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Abstract—A phased-mission system (PMS) usually consists of 

several non-overlapping phases of tasks. All phases are required 

to be accomplished sequentially for a successful mission. Different 

features must be considered in the reliability evaluation of a PMS, 

including the dependence among the phases with respect to a 

common component and the different system topologies for the 

phases. To overcome the limitation of existing approaches, a 

stochastic computational approach is used for efficiently 

analyzing the reliability of a non-repairable PMS. Stochastic logic 

models are proposed to analyze the common components in the 

different phases. In the stochastic analysis, the signal probabilities 

of the basic components are encoded as non-Bernoulli sequences 

of random permutations with fixed numbers of 1s and 0s. Thus, 

the proposed stochastic approach can be used to evaluate a PMS 

under any distribution. Based on the generated stochastic 

sequences for the basic components and the system topology, the 

failure probability of the PMS can be efficiently predicted which 

avoids cumbersome analyzing process. Several case studies are 

evaluated to show the accuracy and efficiency of the stochastic 

approach. Compared with a combinatorial analysis, the accuracy 

of the stochastic analysis varies with the length of the stochastic 

sequences. However, it is shown that the stochastic analysis is 

more efficient than a Monte Carlo simulation at the same 

execution complexity in the number of runs.  

 
Index Terms—Phased-mission systems, stochastic computation, 

non-Bernoulli sequence, stochastic logic, reliability analysis.  

 

ACRONYM 
FTA                  fault tree analysis 

DFT                 dynamic fault tree 

FDEP               functional dependency gate 

PAND              priority AND gate 

WSP                warm spare gate 

CSP                 cold spare gate 

PCCF              probabilistic common cause failure 

pdf                   probability density function 

cdf                   cumulative density function 

BDDs              binary decision diagrams 

MC                  Monte Carlo 
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PMS                phased-mission system 

UAV               unmanned autonomous vehicle 

NOTATION 
𝐻                    the number of phases in the PMS 

ℎ                     the index of a phase in the PMS 

𝜏                     mission time 

𝜏ℎ                   mission time of phase ℎ 

𝐴, 𝐵               basic components  

𝐴𝑗(ℎ)/ 𝐵𝑗(ℎ)  the 𝑗th basic component of phase ℎ 

𝑄ℎ(∙)              logic structure derived from the system topology 

of phase ℎ 

𝜙(ℎ)              the basic component set of phase ℎ 

𝜆                    failure rate of exponential distribution 

𝑝(𝑡𝑖)                failure probability in the time interval [𝑡𝑖, 𝑡𝑖 + 𝛥𝑡] 
𝑃                   overall failure probability of the PMS 

𝑆(𝑡𝑖)              binary sequence at time 𝑡𝑖 

𝑆𝑖,𝑗(ℎ)             the 𝑗th bit in the stochastic sequence for the 

failure probability of component 𝐴𝑖   or 𝐵𝑖 at the end of phase ℎ 
𝑆𝑖,𝑗

′ (ℎ + 1)    the 𝑗th bit for the stochastic sequence for the 

failure probability of component 𝐴𝑖  or 𝐵𝑖  at phase ℎ + 1 

𝐿                    sequence length for the stochastic approach 

𝑁                   the number of 1s in the stochastic sequence  

I. INTRODUCTION 

phased-mission system (PMS) undergoes different 

scenarios for which failure criteria vary throughout the 

entire mission time. For each phase, the system has 

different reliability requirements as indicated by its topology. 

The topology often varies from phase to phase and a system is 

usually decomposed into multiple non-overlapping phases. For 

the success of a PMS, all phases are required to be successfully 

and sequentially completed [1]. Many practical systems operate 

in this sequential manner, such as an aircraft flight, a nuclear 

power plant, aerospace and distributed computing systems 

[2]-[8]. For example, an aircraft mission of an unmanned 

autonomous vehicle (UAV) has a number of phases, including 

taxing, take-off, climbing to the required altitude, and cruising, 

descending and landing phases. The mission can fail in any of 

these phases and the PMS must be evaluated to obtain the 

failure probability of each phase. The PMS achieves an overall 

mission success only if every phase successfully completes the 

task. Hence, the overall mission failure is obtained by a logic 

OR of the failures of all phases [8]. 

The failure conditions of each phase must be identified; the 

system topology is usually modeled by a fault tree to indicate 

the combinations of component failures [9]. Hence, the 

technique of fault tree analysis (FTA) proposed in the 1960s 
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[10], has been applied to evaluate the reliability of a PMS. 

However, dynamic behaviors, such as functionally dependent 

and priority relationships, also exist in a PMS. These behaviors 

are usually modeled by dynamic gates, e.g. the functional 

dependency (FDEP) and priority AND (PAND) gates. If 

dynamic relationships among the basic components are 

considered, dynamic fault trees (DFTs) are used to model these 

behaviors. The analysis of the reliability of a PMS is more 

challenging than a single-phased system because various 

factors (such as different system topologies and the dependence 

among different phases incurred by common components) must 

be considered.  

Several approaches have been proposed to evaluate the 

reliability of a PMS. These approaches are mainly classified 

into two classes: analytical and simulation-based approaches 

[11], [12]. The analytical approaches can be differentiated into 

three categories: combinatorial methods [7], [13], state-space 

based methods [14]-[17] and phase modular methods [18]-[20]. 

A combinatorial method can handle any failure distribution and 

provide the exact failure probability using, for example, a 

binary decision diagram (BDD). However, it may be difficult to 

derive the exact analytical expression as function of the basic 

components’ failure distributions for a system with a large 

number of basic components. The BDD based combinatorial 

approaches of [7] and [21] are only applicable to a PMS with 

static phases. Furthermore, dynamic relationships (such as 

functional dependency and priority relationships) usually exist 

among the basic components in a PMS. Hence, the reliability 

evaluation becomes even more challenging when dynamic 

gates are included in the PMS. For a state-space based method, 

a large complexity is usually encountered when analyzing 

complex systems due to the state-space explosion problem. The 

phase-modular methods of [18], [19] can model dynamic 

relationships, but a Markov chain analysis is required for the 

dynamic modules. The application of a Markov chain analysis 

is however limited when a basic component’s failure behavior 

is not exponentially distributed. Several recent approaches have 

also been proposed for investigating a general PMS with 

propagated failures [22], [23], multimode state or failure 

scenarios [24] and repairable components [25]. 

