable loss of
accuracy. Therefore, a new design using TMR and a binary
search based PE is proposed to shorten the sequence length
and overcome the accuracy loss in the stepped velocity
algorithm (as discussed in Section III).

2.4 Extended stochastic logic (ESL)
Stochastic computation is limited to values within [−1, 1] in
the bipolar representation, or [0, 1] in the unipolar represen-
tation. This limitation restricts the use of stochastic designs
in neural networks because the computed results can exceed
the range, resulting in accuracy loss. To overcome this draw-
back, the extended stochastic logic (ESL) is used to expand
the range of stochastic computation to (−2N +1, 2N −1) for
a binary value in N bits [9].

In ESL, a real number is encoded as the ratio of two
stochastic sequences using the bipolar representation. As-
sume that the bipolar representation of the dividend se-
quence is ph and the divisor sequence is pl; then an arbitrary
real number x is approximately given by the quotient as [9].

x =
ph
pl
. (14)

The ESL multiplier and adder are shown in Fig. 5 [9].

3 STOCHASTIC COMPUTATIONAL MULTI-LAYER
PERCEPTRON (SC-MLP) DESIGN

3.1 Overall design
The proposed design of the SC-MLP circuit consists of five
components: the data RAM, the forward propagation com-
ponent, the backward propagation component, the layer
weight register and the output register (Fig. 6).

The xData and tData RAM store the input dataset and
the class labels. The forward propagation component gener-
ates output signals based on the current datasets and layer
weights in the training and inference processes. The back-
ward propagation component generates the error signals by
comparing the output signals with the desired class labels;
then it adjusts the layer weights in the training process.
The layer weight register stores the updated values of the
layer weights and loads the values into the forward and

Fig. 6. The SC-MLP network. The xData RAM stores the
input data, the tData RAM stores the class labels, the layer
weight reg stores the weights and the output reg stores the
classification results generated by the forward propagation
component.

backward propagation components in the next epoch. The
classification results are stored in the output register for
accuracy evaluation.

3.2 Training algorithm

The pseudo code of the SC-MLP training process is listed as
following.

Code 1: Training of an SC-MLP. φ(·) is the SC activation
function, η is the learning rate and L is the number of lay-
ers. The function ToESL(·) specifies how to generate ESL
sequences based on binary or conventional SC sequences.
ToConv(·) specifies how to generate the conventional SC
sequences. clamp(k, a, b) specifies how to restrict the
parameter k into the given range [a, b]. Grad(·) specifies
how to compute the gradient and Update(·) specifies how
to update the layer weights. ToBinary(·) specifies how to
convert ESL sequences into conventional SC sequences then
binary values.

Inputs: the input data a and the label d, the layer weight
W t at epoch t and the learning rate η.

Outputs: updated weights W t+1 at epoch t+ 1.
{1. Forward propagation}
for i = 1 to L

if i == 1
vi = ToConv(sum(ToESL(a) · ToESL(W t

i )));



IEEE TRANSACTIONS ON COMPUTERS 6

yi = φ(vi);
else

yi = φ(sum(yi−1 · ToConv(W t
i )));

end
{2. Backward propagation}
{2.1 Compute gradient}
for i = L downto 1

ysi = ToESL(yi);
vsi = ToESL(vi);
if i == L

gi = Grad(ToESL(d), ysi ,
∂φ
∂vsi

);
else

gi = Grad(gi+1, T oESL(W t
i+1), ∂φ

∂vsi
);

end
{2.2 Update the layer weights}
for i = L downto 1

W t+1
i = Update(ToESL(W t

i ), gi, ysi−1, η);
W t+1
i = clamp(ToBinary(W t+1

i ), −1, 1);
end

During the forward propagation, as the range of input
data is not limited in [−1,+1] after the batch normalization,
the input data and the layer weights are converted into
ESL sequences to compute the sum-of-products in (2). Then
the results are converted to conventional SC sequences and
sent to the activation circuit. Because the output signals are
restricted in [−1,+1] by tanh or [0,+1] by the clamped
ReLU, conventional SC sequences are used in the other
layers. The batch normalization is only used for the input
dataset, because the outputs of the activation functions can
be shifted out of the conventional SC range due to small
variances, causing a loss of accuracy in the next step of the
computation.

