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Abstract—Many combinatorial optimization problems can be
solved by numerically simulating classical nonlinear Hamiltonian
systems based on the Ising model. Solving the traveling salesman
problem (TSP) using the Ising model requires a quadratically in-
creasing number of spins with strict constraints. Unlike classical
simulated annealing, simulated bifurcation (SB) can update the
states of spins in parallel. This feature can potentially accelerate
the convergence of Hamiltonian in the Ising model by taking
advantage of modern multi-core processors. As an improved SB
algorithm, the ballistic SB (bSB) algorithm is considered for
solving the TSP in this paper. Two different mapping methods
are proposed by converting the TSP to an Ising problem with
or without external magnetic fields. bSB is then expanded
by introducing a time-dependent factor or redundant spins
depending on the mapping methods. Experiments on benchmark
datasets show that the bSB-based Ising solvers offer superior
performance in solution quality and convergence speed.

Index Terms—Traveling salesman problem, simulated bifurca-
tion, parallel processing, Ising model

I. INTRODUCTION

Combinatorial optimization is ubiquitous in various social
and industrial applications. Such a problem can be solved by
using the Ising model with heuristic algorithms, e.g., simulated
annealing (SA) [1]. The Ising model is mathematically con-
structed for a set of electron spins connected with each other
by simulating the ferromagnetic interactions among them. The
Hamiltonian (H) in an Ising model (or Ising problem) with
the external magnetic field is given by [1]

H = −
∑
i,j

Jijσiσj −
∑
i

hiσi, (1)

where σi (or σj) ∈ {−1,+1} denotes the state of the ith (or
jth) spin; Jij denotes the coupling coefficient between the ith
and jth spins, and hi denotes the external field of the ith spin.

Unlike SA, which cannot simultaneously update the states of
neighbor spins, simulated bifurcation (SB) [2] can realize mas-
sive processing parallelism. Inspired by the quantum adiabatic
optimization [3] using Kerr-nonlinear parametric oscillators,
SB simulates the adiabatic evolutions of classical nonlinear
Hamiltonian systems. To restrain the errors introduced due to
the use of continuous variables (for the positions of oscillators)
to represent the discrete states of spins, the ballistic SB
(bSB) was developed by solving (2) and (3) to quickly find
suboptimal solutions for an Ising problem defined by (1) but
without external fields [4]:

ẋi = a0yi, (2)

ẏi = −{a0 − a(t)}xi + c0
∑
j

Jijxj , (3)

where xi and yi are the position and the momentum of the
ith oscillator (seen as the ith spin); ẋi and ẏi denote time
derivatives; a(t) is a control parameter; a0 and c0 are positive
constants. xi is replaced with its sign if |xi| > 1. At the end
of search, the sign of xi indicates the state of the ith spin.

The traveling salesman problem (TSP) is to find the shortest
route to visit all cities once and then return to the origin city.
An n-city TSP using n2 spins in a lattice is formulated as [5]
Htsp = A

4

∑
k 6=l

∑
iWklσikσ(i+1)l +

A
2

∑
k 6=l

∑
iWklσik

+B
4

∑
i

∑
k

∑
l σikσil +

(n−2)B
2

∑
i

∑
k σik

+C
4

∑
i

∑
k

∑
j σikσjk + (n−2)C

2

∑
i

∑
k σik, (4)

where σik = +1 (or −1) indicates whether the kth city is vis-
ited (or not) at the ith step; Wkl denotes the distance between
the kth and lth cities. A, B and C are the hyperparameters
that balance the significance between the objective function
(by A) and constraints (by B and C).

The TSP is notoriously difficult to solve due to quadratically
increasing spin counts and strong constraints placed on the
spins by using the Ising model [5]. These constraints do not
allow visiting multiple cities in a single step or visiting a city
in multiple steps. Moreover, using the Ising model to update
the states of all spins in parallel has not been reported to
solve the TSP. In this paper, the parallelizable algorithm bSB
is considered for the efficient solving of TSPs. The mapping
of TSP into an Ising model with or without external fields
is formulated. Experimental results of the solution quality are
discussed by using the proposed bSB based methods and a
recent SA method [6] to update the states of spins.

II. SOLVING TSP USING THE ISING MODEL WITH BSB
A. Reformulation of TSP to the Ising Model

1) With external fields: By considering the interaction
between spins as a coupling coefficient and the bias applied
to a spin as an external field, (4) can be reformulated as:

Htsp =

n∑
i=1

n∑
k=1

n∑
j=1

n∑
l=1

Jikjlσikσjl +

n∑
i=1

n∑
k=1

hikσik, (5)

where

Jikjl =



A
8Wkl j = i+ 1 or i = j + 1 or

i = 1, j = n or i = n, j = 1
B
4 i = j, k 6= l
C
4 k = l, i 6= j

B
4 + C

4 k = l, i = j

,

(6)
hik =

A

2

∑
l 6=k

Wkl +
(n− 2)B

2
+

(n− 2)C

2
. (7)



2) Without external fields: By expanding n2 spins to (n+
1)2 spins in a lattice, the n-city TSP can be formulated as (8)
by considering hik as the coupling coefficient between σik and
σ(n+1)(n+1) (i, k ∈ [1, n]):

Htsp =

n+1∑
i=1

n+1∑
k=1

n+1∑
j=1

n+1∑
l=1

J
′

ikjlσikσjl, (8)

where

J
′

ikjl =


Jikjl i, k, j, l ∈ [1, n]
hik

2 i, k ∈ [1, n] and j = l = n+ 1
hjl

2 j, l ∈ [1, n] and i = k = n+ 1
0 others

(9)

and σ(n+1)(n+1) is fixed to “1” and the states of other spins
in the (n+ 1)th dimension are fixed to “0”.