Simulation based approaches can be found in [11], [12], [26] 

and Monte Carlo (MC) simulation [26] can also be used to 

evaluate the failure probability of a PMS. However, a large 

sample size is usually required for obtaining a stable accuracy 

due to a slow convergence. Hence, a long simulation time is 

often incurred for MC based approaches. 

Recently, stochastic computational approaches have been 

proposed for analyzing logic circuits [27], [28] and calculating 

the failure probability of DFTs [29], [30]. [28] has shown that 

the use of non-Bernoulli sequences of random permutations of 

fixed numbers of 1s and 0s as initial inputs leads to an efficient 

and accurate evaluation. Furthermore, a stochastic model for 

PAND gates is proposed for an efficient analysis of DFTs [30]. 

The capability of a stochastic approach is shown by analyzing 

DFTs with non-exponentially distributed components using 

non-Bernoulli sequences to encode failure probabilities [30].  

In this paper, a stochastic computational approach is proposed 

for analyzing a PMS. Initially, the topology of each phase in a 

PMS is modeled by either a static fault tree, or a DFT. A 

stochastic computational model is then proposed for evaluating 

the output failure probability of a PMS as a function of the 

failure probabilities of its components. Non-Bernoulli 

sequences of random permutations of fixed numbers of 1s and 

0s are used to encode the failure probabilities of the basic 

components. It is shown that a PMS is efficiently evaluated by 

using the non-Bernoulli sequences. Due to the stochastic 

sequence’s capability of preserving signal correlation, repeated 

common components in different phases (as frequently 

encountered in a PMS) are also analyzed. A PMS with dynamic 

phases can be analyzed using the proposed approach by 

utilizing stochastic models of PAND and FDEP gates. Finally, 

due to the direct encoding of failure probabilities into 

non-Bernoulli sequences, both exponential and 

non-exponential (such as Weibull) distributions can be 

analyzed by the stochastic model, as shown by several case 

studies. 

The remainder of the paper is organized as follows. Section 

II presents the preliminaries, including the fundamentals of 

stochastic computation, the definition of a PMS and some 

hypotheses considered in this work. Section III presents the 

proposed stochastic computational model of a PMS. A flow of 

the stochastic analysis of a general PMS is described next in 

Section IV. Two case studies are presented in Section V. 

Finally, Section VI concludes the paper. 

II. PRELIMINARIES 

A. Stochastic computational approach 

In 1960s, stochastic computation was proposed for reliable 

circuit design [31]. In stochastic computation, a number of bits 

are set to specific values, which is referred to as a stochastic 

sequence. For example, the number of 1s is assigned to indicate 

the probability of 1s in a stochastic sequence. Stochastic 

sequences are efficiently processed by logic gates and the 

obtained stochastic sequence gives the output signal probability. 

Fig. 1 shows the stochastic logic gates used in this paper. 

Stochastic computation has the advantages of hardware 

simplicity and fault tolerance. Boolean logic operations are 

transformed into probabilistic computations in the real domain 

[27]. As discussed in [28], the number of 1s in the output 

sequence is not deterministic but probabilistic due to inevitable 

stochastic fluctuations; however, the use of non-Bernoulli 

sequences of randomly permuted 1s and 0s as initial inputs can 

reduce the stochastic fluctuation [28]. In Fig. 1(a-d), a sequence 

of 10 bits is utilized to show the encoding and computing 

process in stochastic computation; a longer sequence is usually 

required for achieving a higher accuracy.  
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Fig. 1 Stochastic logic gates. (a) An inverter. (b) An AND gate with statistically 

independent inputs. (c) An AND gate with totally correlated inputs. (d) An OR 
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gate with statistically independent inputs.  
 

Stochastic logic circuits can handle correlated signals 

(usually caused by reconvergence of fanout signals) because 

signal dependencies are inherently maintained and propagated 

(as shown in Fig. 1(c)). This is an advantageous property for 

handling the common components in the different phases of a 

phased-mission system (PMS).  

Similar to [30], the mission time 𝜏 is discretized; it is divided 

into 𝐻 phases, and the mission time of phase ℎ is denoted by 𝜏ℎ, 

ℎ ∈ {1, 2, ⋯ , 𝐻}. Each 𝜏ℎ is further divided into M equal time 

intervals. The failure probability at a specific time is 

determined by the cumulative density function (cdf) derived 

from the given probability density function (pdf) of a basic 

component. A failure probability is more precisely estimated at 

a specific mission time with a larger M, which however incurs a 

longer run time. Hence, M is determined by a tradeoff between 

accuracy and evaluation efficiency. The discretization provides 

a relatively accurate estimate of the failure probability of a 

basic component by using an appropriate 𝑀.  

For simplicity, the time interval [𝑡𝑖, 𝑡𝑖 + 𝛥𝑡] is referred in 

this paper as time 𝑖 . The failure probability of a basic 

component in a selected time interval [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡] is considered 

constant as the value at the beginning of the time interval, i.e., 

the failure probability is given by 𝑝 = 𝐹(𝑡𝑖) for any time in this 

time interval. The failure probabilities for two adjacent time 

intervals (i.e., time 𝑖 − 1 and time 𝑖) are given by 𝑝𝑖−1 and 𝑝𝑖  

respectively. Given a non-Bernoulli sequences of 𝐿 bits, the 

number of 1s in the sequences for the two failure probabilities 

are given by 𝑁(𝑝𝑖−1) = 𝐿 ∙ 𝑝𝑖−1  and 𝑁(𝑝𝑖) = 𝐿 ∙ 𝑝𝑖  

respectively. If the non-Bernoulli sequence for the probability 

at time 𝑖 − 1 is represented as 𝑆(𝑝𝑖−1), then the sequence 𝑆(𝑝𝑖) 

for the probability at time 𝑖  can be obtained by randomly 

assigning 𝛥𝑁 = 𝑁(𝑝𝑖) − 𝑁(𝑝𝑖−1) = 𝐿 ∙ [𝑝𝑖 − 𝑝𝑖−1]  1s to 

replace the 0s in 𝑆(𝑝𝑖−1) . The relationship between two 

non-Bernoulli sequences for two adjacent time intervals (i.e., 𝑖 
and 𝑖 − 1) is given by 

𝑆(𝑝𝑖) 𝐴𝑁𝐷 𝑆(𝑝𝑖−1) = 𝑆(𝑝𝑖−1).                    (1) 

Due to the non-reparability, the 1s in 𝑆(𝑝𝑖−1) remain as 1s in 

𝑆(𝑝𝑖) ; then the mutual set in both sequences is given by 

𝑆(𝑝𝑖−1). 