During the backward propagation, the SC-MLP uses ESL
sequences to ensure that the gradients are not limited by the
range. The layer weights are updated by the ESL sequences
to increase accuracy. Once updated, the layer weights are
first converted into conventional SC sequences and then
into binary values. By this conversion, the layer weights are
brought back to [−1,+1] in the bipolar representation and at
the same time, introducing a weight noise into the network.
It has been shown that by adding noise into the weights
of a network, overfitting could be reduced for improving
accuracy [17]. No additional circuit is required for injecting
noise into the network in this way.

Only forward propagation is performed in inference.
The backward propagation component is disabled and the
forward propagation component uses the unaltered layer
weights to compute the classification results.

3.3 Forward propagation component

In the forward propagation component, the neurons in the
input layer use ESL while the neurons in the other layers
use conventional SC. The block diagrams of the two types
of neurons are shown in Figs. 7 and 8.

3.3.1 Stochastic computational activation unit (SCAU)
The proposed SCAU is based on the linear finite-state ma-
chines (LFSMs) introduced in [25] [26] [27]. The SCAU can

Fig. 7. The ESL based neuron j in layer l in the forward
propagation. yl−1i is the input signal with dimension m, wlji
is the layer weight as in (2). ESL mul represents the ESL
multiplier.

Fig. 8. The conventional SC based neuron. The circuit con-
sists of an SC multiplier array (XNOR gates), an accumu-
lation parallel counter (APC) and an up/down counter
implementing the FSM.

approximate both tanh and the clamped ReLU by changing
the configuration of the FSM to meet different learning
requirements.

A design of the stochastic tanh (Stanh) function gen-
erator has been introduced in [5] [27] [28]. The SC absolute
function has been introduced in [25]. In [12], a bounded ran-
dom walking based tanh (Btanh) circuit has been proposed
as an improvement of the conventional Stanh circuit. The
Btanh circuit consists of an accumulation parallel counter
(APC) and a counter to implement the FSM for parallel
input sequences. Based on these designs, an SCAU is pro-
posed to implement different types of activations functions.
The pseudo code for implementing the clamped ReLU and
the tanh function in SCAU is shown as following.

Code 2: Computation process of the SCAU. not(·) in-
dicates the inverse operation. SeqGen(p) indicates how to
generate a stochastic sequence based on the given probabil-
ity p. clamp(k, a, b) specifies how to restrict the parameter
k into the given range [a, b].

Inputs: the sequence length m, the dimension of the
input signals n, the ith computation result of the APC
Pc(i) and the state number of the FSM in the SCAU Smax
(Smax = 2, 4, 6...).

Outputs: updated state of FSM S and output sequence
Y .
{1. State initialization}
Shalf = Smax/2;
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S = Shalf ;
{2. State transition and output sequence generation}
for i = 1 to m

∆S = sign(2× Pc(i)− n);
S = clamp(S + ∆S, 1, Smax);
if implement the clamped ReLU function

if S ≥ Shalf
Y (i) = not(mod(S, 2));

else
Y (i) = SeqGen(0.5);

else if implement the tanh function
if S ≥ Shalf

Y (i) = 1;
else

Y (i) = 0;
end

The proposed SCAU takes the input signals in parallel by
using an APC and an up/down counter. Without changing
the structure of the circuit, the SCAU can implement the
clamped ReLU or the tanh function by reconfiguring the
output of the FSM. In the SCAU, SeqGen(·) is used to
generate a sequence for encoding the value as the lower
bound of the clamped ReLU function. In the simulation, the
probability encoded in this sequence is set to 0.5, which re-
stricts the output within [0, 1] in the bipolar representation.

In the SCAU, the SC multipliers compute the products of
the input data and the layer weights. The APC then counts
the number of ’1’s in the stochastic sequences generated by
the SC multipliers in parallel. In this way, the APC converts
the stochastic sequences into binary values, such that the
SCAU correctly obtains the computation results even if the
sum-of-product exceeds the range of [−1, +1] in (2). The
simulation results are shown in Fig. 9.

In the SCAU, the current state S is determined by the
sign function. The mod function in the algorithm is imple-
mented by checking the least significant bit of S (Code 2).
Therefore, all computations in the SCAU are implemented

(a)

(b)

Fig. 9. Simulation result of the SCAU, with the sequence
length set to 1024 bits and the maximum state number Smax
set to 64. (a) The tanh function; (b) The clamped ReLU.

by shifts and comparators without using adders or multipli-
ers.