B. TSP Solving with bSB
1) With external fields: A positive dimensionless parameter

b(t) is introduced to guarantee the adiabatic evolution of the
Hamiltonian system. Adapted form [2], the Hamiltonian for
bSB is given by
HbSBtsp

=
∑

i,k
a0

2 yik
2 + V (x, t)

=
∑

i,k
a0

2 yik
2 + a0−a(t)

2

∑
i,k xik

2 +

c0
∑

i,k,j,l Jikjlxikxjl + c0b(t)
∑

i,k hikxik,(10)

where V (x, t) is the potential energy related to x.
The differential equations to be solved are given by the

derivatives of xik and yik in (10) with respect to time as
˙xik = a0yik, (11)

˙yik = −{a0 − a(t)}xik − 2c0

n∑
j=1

n∑
l=1

Jikjlxjl − c0b(t)hik,

(12)where xik is replaced with its sign if |xik| > 1.
When a(t) gradually increases from zero to a sufficiently

large value af at the end of search, the position of each
oscillator (xik) is approximately given by σik

√
(af − a0)

(where σik = ±1) [2]. Thus, V (x, t) is derived (from [2]),
given by

V (x, t) = c0(af − a0)
∑

i,k,j,l Jikjlσikσjl

+c0b(t)
√

(af − a0)
∑

i,k hikσik −
n2(af−a0)

2

2 .(13)

To ensure that the ground state can provide an approximate
solution, the first and second terms in (13) must be propor-
tional to the total energy in (5). Thus, at the end of search,
b(t) is manually set as approximately

√
af − a0.

2) Without external fields: Extended from (2) and (3), the
differential equations using bSB to solve the TSP are given
by (11) and (14).

˙yik = −{a0 − a(t)}xik − 2c0

n+1∑
j=1

n+1∑
l=1

Jikjlxjl, (14)

where xik is replaced by its sign if |xik| > 1.
Since the states of spins in the (n + 1)th dimension are

fixed, there is no need to update them. The update of each
momentum yik is related to all (n+1)2 positions. The positions
in the (n + 1)th dimension (i = n + 1 or k = n + 1) are
initialized to“+1” for x(n+1)(n+1) and “−1” for the others.

TABLE I: Comparison of the TSP solving using SA- and the
proposed bSB-based Ising models

burma14 ulysses16 ulysses22
bSB1 bSB2 SA[6] bSB1 bSB2 SA[6] bSB1 bSB2 SA[6]

Ave 3786 4006 6451 8019 8474 12040 8859 9481 16435
Max 4713 4292 8009 10638 10342 14669 10612 10043 18862
Min 3323 3511 4945 6974 7331 8815 7808 8358 13000
Std 405 212 696 698 453 1240 735 565 1156

III. EXPERIMENTAL RESULTS OF TSP SOLVING

We set a0 = 1. a(t) is slowly increased from “0” to “2”;
b(t) = a(t)

2 . x and y are initialized to a zero matrix and a
random matrix with entries within [−0.1,+0.1], respectively.
The semi-implicit Euler method uses a first-order integrator to
solve the differential equations [4]. The time step is fixed to ‘1’
to simplify the hardware implementation. The parameters A,
B, and C in (4) are set to “1”, “max{W}” and “max{W}”,
where max{W} obtains the maximum value in W . The solu-
tion quality is evaluated by the average (Ave), the maximum
(Max), the minimum (Min), the standard deviation (Std) of
the route distances from 100 trials.

Table I shows the quality of solving the TSP by using
bSB with two different mapping methods (referred to as bSB1
with external fields and bSB2 without external fields) and SA.
Three datasets are used from the TSPLIB benchmark [7]. Let
the iteration be 50k in the improved SA [6] and 2k in the
bSB1 and bSB2. In each iteration, all the spins are updated
once. Compared with SA, bSB1 and bSB2 can obtain a better
solution with at least an improvement by 29% in AE and 36%
in Std with about 129× shorter runtime due to the parallel
processing and faster convergence of Hamiltonian via Matlab.
Compared with bSB2, although bSB1 is more likely to find
a better solution (with a smaller Min), it is also prone to a
worse solution (with a larger Max). Therefore, the solution
quality using bSB2 is more stable (with a smaller Std).

IV. CONCLUSION

This paper discusses TSP solving using a bSB-based Ising
model. The bSB can realize the parallel update of spins’ states,
which enables an efficient implementation using multi-core
processors. The TSP is solved by a bSB-based Ising model
using two different mapping methods. Using the proposed
methods can improve the solution quality by at least 29% with
129× shorter runtime than using the SA method.
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