B. A phased-mission system (PMS) 

A PMS is usually defined as follows [8].  

1) It consists of multiple non-overlapping phases and the 

operation of phases is performed in a sequential order;  

2) The topology of the system usually varies from phase to 

phase, i.e., different failure criteria apply to each phase;  

3) All phases must be successfully completed for the mission 

to be successful.  

A component can fail at any time during the mission time and 

the state of a component may be critical for a specific phase. 

Furthermore, the failure of a component resulting in the failure 

of the PMS may have occurred during previous phases. The 

mission can fail in any of the phases; hence, the evaluation of 

the PMS must calculate the failure probability occurred in each 

phase.  

The system topology is usually modeled as a fault tree to 

show the combinations of component failures. Let 𝑄(∙) be the 

logic operation derived from the system topology; then, the 

structure function at phase ℎ  is denoted by 𝑄ℎ(∙) . The 

technique of fault tree analysis (FTA) [10], [32] is utilized to 

calculate the failure probability during phase ℎ as 

𝑝ℎ = 𝑄ℎ(𝑆𝑖(ℎ)),                           (2) 

where 𝑆𝑖(ℎ) indicates the stochastic sequence generated based 

on the failure probability of component 𝐵𝑖(ℎ) , i.e., 𝑝𝑖(ℎ) 

𝐵𝑖(ℎ) ∈ 𝜙(ℎ), 𝜙(ℎ) denotes the set of basic components at 

phase ℎ, and 𝑝ℎ is the failure probability of the sub-system of 

phase ℎ. 

To compute the overall mission failure probability of the 

PMS, 𝑃, a conventional phase-OR model is adopted, as shown 

in Fig. 2. This model, after slight modifications, is also 

applicable if other relationships are considered for the phase 

failures, such as the AND/OR logic relationship [21]. In the 

structure in Fig. 2, the output failure probability of the PMS is 

determined by the stochastic sequences for the failure 

probabilities of different phases. As the failures are exclusive 

events at different phases, 𝑃 is given by the sum of the failure 

probabilities of all phases [8], i.e., 

𝑃 = ∑ 𝑝ℎ
𝐻
ℎ=1 .                             (3) 

where ℎ ∈ {1, 2, ⋯ , 𝐻} and 𝐻 is the number of phases of the 

PMS. 

Then, the reliability of a PMS, 𝑟, i.e., the probability that all 

phases are successful, is given by 

𝑟 = 1 − 𝑃.                              (4) 

C. Assumptions 

The following assumptions are applicable in the analysis of 

this paper. 

 The quantization level of a component is indicated by a 

binary variable 𝑥 , 𝑥 ∈ {0,1} , where 0 indicates the 

fault-free scenario; 

 All basic components are fault-free at the beginning of the 

mission time; 

 The basic components are assumed to be non-repairable 

[8]. If a component fails, then the variable that indicates 

the status of the basic component, remains; 

 For a PMS, the state of a component at the beginning of a 

phase is the same as the state at the end of the previous 

phase [7]; 

 The duration of each phase in the PMS is known for the 

investigation. 

III. PROPOSED STOCHASTIC MODELS FOR A PMS 

A PMS consisting of 𝐻 phases is usually represented by 𝐻 

fault trees (Fig. 2). For a binary PMS, both the system and the 

components can only have two states: success or failure. For the 

success of the PMS, all phases are required to be successfully 

completed. The failure of any phase results in the failure of the 

PMS. Let the stochastic sequence 𝑆(ℎ)  encode the failure 

probability of phase ℎ, 𝑝(ℎ), and 𝑆𝑗(ℎ) denote the value of the 

𝑗th bit. If 𝑆𝑗(ℎ) = 1 (i.e., the failure of phase ℎ), then 𝑆𝑗(𝑃𝑀𝑆) 

= 1 where 𝑆(𝑃𝑀𝑆) is the stochastic sequence for the failure 

probability of the overall PMS. The calculation of the failure 

probability of the PMS (as in formula (3)) can be efficiently 

implemented by an OR gate; thereafter, the reliability of the 

PMS is obtained by inverting the stochastic sequence for the 

failure probability of the PMS. 
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Fig. 2 A general structure of a phased-mission system (PMS) consisting of 𝐻 

phases with different system topologies. 𝑆(ℎ) is a stochastic sequence for  the 

failure probability of phase ℎ, 𝑝(ℎ). 𝑄ℎ denotes the structural function at phase 

ℎ, 1 ≤ ℎ ≤ 𝐻. 𝐻 is the total number of phases of the PMS. 𝑆(𝑃𝑀𝑆) denotes 

the stochastic sequence for the failure probability of the PMS. 𝑆𝑟(𝑃𝑀𝑆) 
denotes the stochastic sequence for the reliability of the PMS.  

 

Each of the fault trees derived from the system topology 

(indicated by 𝑄ℎ) is used to model the failure condition of a 

phase. Fig. 3 illustrates a general fault tree structure of phase h, 

ℎ ∈ {1, 2, ⋯ , 𝐻}, for a PMS. Each phase has a different system 

topology, so let 𝑄ℎ denote the structure function at phase ℎ. If 

there are 𝑛 basic components at phase ℎ, let 𝐴𝑗(ℎ) indicate the 

𝑗th component at phase ℎ. 
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Fig. 3 A general fault tree structure of phase ℎ for a phased-mission system 

(PMS) consisting of 𝐻 phases with different system topology at each phase. 

𝐴𝑗(ℎ) denotes the 𝑗th component at phase ℎ (1 ≤ ℎ ≤ 𝐻). 𝐻 is the number of 

phases in the PMS. 𝑛 is the number of basic events in phase ℎ. 