3.3.2 Binary search based PE
The conversion between binary numbers and stochastic se-
quences significantly affects the accuracy and performance
of an SC design. The conversion is usually done by a
conventional PE (Fig. 4 (b)); however, the simulation results
show that a conventional design requires a rather long se-
quence to overcome the accuracy loss when the probability
of the input sequence is substantially different from that
encoded in the initial value of the counter, as presented
later in this section. This is mainly due to the fact that a
conventional PE is based on a linear search algorithm.

To accelerate the processing speed of a PE circuit, a
binary search algorithm is utilized to reduce the compu-
tational complexity from O(2N ) in a linear search algorithm
to O(N) for a binary value of N bits. The design of the new
PE is shown in Fig. 10. The circuit is divided into two parts.

Part A consists of a base register, an increment value
register and one adder/subtractor module. It is designed to
update and save the variable values in the binary search
algorithm. The base value stored in the base register rep-
resents the currently estimated probability of the input
stochastic sequence, while the increment value represents
the difference between the currently estimated probability
and the updated probability value.

Part B consists of three modules of DPCs, counters,
comparators and a voter in a TMR structure. Its function
is to compare the currently estimated probability and the
observed probability of the input sequence and then decide
whether to increase or decrease the base value in Part A of
the circuit.

For an N bit binary number, the initial base value is
2N−1 and the initial increment is 2N−2. At the beginning
of each binary search, the base value is set for the DPCs (i.e.
DPC A, DPC B and DPC C) and is converted into three
different stochastic sequences with the same probability. The
probability of the three stochastic sequences (as the cur-
rently estimated probability) and the probability of the input
sequence X are compared by the comparators COMP A,
COMP B and COMP C. Since the stochastic sequences are
independently generated, the TMR structure reduces fluc-
tuation errors and improves the decision accuracy, thereby
reducing the required sequence length. After comparison,
the three comparators vote either to increase the base value
if the currently estimated probability is smaller than the
observed probability, or to decrease the base value if the
currently estimated probability is larger than the observed
probability of the input sequence. If the two probabilities
are equal, then the base value remains unchanged. Finally,
the increment value is decreased by a factor of two, until it
reaches 1.

The required sequence lengths for reaching the same
computation accuracy are compared for the proposed PE,
the conventional PE and the flip-flop based PE. The simula-
tion results are shown in Fig. 11 for a bit width of 20 bits for
the PEs. The estimation stops when the error between the PE
output and the expected probability is below 1% (the initial
values of the conventional PE and the proposed PE are set
to 0.5). It can be seen that the required sequence length
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Fig. 10. Design of the TMR binary search based PE. Three counters are used to compute the probabilities encoded in
the stochastic sequences generated by the three digital-probability converters (DPCs), i.e., DPC A, DPC B and DPC C;
COMP A, COMP B and COMP C are comparators.

for the conventional PE ranges from 400, 000 bits when the
probability is set to 0.5 (for the initial value of the counter
in Fig. 4 (b)), to 7, 200, 000 bits when the probability of the
input sequence is set to 1.0 and 5, 300, 100 bits when the
probability is set to 0.1. These results indicate that the con-
ventional PE design requires relatively long sequences when
the probability is substantially different from the initial
value encoded in the counter. As for the flip-flop based PE, it
requires Nsto cycles to convert the probability; therefore the
sequence length remains unchanged at 220 = 1, 048, 576
bits regardless of the probability of the input sequences.

In contrast, the sequence length required by the pro-
posed PE is stable when the probability of the input se-
quences changes from 0.1 to 1.0, with the smallest value
of 91, 100 bits and the largest value of 108, 104 bits. The
average sequence length required by a conventional PE is
3, 958, 900 bits, while the average sequence length required
by the proposed PE is 96, 939 bits. Thus, the newly designed
PE only requires 2.45% of the sequence length of a conven-
tional PE and 9.24% of that of the flip-flop based PE.

Fig. 11. Comparison of required sequence length by different
PE designs vs. probability values ranging from 0.01 to 1.00.

