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 A Stochastic Computational Approach for 
Accurate and Efficient Reliability Evaluation 

Jie Han, Hao Chen, Jinghang Liang, Peican Zhu, Zhixi Yang and Fabrizio Lombardi 

Abstract— Reliability is fast becoming a major concern due to the nanometric scaling of CMOS technology. Accurate 
analytical approaches for the reliability evaluation of logic circuits, however, have a computational complexity that generally 
increases exponentially with circuit size. This makes intractable the reliability analysis of large circuits. This paper initially 
presents novel computational models based on stochastic computation; using these stochastic computational models (SCMs), 
a simulation-based analytical approach is then proposed for the reliability evaluation of logic circuits. In this approach, signal 
probabilities are encoded in the statistics of random binary bit streams and non-Bernoulli sequences of random permutations 
of binary bits are used for initial input and gate error probabilities. By leveraging the bit-wise dependencies of random binary 
streams, the proposed approach takes into account signal correlations and evaluates the joint reliability of multiple outputs. 
Therefore, it accurately determines the reliability of a circuit; its precision is only limited by the random fluctuations inherent in 
the stochastic sequences. Based on both simulation and analysis, the SCM approach takes advantages of ease in 
implementation and accuracy in evaluation. The use of non-Bernoulli sequences as initial inputs further increases the 
evaluation efficiency and accuracy compared to the conventional use of Bernoulli sequences, so the proposed stochastic 
approach is scalable for analyzing large circuits. It can further account for various fault models as well as calculating the soft 
error rate (SER). These results are supported by extensive simulations and detailed comparison with existing approaches. 

Index Terms— B.2.3 Reliability, Testing, and Fault-Tolerance, B.7.2 Reliability and Testing, Error-checking, Fault injection, G.3 
Probabilistic algorithms, Random number generation. 

——————————      —————————— 

1 INTRODUCTION
HE nanometric scaling of CMOS technology has in-
troduced substantial challenges in circuit design; the 
higher integration density and lower volt-

age/current thresholds have increased the likelihood of 
soft errors. Process variations have prominently emerged 
to impact the performance and degrade the reliability of 
electronic circuits [1]. Process variations are due to ran-
dom dopant fluctuation or manufacturing imprecision in 
the CMOS fabrication process. These physical-level char-
acteristics have subsequently resulted in probabilistic 
device and circuit behavior. Novel nanoelectronic devic-
es (such as carbon nanotubes, silicon nanowires, 
graphene and molecular electronics) have non-
deterministic characteristics due to the uncertainty in-
herent in their operational behavior, so emerging tech-
nologies have significant limitations for reliable opera-
tion. Reliability has, therefore, become a major concern 
and probabilistic design methodologies are needed for 
assembling reliable circuits and systems out of unreliable 
devices [2-4]. 

     To meet this increasing demand on reliable design, 
several analytical approaches have been proposed for the 
reliability evaluation [5-15] and soft error rate (SER) 
analysis of logic circuits [16-26]. Soft errors are typically 
caused by temporary environmental phenomena, such as 
external radiation or power supply noise [23]. In contrast 
to the general definition of reliability, i.e., the probability 
of the correct functioning of a circuit, SER has been used 
as a measure on the vulnerability of a circuit under the 
influence of soft errors. While reliability evaluation tech-
niques are essential at the core of an SER analysis, an SER 
analyzer often considers various technology-dependent 
factors such as the electrical and timing effects of single 
event upsets.  