 

The structure function at phase ℎ, 𝑄ℎ, is constructed using 

the  stochastic logic gates of Fig. 1 according to the 

relationships between the basic components. Then, the output 

stochastic sequence for the failure probability of phase ℎ  is 

obtained by first determining the input sequences for the basic 

components. Let 𝒙𝒉 denote the states of basic components at 

the end of phase ℎ, i.e., 𝒙𝒉 = (𝑥1(ℎ), 𝑥2(ℎ), ⋯ , 𝑥𝑛(ℎ)), where 

𝑥𝑗(ℎ) denotes the state of the basic component 𝐴𝑗(ℎ) , 𝑗 ∈

{1, 2, ⋯ , 𝑛}. Then, 𝑄ℎ(𝒙𝒉) gives the state of the system at the 

end of phase ℎ . If 𝑄ℎ(𝒙𝒉) = 0 , phase ℎ  is successfully 

completed. Otherwise, the system fails by the end of phase ℎ.  

In a general PMS, common components are often 

encountered in different phases. For example, the engine of an 

unmanned autonomous vehicle (UAV) must function in most 

phases. However, some of the components might appear in all 

phases while some of them are just used in a few specific 

phases. The distribution of the common components is 

illustrated in Fig. 4, where  𝜙(𝑗)  and 𝜙(𝑘)  denote the basic 

component sets of phases 𝑗  and 𝑘  respectively, 𝑗, 𝑘 ∈
{1, 2, ⋯ , 𝐻} . For any phases, say 𝑗  and k, 𝜙(𝑗) ∩ 𝜙(𝑘) ≠ ∅ 

indicates that common components exist at phases 𝑗 and 𝑘 (as 

in Fig. 4(a)). If the failure can be masked and does not 

necessarily cause a system failure, it is referred to as case 1. If 

the failure of a common component directly results in the 

failure of a specific phase, it is referred to as case 3. As in Fig. 

4(b), 𝜙(𝑗) ∩ 𝜙(𝑘) = ∅  indicates the case that there is no 

common component at phases 𝑗 and 𝑘. This case is referred to 

as case 2 in this paper. 
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Fig. 4 Distribution of the common components for phases 𝑗  and 𝑘 , 𝑗, 𝑘 ∈
{1, 2, ⋯ , 𝐻}. (a) Common components exist in phases 𝑗 and 𝑘; (b) No common 

component at phases 𝑗 and 𝑘. 𝜙(𝑗) or 𝜙(𝑘) denotes the basic component set of 

phase 𝑗 or 𝑘. 𝐻 is the number of phases in the PMS. 

 

A. Case 1 

Assume that component 𝐴𝑖  exists in phase 𝑘  and also in 

phase 𝑗, i.e., 𝐴𝑖 ∈ 𝜙(𝑗) ∩ 𝜙(𝑘). Fig. 5 shows an example of 

𝐴𝑖 ∈ 𝜙(𝑗) ∩ 𝜙(𝑘) , where 𝑗  and 𝑘  are two consecutive or 

disjoint phases (𝑗 < 𝑘). In Fig. 5 (and all subsequent figures, 

wherever applicable), 𝐴𝑖(𝑗) denotes the 𝑖th component at phase 

𝑗 with 𝑖 ∈ {1, 2, ⋯ , 𝑚}, 𝑗 ∈ {1, 2, ⋯ , 𝑘} and 𝐵𝑙(𝑘) denotes the 

𝑙th component at phase 𝑘 with 𝑙 ∈ {1, 2, ⋯ , 𝑛}. 𝑚 and 𝑛 are the 

total numbers of basic components for phase 𝑗  and 𝑘 

respectively. If the failure of the common component 𝐴𝑖 does 

not directly cause the failure of phase 𝑗, the failure of 𝐴𝑖  is 

masked by other components (for instance by an AND 

operation); so this component is not required to survive prior to 

phase 𝑘 (as an example of case 1). 

For simplicity, let 𝑗 = ℎ and 𝑘 = ℎ + 1. Since, the failure of 

the component 𝐴𝑖  may occur during phase ℎ + 1 or a phase 

before ℎ + 1, the stochastic sequence for the failure probability 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

of 𝐴𝑖 at phase ℎ + 1, 𝑆𝑖
′(ℎ + 1), is found by considering 𝑆𝑖(ℎ) 

(the stochastic sequence at the end of phase ℎ) and 𝑆𝑖(ℎ + 1) 

(the stochastic sequence for the failure probability of 

component 𝐵𝑖  during ℎ + 1). Then the sequence 𝑆𝑖
′(ℎ + 1) is 

obtained using the stochastic model in Fig. 6. 
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  
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Fig. 5 Example of case 1: 𝜙(𝑗) ∩ 𝜙(𝑘) ≠ ∅  and 𝐴𝑖(𝑗/𝑘) ∈ 𝜙(𝑗) ∩ 𝜙(𝑘) , 

where 𝐴𝑖(𝑗/𝑘) is one of the common components.  

 

( 1)iS h 

( )iS h
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Fig. 6 A stochastic logic model for computing the failure probability of 

component 𝐴𝑖 for cases 1 and 2.  

 

Let 𝑆𝑖,𝑗(ℎ), 𝑆𝑖,𝑗(ℎ + 1) and 𝑆𝑖,𝑗
′ (ℎ + 1) be the values of the 

𝑗th bit of the corresponding stochastic sequences. If 𝑆𝑖,𝑗(ℎ) = 1 

(so component 𝐴𝑖  fails at the end of phase ℎ), then 𝑆𝑖,𝑗
′ (ℎ +

1) = 1 due to the assumption of non-reparability of the PMS. 

This corresponds to the case when component 𝐴𝑖 fails before 

phase ℎ + 1. Otherwise, whether component 𝐴𝑖 fails or not is 

determined by 𝑆𝑖,𝑗(ℎ + 1)  for the failure probability during 

phase ℎ + 1, i.e., 𝑝𝐴𝑖
(ℎ + 1). This indicates that 𝑆𝑖,𝑗(ℎ + 1) is 

selected as the value of 𝑆𝑖,𝑗
′ (ℎ + 1) if 𝑆𝑖,𝑗(ℎ) = 0. This can be 

efficiently implemented by a stochastic OR gate as shown 
in Fig. 6. 

B. Case 2 

For case 2, there is no common component in any of the two 

phases 𝑗 and 𝑘, i.e., 𝜙(𝑗) ∩ 𝜙(𝑘) = ∅ (as in Fig. 4(b)); then 

whether the components of phase 𝑗 or 𝑘 fail or not cannot result 

in the failure of phase 𝑗 or 𝑘  (with 𝑗 < 𝑘). Fig. 7 shows an 

example of case 2. With the stochastic logic models for phases 

𝑗 and 𝑘 (i.e., 𝑄𝑗  and 𝑄𝑘 ), the failure probabilities of phases 𝑗 

and 𝑘 are determined by the failure probabilities (encoded into 

non-Bernoulli sequences) of the input components of phases 𝑗 

and 𝑘 respectively.  