3.3.3 Binary search based stochastic divider

A divider is required to convert the ESL sequences into
conventional stochastic sequences as inputs to the activation
circuit. Since a conventional stochastic divider relies on sim-
ilar principles as the PE, the TMR and binary search based
method is also applicable to the divider design, as shown in
Fig. 12. For an N -bit binary number, the initial base values
of the counters are 2N−1 and the initial increments are 2N−2.
The binary search continues with the increment decreasing
by a factor of 2 until reaching 1. The operation of the
stochastic divider is divided into two phases: a computation
phase and a stabilized phase. The divider is initialized at
the beginning of the computation phase and progressive
precision is obtained during the computation. To evaluate
the progressive precision, the mean squared error (MSE) is
independently computed for each increment of 128 bits in
the stochastic sequences. The simulation results of different
divider implementations are shown in Fig. 13 (a).

Compared to the stepped velocity divider, the proposed
design has a faster convergence speed and a higher accuracy.
It shows that the TMR structure in the proposed design
effectively reduces fluctuation errors and improves the de-
cision accuracy of the binary search process. On average the
proposed design requires 2.1% of the sequence length for
the conventional SC divider to achieve the same accuracy.
Hence, the proposed binary search based stochastic divider
incurs a significantly lower latency to reach a stabilized
MSE. Moreover, it also achieves a higher accuracy during
the stabilized phase. Since the output value of the divider is
converging to the true quotient, the values in the counters
(in Fig. 12) change rather rapidly with a decreasing MSE
during the computation phase. The stabilized phase starts
upon the convergence of the dividers output. Due to the
convergence, the counter values remain unchanged with a
stable MSE during the stabilized phase.

Table 1 reports the MSEs at different phases for the three
considered implementations. Only the sequences used for
the stabilized phase are considered in the MSE computation.
The proposed divider has the lowest MSE among the three
designs at each phase configuration. The simulation results
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Fig. 12. Design of the TMR and binary search based divider.

suggest that the proposed divider requires at least 2048 bits
for the computation phase because an insufficient sequence
length in the computation phase leads to an accuracy loss
during the stabilized phase. Hence, the MSE of SC dividers
in the stabilized phase with the 1024-2048 phase configura-
tion is higher than the 2048-1024 phase configuration even
though the total lengths of the two sequences are the same.
A longer sequence length in the stabilized phase does not
guarantee a higher accuracy due to the fluctuation errors in
SC. The MSE of the proposed divider reaches the smallest
value when the sequence length is set to 2560 bits, i.e. 2048
bits in the computation phase and 512 bits in the stabilized
phase.

Considering the classification accuracy, however, the
2048-2048 and 4096-4096 (without parallelization) are cho-
sen as the phase configuration for the MNIST and SVHN.
The MSE of the stepped velocity design is approximate 3×

(a)

(b)

Fig. 13. (a) Convergence of the TMR and binary search based
divider, conventional divider and the stepped velocity di-
vider. The arrows indicate the 2048-2048 phase configura-
tion of the TMR and binary search divider. (b) Mean squared
error (MSE) comparison of the computation and stabilized
phase with the 2048-2048 phase configuration.

TABLE 1. MSE of Stochastic Dividers in the Stabilized Phase

computation
phase(bits)

Stabilized
phase
(bits)

Binary
Search

(×10−4)

Stepped
Velocity
(×10−4)

Conventional
(×10−4)

512 512 5.06 36.86 1755.74
1024 1024 5.22 18.37 1024.25
1024 2048 5.27 16.91 827.54
2048 512 4.09 11.59 517.84
2048 1024 4.62 13.52 534.82
2048 2048 4.84 14.51 476.84
4096 1024 4.18 12.87 269.16

of that of the proposed design at the same phase configu-
ration. A conventional stochastic divider does not attain the
same MSE value even by utilizing 5× of the same sequence
length.

The 2048-2048 phase configuration is shown in Fig. 13
(b). With this configuration, 2048 bits are required in the
computation phase and additional 2048 bits are utilized in
the stabilized phase. The MSE of the computation phase is
289.3% of that of the stabilized phase. Hence, to improve
accuracy and energy efficiency, the sequences of 2048 bits in
the computation phase are ignored and only the additional
2048 bits in the stabilized phase are used as the input
signals to the activation circuit. To this end, the function of
the activation circuit is suspended during the computation
phase and then activated at the start of the stabilized phase.
Therefore, the sequence length of the ESL divider is 4096
bits in total, but the sequence length used for the activation
function is only 50% of it, i.e., 2048 bits, thereby improving
the accuracy of the SC-MLP.

In summary, with the proposed binary search algorithm,
the newly designed divider achieves a higher accuracy by
utilizing a progressive precision with a lower latency than
the stochastic designs in the literature.