Again, let 𝑗 = ℎ and 𝑘 = ℎ + 1. The failure of phase 𝑘  is 

determined by the failure of basic events in 𝜙(𝑘). For a basic 

component 𝐵𝑖 , it may fail before or during phase ℎ + 1. Both 

scenarios need to be considered for the failure of phase  𝑘 . 

Hence, the stochastic sequence for the failure probability of 

component 𝐵𝑖  at phase ℎ + 1 , 𝑆𝑖
′(ℎ + 1) , is obtained by 

considering 𝑆𝑖(ℎ) and 𝑆𝑖(ℎ + 1), the stochastic sequences for 

the failure probabilities of component 𝐵𝑖  at the end of phase ℎ 

and during phase ℎ + 1 respectively, are as follows. Then, the 

failure probability of 𝐵𝑖  is found by using the stochastic model 

of Fig. 6 (same as for case 1).  

 

)( j )(k

jQ
kQ

)(1 jA )( jAm )(1 kB )(kBn

  

PMS

 
Fig. 7 Example of case 2 (corresponding to Fig. 4(b)). 𝜙(𝑗) ∩ 𝜙(𝑘) = ∅.  

 

C. Case 3 

For case 3, assume that component 𝐴𝑖 appears in both phases 

𝑗 and 𝑘, i.e., 𝐴𝑖 ∈ 𝜙(𝑗) ∩ 𝜙(𝑘). Let again 𝑗 = ℎ and 𝑘 = ℎ + 1. 

The failure of 𝐴𝑖 directly causes the failure of phase ℎ, so the 

failure probability at the end of phase ℎ + 1 is given by the 

failure probability during phase ℎ + 1 with the failure before 

phase ℎ + 1  excluded, i.e., 𝑆𝑖
′(ℎ + 1) = 𝑆𝑖(ℎ + 1) 

implemented by a buffer as in Fig. 8. 

 

( 1)iS h 
' ( 1)
i

S h 

 
Fig. 8 A stochastic logic model for computing the failure probability for case 3 

of component 𝐴𝑖.  

 

Furthermore, if the failure probability for an intermediate 

time point during phase ℎ + 1  is of interest, the following 

analysis is applicable. Let 𝜏(ℎ + 1)  denote the intermediate 

mission time during phase ℎ + 1; then, the intermediate failure 

probability of the overall PMS during phase ℎ + 1 is derived by 

replacing the stochastic sequence 𝑆𝑖(ℎ + 1)  (for 𝑝𝑖(ℎ + 1) ) 

with 𝑆𝑖(𝜏(ℎ + 1)) (for 𝑝𝑖(𝜏(ℎ + 1))).  

Hence in the proposed approach, a stochastic model of the 

PMS can be constructed for the relationship among basic 

components using stochastic logic gates. Two stochastic 

models (Figs. 6 and 8) are utilized to evaluate the effect of 

common components in different phases and to obtain the 

reliability of each phase from the failure probabilities of the 

basic components. The failure probability of the overall PMS is 

encoded in the statistics, i.e., the proportion of number of 1s, in 

the output sequence of the stochastic analysis; the reliability of 

the PMS can then be determined by inverting the stochastic 

sequence indicating its failure probability (Fig. 2). 
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IV. EVALUATION PROCEDURE 

For a general PMS, the process of evaluating its overall 

reliability is as follows. 

Step 1: Construct the PMS using stochastic logic gates; 

Step 2: Determine the common components in different 

phases and find whether the failure of the common components 

can directly cause the failure of the phase being investigated; 

Step 3: Compute the failure probabilities at different mission 

times based on the provided pdfs and cdfs; 

Step 4: Encode the basic modules’ failure probabilities at 

different time steps into non-Bernoulli sequences following the 

algorithm provided in Section II A and Section III;  

Step 5: If a common component exists, the stochastic 

sequences must be generated using the stochastic model in Fig. 

6 or Fig. 8, as determined by whether a common component 

exists and whether the failure of the common component can 

result in the failure of the PMS; 

Step 6: Derive the overall failure probability at different 

time steps by propagating the non-Bernoulli sequences through 

the stochastic models. The reliability can be obtained by 

inverting the stochastic sequence indicating the failure 

probability of the PMS (using the model in Fig. 2).  

A flowchart illustrating the above evaluation procedure is 

given in Fig. 9. 

In a DFT, the priority AND (PAND) gate can be utilized if 

required. This may occur for an input (to indicate the firing of a 

basic event in a predetermined order) and the output (to indicate 

whether a failure occurs [8]) as a priority relationship. A 

dynamic functional dependency (FDEP) gate can further be 

utilized to model the behavior among the components. 

However, it is cumbersome to analyze a system using a 

combinatorial analysis. A stochastic model can instead be 

utilized to replace the dynamic gates with static gates. For 

systems with perfect fault coverage, the FDEP can be treated as 

an OR gate [33] [34]. For the PAND gate in a PMS, the 

stochastic model of [30] can be used to model the priority 

relationship. Signal correlations are easily handled by the 

proposed stochastic model [30]; moreover, repeated events and 

events with non-exponential distributions are modeled 

efficiently. Stochastic computational models for the so-called 

Spare gate (such as warm (WSP) and cold (CSP) standby) have 

been presented in [35]. If the basic events suffer from 

(probabilistic) common cause failures, then these cases can be 

easily addressed by a stochastic approach, as shown by the 

simulation results in [35]. 

V. CASE STUDIES 

In this section, several case studies are presented to show the 

efficiency of the proposed stochastic method. The results are 

compared with the combinatorial analysis of [13] and the 

Monte Carlo (MC) simulation of [15]. The proposed stochastic 

approach is not limited to a particular failure distribution of the 

basic component. Hence, both exponential and non-exponential 

distributions are investigated to show the capability of the 

stochastic approach in handling the general cases. All 

simulations are run on a computer with a 3.10 GHz i3-2100 

microprocessor and 6 GB memory. 

 

Start

Classify the 
common 

components into 
different categories 

as in Fig. 4

For Each common 
component, apply 

the stochastic 
model in Fig. 6 or 

Fig. 8

Construct a 
stochastic logic 

network

Encode the failure 
probabilities into 

non-Bernoulli 
sequences

To obtain sequence 
of the stochastic 

network

End

Specify a mission 
time and obtain the 
failure probabilities 

of basic events

For dynamic gates 
(FDEP, SPARE, PAND 

etc.) using 
stochastic OR gate, 

Spare and PAND 
models 

To obtain system 
failure probability or 

reliability

 
 

Fig. 9 A flowchart illustrating the evaluation procedure using the stochastic 

approach. 

 

The mission time 𝜏 is divided into 𝐻 phases and each phase is 

further divided into 𝑀 equal intervals. Let 𝑝(𝑖) be the failure 

probability of a basic component at time 𝑖 , then the failure 

probability of an output event for the system is given by a 

vector 𝑭 = (𝐹(1), 𝐹(2), ⋯ , 𝐹(𝑀)) , i.e., 𝐹(𝑗) = 𝑄(𝑝(𝑖)) , 

where 𝑄(∙) is the logic operation determined from the system 

topology. Let 𝑭𝑀𝐶 , 𝑭𝐴  and 𝑭𝑠  denote the failure probability 

vectors obtained by MC simulation, an accurate analysis and 

the stochastic approach respectively. Then, ∆𝑭𝑀𝐶−𝐴 = 𝑭𝑀𝐶 −
𝑭𝐴  denotes the difference between the failure probability 

vectors of the MC simulation and the accurate analysis, and 

∆𝑭𝑆−𝐴 = 𝑭𝑆 − 𝑭𝐴 indicates the difference between the failure 

probability vectors of the stochastic approach and the accurate 

analysis. In the simulations of the following case studies (and 

for all related figures and tables as applicable), 𝑁 denotes the 

number of simulation runs for the MC method, while 𝐿 denotes 

the sequence length for the stochastic approach. 

Similar to [30], the norms, ‖∙‖1 , ‖∙‖2  and ‖∙‖∞ , are 
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calculated to measure the differences of failure probability 

vectors that reveal the accuracy of different approaches. For a 

vector 𝒙, the norms are defined as ‖𝒙‖1 = ∑ |𝑥𝑖|𝑛
𝑖=1 , ‖𝒙‖2 =

√∑ |𝑥𝑖|
2𝑛

𝑖=1  and ‖𝒙‖∞ = 𝑚𝑎𝑥
1≤𝑖≤𝑛

|𝑥𝑖|. 

A. Example 1 

A PMS with non-exponentially distributed basic events is 

analyzed first using the stochastic approach. It becomes 

challenging when the failures of basic components are not 

exponentially distributed for reliability evaluation. In this 

section, it is shown that this issue is effectively addressed by the 

stochastic approach. A Weibull distribution is considered for a 

PMS with non-exponentially distributed basic components. 

Furthermore, the reliability of the PMS at any time during the 

entire mission time can be found.  

Example 1 deals with a non-repairable PMS consisting of 

four elements for a mission time of 𝜏 = 630 hours [13]. The 

system is successful only if the three phases perform without 

failure; the durations of the three phases are 𝜏1 = 160 hours, 𝜏2 

= 200 hours and 𝜏3 = 270 hours. The structure of the stochastic 

PMS is shown in Fig. 10. 

The parameters for each element of Example 1 in each phase 

are given in Table 1 [13]. Except for element 3 at phase 3 and 

element 4 at phase 1, which follow Weibull distributions, all 

other elements fail exponentially.  

For an exponential distribution, the probability density 

function (pdf) and the cumulative density function (cdf) are 

given by 

𝑓(𝑡) = 𝜆 𝑒−𝜆𝑡,                                 (5) 

and 

𝐹(𝑡) = ∫ 𝑓(𝑢)
𝑡

0
𝑑𝑢 = 1 −  𝑒−𝜆𝑡,                    (6) 

where 𝑡 is the specified mission time and λ is the (constant) 

failure rate of a basic component for an exponential 

distribution. 

The pdf and cdf of a Weibull distribution are given by 

𝑓(𝑡) =
𝑘

𝜆
(

𝑡

𝜆
)𝑘−1𝑒−(𝑡/𝜆)𝑘

                   (7) 

and 

 𝐹(𝑡) = 1 −  𝑒−(𝑡/𝜆)𝑘
                      (8) 

respectively, where 𝑘 and 𝜆 are the shape and scale parameters 

respectively. 

For the stochastic approach and the combinatorial analysis of 

[13], the reliabilities of the components at each phase and the 

reliability of the overall PMS are given in Table 2. The results 

of the MC simulation and the stochastic approach follow 

approximately a Gaussian distribution for a large number of 

simulation runs, or a large sequence length [28]. For a 

confidence level of 95%, the error is given by  𝐸 =  
𝑧𝑐

𝜇
√

𝑣

𝑚
, 

where 𝜇 denotes the accurate mean, 𝑣  is the variance of the 

distribution of the results, 𝑚 is the number of simulation runs 

or sequence length, and the parameter 𝑧𝑐  is equal to 1.96. 

Hence, the error decreases with the increase of 𝑚. For the input 

parameters shown in Table 1, the accurate mean of the system’s 

reliability is found to be 0.8188. For the stochastic approach 

and the MC simulation, the standard deviations are obtained as 

0.0004, and 0.0013, respectively, for 𝐿 or 𝑁 = 100k. Then, at a 

confidence level of 95%, the errors for the stochastic approach 

and the MC simulation are 0.0003% and 0.0010% respectively. 

Hence, the stochastic approach is more accurate than the MC 

simulation. This occurs because deterministic numbers of 1s 

are generated for the non-Bernoulli sequence encoding the 

signal probabilities for the stochastic approach. As analyzed in 

[28], the use of a non-Bernoulli sequence of a fixed number of 

1s and 0s results in the same mean but a smaller variance than 

using Bernoulli sequences as initial inputs. 

 

Phase 1

)1(2x

Phase 2

)2(1x )2(3x

)2(2x )2(4x

)3(3x )3(4x

Phase 3

PMS 

 
Fig. 10 A non-repairable PMS of Example 1 consisting of three phases and four 

components [13]. 𝑥𝑖(𝑗) denotes the 𝑖th component at phase 𝑗 with 𝑖 ∈
{1, 2, 3, 4} and 𝑗 ∈ {1, 2, 3}. 