3.4 Backward propagation component

In the backward propagation component, the circuit to
compute the derivative of the activation functions, as in (7),
and two different neurons for the gradient calculation are
implemented by ESL. As per (7), when the tanh function is
set as the activation function, we have

φ′(vlj(n)) = 2(1− tanh2(2 · vlj(n))),

= 2(1 + ylj(n))(1− ylj(n)).
(15)
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(a)

(b)

Fig. 14. The backward propagation circuits for (a) a neuron at the output layer and (b) a neuron at a hidden layer. The
signals follow the same definitions in (5) (6) (7) using ESL.

It shows that the derivative of tanh can be implemented
by one ESL subtractor, one ESL adder and two ESL multi-
pliers. In comparison, the derivative of the clamped ReLU
function yields 0 or 1 for the current input values.

According to (7), there are two different backward
propagation neurons, including neurons at output layers
and neurons at hidden layers. The former implements the
function (dj(n) − olj)φ′(vlj(n)), while the latter implements
the function φ′(vlj(n))

∑
i δ
l+1
i wl+1

ij (n). Both neurons can be
implemented by using ESL subtractors, adders, multipliers

and the derivative of activation functions. The designs of
the two types of neurons are shown in Fig. 14. The signals
in the designs are ESL sequences.

3.5 LFSR sharing structure

A structure using shared LFSRs is utilized to further reduce
circuit area and power consumption. Within a neuron in
the input layer, the sequences for each ESL dividend and
divisor are generated from different LFSRs in the sequence
generator. For the neurons in the input and hidden layers,
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input sequences for each stochastic multiplier are generated
from different LFSRs, so the computational accuracy is not
compromised.

To reduce hardware overhead, however, the LFSRs in
the DPCs for the input signals and the layer weights are
all shared among different neurons in the same layer. The
design using shared LFSRs is also implemented in the
forward propagation circuit.

Because multipliers are one of the major components
in the SC-MLP, the effect of sharing LFSRs is estimated
by considering the multiplier. The area of a 32-bit floating
point multiplier (FPmul) is 2791 µm2, synthesized by the
Synopsys Design Compiler in an industrial 28 nm technol-
ogy library. The area of a conventional SC bipolar multiplier
(SCmul, essentially an XNOR gate) is 0.8 µm2 and the area
of a 16-bit LFSR is 47 µm2. Assume that the FPmul is com-
binational and the energy of the circuit linearly increases
with the area, the energy consumption of the FPmul is
approximately proportional to 2791.

Assume that the sequence length for the SCmul is ini-
tially 4096 bits, it is then decreased by 50% due to the use
of progressive precision in the divider design. Since each
SCmul requires 2 LFSRs for generating the input stochastic
sequences, the energy consumption of the SCmul without
sharing the LFSRs is estimated to be proportional to

(0.8 + 2× 47)× (4096 cycles× 50%) = 1.94× 105, (16)

which is 69.6× of the energy consumption of the FPmul. In
the LFSR sharing structure, an LFSR is shared among all the
neurons in the same layer. For a 5-layer network with the
structure of 704-2048-2048-2048-10, the sharing ratio is

r = (704 + 2048× 3 + 10)/5 = 1.37× 103. (17)

The energy consumption is estimated to be proportional
to

(0.8 + 2× 47/r)× (4096 cycles× 50%) = 1778.8, (18)

which is only 63.7% of the energy consumption of the
FPmul.

This analysis indicates that when the size of the network
is large, the energy consumption of the LFSR is negligible
because of a large sharing ratio. This resource sharing
scheme reduces considerable area and power consumption
of a stochastic circuit without significantly affecting the
accuracy of the computed result.

4 EXPERIMENTS

Two datasets, MNIST [14] and Street View House Numbers
(SVHN) [15], are used to compare the performance of the
SC-MLP, a BNN, and fixed-point and floating-point MLPs
with respect to accuracy, area and energy consumption.

MNIST consists of a training set with 60K samples and a
testing set with 10K samples of 28× 28 grayscale handwrit-
ten images labeled as ’0’ to ’9’. In our experiment, the pixel
values are scaled to [0, 1]. The neural network structure for
MNIST is set to 784-200-100-10, i.e. one input layer with 784
neurons, two hidden layers with 200 and 100 neurons and
one output layer with 10 neurons.

SVHN is a real-world image dataset consisting of 604K
training samples and 26K testing samples of 32 × 32 RGB

images. The dataset contains pictures of house numbers
(from ’0’ to ’9’) from Google Street View images. In the
experiment, the dataset is first processed by edge detection
and then converted into grayscale images. Five pixels are
removed from the left and right sides of each image to
reduce the distraction, so the size of the images is changed
to 32× 22. The pixel values of the images are also scaled to
[0, 1]. The neural network for SVHN is set to 704-2048-2048-
2048-10 for all MLP models.

The modules of the SC-MLPs are implemented in both
Matlab and VHDL. The results are compared to ensure that
both implementations generate the same or very similar
results. To speed up the simulation, the parallelization of the
SC-MLP is set to 16×with the sequence length varying from
32 to 2048 bits. A BinaryNet based BNN, a fixed point and
a floating point network is implemented and compared to
the proposed design with respect to different metrics such
as accuracy, area and energy consumption. The bit width
of the accurate layer weights in the BNN and the fixed
point MLP is set to 8 and the bit width of the floating point
implementation is 32.

4.1 Accuracy comparison

In each experiment, the neural network is trained by a 10-
fold validation on the training datasets. The last fold of
the training data is used to compute the validation error to
check the early stop condition if the current validation error
is at least 3.0% higher than the minimum validation error
in history. At the beginning of each experiment, the datasets
are randomly divided into 10 folds and the layer weights
are randomly initialized. Each experiment is repeated for
10 times. The learning curve of the SC-MLP application on
MNIST is shown in Fig. 15, with a 16× parallelization and
the sequence length set to 256 bits. The accuracy of the SC-
MLP is given by the average of the testing accuracy at epoch
200 in all experiments unless an early stop occurs. No early
stop has been reported with a learning rate initialized to
0.01.

Fig. 16 shows the average testing error rates of the SC-
MLP (with tanh as the activation function) for different
sequence lengths with a 16× parallelization. The classifi-
cation accuracy of MNIST improves rapidly from 73.54% to
97.95% with the sequence length changing from 32 bits to
256 bits (before parallelization). However, it is not efficient
to further improve the accuracy by using longer sequences.
The increase from 0.02% to 0.12% in accuracy by doubling

Fig. 15. Learning curve of the SC-MLP application on
MNIST, with a 16× parallelization and the sequence length
set to 256 bits.
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Fig. 16. Inference error rate of the SC-MLP (with tanh as the
activation function) with sequence length changing from 32
bits to 2048 bits.

the sequence length since 256 bits is rather modest. A
similar pattern is also found for the classification accuracy
of SVHN, with a sequence length varying from 32 bits to
512 bits. Therefore, 256 bits for MNIST and 512 bits for
SVHN are selected for comparison with the other models.
The comparison results for accuracy are listed in Table 2.
The SC-MLP with the batch normalization only for the input
dataset is denoted as SC-MLP-A while the implementation
with the batch normalization for all layers is denoted as SC-
MLP-B.

TABLE 2. Accuracy of Network Models

Model MNIST SVHN
SC-MLP-A (tanh) 97.95% 96.13%

SC-MLP-A (clamped ReLU) 97.92% 95.86%

SC-MLP-B (tanh) 93.67% 91.38%

SC-MLP-B (clamped ReLU) 93.32% 91.10%

BNN 97.55% 95.62%
Fixed Point NN 98.10% 96.46%

Floating Point NN 99.27% 97.47%
integral stochastic NN [10] 97.73% -

SC NN [12] 97.59% -

As per the simulation results, the SC-MLP-A achieves
a higher accuracy on average compared to the BNN imple-
mentation and previous SC results. For MNIST, the accuracy
of the SC-MLP-A is lower than the floating-point imple-
mentation by 1.32% and the fixed-point implementation by
approximately 0.15%. This difference is 1.34% and 0.33%
for SVHN. There is no significant difference by using tanh
or the clamped ReLU as the activation function in the SC-
MLP. The tanh function achieves a slightly higher accuracy
on average, 0.03% higher for MNIST and 0.27% higher for
SVHN.

The accuracy of the SC-MLP-A is 4.28%− 4.75% higher
than the SC-MLP-B. This occurs because in the SC-MLP-
B, the outputs of the activation functions are shifted out
of the conventional SC range by the batch normalization,
which causes an inaccuracy in the computation of the SC-
MLP. Therefore, the batch normalization is eliminated in the
hidden layers of the SC-MLP to reduce accuracy loss.