 
Table 1 Input parameters for Example 1 [13] with exponentially 

and Weibull distributed basic components. 𝒌 and 𝝀 denote the 

shape and scale parameters for the Weibull distribution. 

Component Phase 1 Phase 2 Phase 3 

𝑥1 0.0002 0.0001 0.00015 

𝑥2 0.0001 0.0001 0.0001 

𝑥3 0.00025 0.0001 1/𝜆 = 0.0001, 𝑘 = 2 

𝑥4 1/𝜆 = 0.0001, 𝑘 = 1.5 0.0002 0.0001 

 
Table 2 Reliabilities of PMS at different phases for Example 1 (N 

or L = 100k) 

Components 
Methods 

combinatorial [13] Monte Carlo Stochastic 

𝑥1 (ℎ = 1) 0.9685 0.9672 0.9685 

𝑥1 (ℎ = 2) 0.9802 0.9789 0.9803 

𝑥1 (ℎ = 3) 0.9603 0.9600 0.9603 

𝑥2 (ℎ = 1) 0.9841 0.9837 0.9841 

𝑥2 (ℎ = 2) 0.9802 0.9804 0.9803 

𝑥2 (ℎ = 3) 0.9734 0.9726 0.9374 

𝑥3 (ℎ = 1) 0.9608 0.9613 0.9608 

𝑥3 (ℎ = 2) 0.9802 0.9813 0.9803 

𝑥3 (ℎ = 3) 0.9971 0.9974 0.9971 

𝑥4 (ℎ = 1) 0.9980 0.9982 0.9980 

𝑥4 (ℎ = 2) 0.9608 0.9586 0.9610 

𝑥4 (ℎ = 3) 0.9734 0.9726 0.9374 

Overall Reliability 0.8188 0.8169 0.8190 

 

As shown by the results in Table, the found reliability of the 

PMS by using the stochastic approach is very close (or equal) to 

the probability obtained from the combinatorial analysis,. For a 

reasonable sequence length, the stochastic approach provides a 
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very accurate result, and it is more accurate than MC 

simulation. 

For Example 1, the failure probability and reliability obtained 

by the stochastic approach are plotted in Fig. 11 for a mission 

time of 630 hours.  

 

 
Fig. 11 Failure probability and reliability obtained by the stochastic approach 

for Example 1 with a sequence length of 10k bits.  

 

Next, ‖∙‖1 , ‖∙‖2 , and ‖∙‖∞  of the differences in the 

reliability vectors obtained by the stochastic and MC 

approaches compared to the accurate analysis are  shown in 

Table 3. As per the results in Table 3, the disparity in the failure 

probability vectors of the stochastic and accurate analysis 

decreases, and so does the disparity in the failure probability 

vectors of the MC simulation and the accurate analysis. This 

indicates that the stochastic fluctuations in both approaches 

decrease with the increase of the sequence length and the 

number of simulation runs. However, the stochastic approach is 

more accurate and more efficient, as indicated by the smaller 

norm values and the smaller average run time for each sequence 

length or sample size (i.e., 𝐿/𝑁 in Table 3). The relationship 

between the run time of the two approaches are further 

illustrated in Fig. 12.  

 
Table 3 Norms of the differences in the failure probability vectors 

obtained by the stochastic approach and Monte Carlo (MC) 

simulation [15] compared to an accurate analysis [36] for the PMS 

in Example 1. 

 𝑳/𝑵 = 1k 𝑳/𝑵 = 10k 
𝑳/𝑵 = 

100k 

‖∆𝑭𝑀𝐶−𝐴‖1 4.4711 0.9999 0.4660 

‖∆𝑭𝑀𝐶−𝐴‖2 0.2444 0.0448 0.0195 

‖∆𝑭𝑀𝐶−𝐴‖∞ 0.0189 0.0033 0.0012 

‖∆𝑭𝑆−𝐴‖1 0.6992 0.3157 0.1950 

‖∆𝑭𝑆−𝐴‖2 0.0369 0.0157 0.0115 

‖∆𝑭𝑆−𝐴‖∞ 0.0043 0.0013 0.0008 

Average 

run time 

(s) 

Stochastic 0.0556 0.3425 7.6772 

MC 0.2977 2.4170 23.302 

 

As shown by these simulation results, the stochastic approach 

can evaluate a PMS with non-exponentially distributed 

components at a high accuracy. As the encoding of a failure 

probability into a stochastic sequence is not limited to 

exponential distributions, a PMS with non-exponentially 

distributed basic components can be efficiently evaluated by 

the proposed stochastic approach using a reasonable sequence 

length. Hence, the proposed stochastic approach is applicable 

to both exponential and non-exponential distributions for a 

PMS analysis. 

As shown for the average run time, MC requires a longer 

simulation time than the stochastic analysis. For an accurate 

analysis, the exact expression is derived and the required 

computation time is very small (for example, the calculation 

time is 0.000797 second for Example 1). The runtime of the 

stochastic analysis may appear to be longer than an accurate 

analysis; however for an accurate analysis, the time to identify 

and decompose reconvergent fanouts in a PMS, and the time for 

dealing with dynamic behaviors and repeated components at 

different phases, are not included. If factors affecting system 

topology (such as common cause failures) are taken into 

account, the exact expression must be derived again. For the 

stochastic analysis, only minor changes (such as adding an 

extra module) need to be made; moreover, the execution of the 

stochastic approach can be parallelized to further reduce the run 

time due to the bit-wise independence of the random binary bit 

streams. 

 

 
Fig. 12 The average run time for 10 simulation runs of Example 1 using the 

stochastic approach and Monte Carlo (MC) simulation.  

 

B. Example 2 

Example 2 is adapted from [20], [37] and deals with the 

non-repairable PMS shown in Fig. 13(a). This PMS is 

simulated to assess the efficiency of the stochastic approach for 

a total mission time of 500 hours. The PMS consists of three 

consecutive non-overlapping phases and eight components. 

Furthermore, several common components exist in the PMS. 

The PMS contains a WSP and a dynamic PAND gate in phase 1 

and an FDEP gate in phase 3. Furthermore, the components of a 

system are considered to be subject to common cause failures 

(CCFs) that could be caused by events, such as earthquakes and 

design errors. Such CCFs usually occur on a probabilistic basis. 

At phase 1, a probabilistic common cause failure (PCCF) is 

considered to occur to the basic component G with a probability 

of 0.015. The probability that the affected basic component G 

fails due to a CCF, is assumed to be 0.8, i.e., 𝛾 = 0.8. 

 

A stochastic model can be constructed for the PMS shown in 

Fig. 13(a) using stochastic logic gates (as shown in Fig. 13(b)). 

For systems with perfect fault coverage, the FDEP is treated as 

an OR gate [33], [34]; moreover, the stochastic models in [30] 

and [35] are utilized for modeling the PAND gate, the WSP and 

PCCFs. Table 4 shows the exponentially-distributed failure 

rates of the components at different phases. Assume the 

durations of the three phases are 𝜏1 = 100 hours, 𝜏2 = 250 hours, 

and 𝜏3 = 150 hours. The failure probabilities for the  
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Fig. 13 (a) A PMS of three phases (adapted from [20], [37]) and (b) the stochastic model for the PMS in (a). 

 

components at different time points can be computed using (6). 

Both the stochastic computational approach and MC 

simulation [15] are applied to find the failure 

probability/reliability of the PMS at any mission time. The 

accuracy of the stochastic approach is compared with the MC 

simulation. The differences in the reliability vectors for the 

stochastic and the MC approaches with respect to the accurate 

analysis are given in Table 5. The disparity is indicated by the 

norm values. The average run times of the stochastic approach 

and MC method are also shown. 

As per the norms in Table 5, the proposed stochastic approach 

requires a shorter simulation time than the MC approach for the 

same value of sequence length/simulation runs. Therefore, the 

stochastic approach is more efficient than the MC method, and 
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provides a very accurate result with a reasonable sequence 

length.  

The failure probability for the PMS of Example 2 is plotted 

in Fig. 14 for a total mission time of 500 hours using the 

stochastic approach, while the difference between the obtained 

failure probability vectors for the stochastic and MC methods is 

calculated for different sequence lengths or numbers of 

simulation runs. ‖∙‖1, ‖∙‖2, and ‖∙‖∞ of the differences in the 

failure probability vectors obtained by the proposed stochastic 

and MC approaches are 0.7963, 0.0372 and 0.0041, 

respectively, for using a sequence length or sample size of 10k 

bits. 

 

Table 4 Input failure parameters ( 𝟏𝟎−𝟑/hour) for Example 2 with 

exponentially distributed failures for the basic components.  

Basic  

components 

Phase 1 

𝝉𝟏 = 100 hours 

Phase 2 

𝝉𝟐 = 250 hours 

Phase 3 

𝝉𝟑 = 150 hours 

A 1.0 2.0 1.5 

B 0.5 1.0 1.0 

C 3.0 2.0 1.0 

D 3.0 2.0 1.0 

E 1.5 1.0 2.0 

F 0.5 1.0 1.0 

G 2.0 1.0 1.0 

H 1.0 2.0 2.0 

I 
spare 1.0 

Does not appear at these phases 
working 2.0 

 
Table 5 Norms of the differences in the failure probability vectors 

obtained by the proposed stochastic approach and Monte Carlo 

(MC) simulation [15] for the PMS of Example 2 compared with an 

accurate analysis [36].  

 𝑵/𝑳 = 1k 𝑵/𝑳 = 10k 𝑵/𝑳 = 100k 

‖∆𝑭𝑀𝐶−𝐴‖1 5.0121 1.1826 0.5426 

‖∆𝑭𝑀𝐶−𝐴‖2 0.2523 0.0599 0.0257 

‖∆𝑭𝑀𝐶−𝐴‖∞ 0.0259 0.0078 0.0030 

‖∆𝑭𝑆−𝐴‖1 1.1054 0.5356 0.2165 

‖∆𝑭𝑆−𝐴‖2 0.0569 0.0214 0.0099 

‖∆𝑭𝑆−𝐴‖∞ 0.0060 0.0025 0.0011 

Average 

run 

time (s) 

Stochastic 0.8355 6.1081 63.508 

MC 2.6053 26.196 237.33 

 

 
Fig. 14 Failure probability of a PMS consisting of three stages for a mission 
time of 500 hours obtained by the proposed stochastic approach with a 

sequence length of 10k bits (the durations of the three phases are  𝜏1 = 100 

hours, 𝜏2 = 250 hours, and 𝜏3 = 150 hours). 

 

As can be seen from these results, the PMS (inclusive of 

static and dynamic gates, such as PAND, spare and FDEP gates) 

can be efficiently evaluated by the proposed stochastic 

approach, using the stochastic PAND, spare gate and FDEP 

models. Hence, a general PMS with dynamic behaviors can be 

evaluated by the stochastic approach, even under the effect of 

PCCFs. Moreover, the failures of common components in 

different phases can be effectively evaluated by the proposed 

stochastic models.  

VI. CONCLUSION 

A stochastic model has been proposed for the analysis of 

phased-mission systems (PMSs). A PMS consisting of 𝐻 

phases is represented by 𝐻  fault trees with each of them 

modeling the failure conditions of a phase. The fault tree for 

each phase can be constructed using stochastic logic gates. An 

OR gate model has been utilized to calculate the output 

stochastic sequence to indicate the failure probabilities of the 𝐻 

phases, i.e., for the entire system. Based on this analysis, the 

common components in different phases have been considered 

to determine whether their failure can cause the failure of the 

corresponding phase; different stochastic models have been 

proposed to compute the failure probabilities of the 

components for each phase. Furthermore, if dynamic behaviors 

(such as functional dependency and priority relationships) are 

included for the relationships between components, stochastic 

models for dynamic gates, such as the priority AND (PAND) 

and the functional dependency gates (FDEP), can be utilized 

for stochastic analysis of a system. Hence, the stochastic model 

of a general PMS can be constructed with stochastic logic gates. 

A general PMS has been evaluated approximately and 

efficiently using non-Bernoulli sequences of random 

permutations of fixed numbers of 1s and 0s as initial input 

probabilities. The accuracy of the stochastic analysis is affected 

by the simulated sequence length. In the case studies 

considered, it is shown that the accuracy of the stochastic 

approach is better than Monte Carlo simulation with the same 

number of runs. Furthermore, the stochastic approach is 

capable of considering any failure distribution of the basic 

components; both exponential and Weibull distributions of the 

basic components have been analyzed for the case studies 

considered. 
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