4.2 Hardware efficiency

The ASIC implementations for the different models are
assessed with respect to area and energy consumption. The
models are implemented in VHDL and synthesized by the
Synopsys Design Compiler in ST’s 28 nm technology library.
The results are shown in Fig. 17.

The synthesis results indicate that the SC-MLP requires
the lowest area and energy consumption for processing each
data sample among the different models. The area of the SC-
MLP is from 80.7%−87.1% of the BNN, from 40.7%−45.5%
of the fixed-point implementation and from 28.5%− 30.1%
of the floating-point implementation. The energy of the SC-
MLP is from 71.9%−93.1% of the BNN, from 38.0%−51.0%
of the fixed-point implementation and from 18.9%− 23.9%
of the floating-point implementation.

As discussed, the batch normalization is eliminated in
the hidden layers in the SC-MLP. However, in the BNN,
the batch normalization is included and the layer weights
are updated and then stored with full length (8 bits) at
the end of the backward propagation. Therefore, the SC-
MLP achieves a slightly lower area and energy consumption
compared to the BNN.

It is interesting to note that the area and energy con-
sumption of the SC-MLP for SVHN is even slightly lower
than those of the floating-point implementation for MNIST.
As SVHN is a more complex dataset than MNIST, it in-

(a)

(b)

Fig. 17. (a) Area and (b) energy consumption of different
network applications on MNIST and SVHN. The sequence
length of SC-MLP is set to 256 bits for MNIST and 512
bits for SVHN; the bit-width of the BNN and fixed-point
network is set to 8; the bit-width of the floating-point
implementation is set to 32.
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dicates that with similar hardware resources, the SC-MLP
can potentially handle more difficult classification problems
than a floating-point implementation with appropriate data
pre-processing.

Table 3 shows the latency of the designs for the appli-
cations. For the MNIST application, the sequence length of
the SC-MLP for processing each data sample is set to 256
bits after applying a 16× parallelization. By contrast, the
fixed- and floating-point implementations require 262 and
392 clock cycles for processing each sample. The latency of
the SC-MLP for processing each sample is 2.27 µs when
operating at the maximum frequency. It is 104.8% of that
of the fixed-point design (2.17 µs) and 66.6% of that of the
floating-point design (3.42 µs). For the SVHN application,
the sequence length of the SC-MLP is set to 512 bits. The
latency of the SC-MLP is 135.2% of that of the fixed-point
implementation and 84.5% of that of the floating-point im-
plementation. Although the computation speed is in general
a challenge for SC [29], the proposed design shows no
significant disadvantage in performance compared to binary
designs.

TABLE 3. Latency of Network Designs

Network
Frequency

(MHz)
Cycle

(/sample)
Latency

(µs/sample)

MNIST
SC-MLP 112.4 256 2.27

Fixed 120.5 262 2.17
Floating 114.7 392 3.42

SVHN
SC-MLP 104.4 512 4.90

Fixed 112.3 407 3.62
Floating 108.7 630 5.80

5 CONCLUSION

In this paper, a stochastic computational (SC) neural net-
work is proposed as a novel design of a multi-layer percep-
tron (MLP). A binary search based SC divider and a recon-
figurable stochastic computational activation unit (SCAU)
are proposed for the forward and backward propagation
components. Using a hybrid network structure consisting
of conventional SC and extended stochastic logic (ESL) cir-
cuits, the SC-MLP circuit efficiently performs the complete
backward propagation algorithm.

Compared to a fully-implemented ESL network, the
hybrid network structure reduces circuit area and energy
consumption without loss in the classification accuracy. An
LFSR sharing scheme is further utilized to improve the
energy efficiency of the stochastic circuit. By using the
binary search based probability estimators (PEs) and di-
viders, the SC-MLP requires significantly shorter sequences
than conventional SC designs by achieving a progressive
precision. The SCAU is reconfigurable to perform different
activation functions. It can also process input sequences in
parallel, thus improving the flexibility and performance of
the design.

The simulation results show that the SC-MLP can solve
classification problems by adjusting the network structure,
implementing different activation functions and modifying
the layer weights. With a similar accuracy, the proposed de-
sign achieves lower area and energy consumption compared

to a binarized neural network (BNN). By incurring a slight
decrease in accuracy, the SC-MLP offers considerable ad-
vantages in circuit area and energy consumption compared
to floating- and fixed-point implementations with a similar
performance.
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