An analytical evaluation can be readily accomplished 
for small circuits with no loss of accuracy. As a circuit 
becomes large, it becomes difficult, if not impossible, to 
implement an exact analysis of its reliability. This is due 
to the signal correlation caused by reconvergent fanouts 
in combinational circuits and/or feedback loops in se-
quential circuits. Usually, a compromise is made on the 
accuracy of the evaluation, and simulation has emerged 
as a possible solution. In a simulation-based approach, 
experimental data are gathered to characterize the behav-
ior of a circuit by randomly sampling its activity. As an 
example, Monte Carlo simulation (MCS) has been widely 
used when an analytical approach is not available or easy 
to use. A disadvantage of simulation using random vec-
tors is that numerous pseudo-random numbers need to 
be generated and a large number of simulation runs 
must be executed to reach a stable output, so making the 
evaluation of large circuits a very time-consuming pro-
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cess.  
     The design of nanometric integrated circuits requires 
tools that accurately and efficiently compute reliability; 
this is a stringent requirement in mission critical applica-
tions. For space systems, SER is often concerned. Hence, 
there is an urgent need to develop a unifying technical 
framework by which reliable design can be assessed with 
respect to different metrics (such as reliability and SER), 
while still retaining flexibility (as technology independ-
ence). A computational framework should also be appli-
cable to a variety of fault models that can be encountered 
when designing such systems. Hence, permanent faults 
(such as stuck-at) and errors (such as of a transient/soft 
nature) should be handled. The proposed approach 
meets these objectives. 
     In this paper, a simulation-based analytical approach is 
presented for an accurate and efficient evaluation of the 
reliability of a circuit. Using random binary bit streams 
to encode signal probabilities, this approach originates 
from the mathematical formulations of stochastic compu-
tation [27, 28] and probabilistic gate models (PGMs) [7-
9]. Stochastic computational models (SCMs) are con-
structed to implement the probabilistic analysis per-
formed by PGMs, thus enabling an accurate analysis of 
circuit reliability. Differently from a traditional applica-
tion of stochastic computation [29-32], this approach em-
ploys and leverages the bit-wise dependencies in the 
random binary streams to efficiently handle signal corre-
lations caused by recovergent fanouts or feedback loops 
in logic circuits. Hence, this approach avoids the large 
complexity typically encountered in a traditional analyti-
cal approach. Although the SCM approach implements 
accurate analytical algorithms with an efficient simula-
tion, its evaluation precision is limited by inherent fea-
tures of stochastic computation, such as the quantization 
and resolution in the representation of the binary bit 
streams and the random permutation in the stochastic 
sequences. A detailed analysis and an extensive compari-
son with existing approaches show that the SCM ap-
proach offers considerable advantages with respect to 
accuracy, execution efficiency and flexibility, especially 
in the evaluation of large circuits. 
     In contrast to methods based only on the simulation of 
random vectors, SCMs explicitly carry out the computa-
tion of signal probabilities, so they are generic and versa-
tile for use in both algorithmic development and applica-
tions. This feature is shown by modeling various fault 
types and evaluating the joint signal probability. In con-
trast to the conventional use of Bernoulli sequences in 
stochastic computation, non-Bernoulli sequences (as ran-
dom permutations of fixed numbers of 1’s and 0’s) are 
used in this paper for initial input and gate error proba-
bilities. It is shown by both analysis and simulation that 
the use of non-Bernoulli sequences significantly increases 
the efficiency and accuracy of the stochastic approach. 
The proposed approach is therefore advantageous in 
terms of evaluation efficiency and accuracy when com-
pared to a random sampling method, such as the Monte 
Carlo simulation.  
     This paper is a significant expansion of [15] and is 
organized as follows. Section 2 reviews PGMs. Section 3 

presents the new stochastic logic. Section 4 discusses the 
stochastic computational approach for circuit reliability 
analysis. Its efficiency and accuracy are assessed in Sec-
tions 5 and 6 respectively. Extensive simulation results 
are provided in Section 7 with a detailed comparison 
with existing approaches. Section 8 presents a discussion 
and Section 9 concludes the paper.   

2 PROBABILISTIC GATE MODELS (PGMS) 
2.1 Probabilistic Logic 

Most faults in nanometric logic circuits either are in-
herently probabilistic, or can be modeled probabilistical-
ly. Therefore, the reliability analysis of logic circuits has 
been based on the probabilistic treatment of signals [2]. 
The signal probability of an input or output of a logic gate 
is usually defined as the probability that the signal is 
logical “1.” A logic function transforms its inputs to its 
output probability. The reliability of an output is defined 
as the probability of the output with an expected logic 
value of “1,” or its complement otherwise. Given inde-
pendent inputs, Boolean functions can be mapped to 
arithmetic operations of signal probabilities, by the fol-
lowing rules [2, 3]: 
Rule I: Boolean “NOT,” or 𝐵 = 𝐴̅, corresponds to                                                 

                     𝑏 = 1 − 𝑎,                                              (1) 

where 𝑏 = 𝑃(𝐵 = 1) and 𝑎 = 𝑃(𝐴 = 1). 
Rule II: Boolean “AND,” or 𝐶 = 𝐴𝐵, corresponds to  

                     𝑐 = 𝑎 ∙ 𝑏,                                                (2) 

where 𝑐 = 𝑃(𝐶 = 1), 𝑏 = 𝑃(𝐵 = 1) and 𝑎 = 𝑃(𝐴 = 1). 
Rule III: Boolean “OR,” or 𝐶 = 𝐴 + 𝐵, corresponds to  

                     𝑐 = 𝑎 + 𝑏 − 𝑎 ∙ 𝑏,                                  (3) 

where 𝑐 = 𝑃(𝐶 = 1), 𝑏 = 𝑃(𝐵 = 1) and 𝑎 = 𝑃 (𝐴 = 1).     
     However, if the input signals are not mutually inde-
pendent, then the corresponding probability function 
may change. For example, the following rule maps the 
Boolean “AND” with two input signals that are totally 
dependent. 
Rule IV: Boolean “AND” of a signal 𝐴  with itself, or 
𝐶 = 𝐴𝐴, corresponds to  

                     𝑐 = 𝑎,                                                    (4) 

where 𝑐 = 𝑃(𝐶 = 1), and 𝑎 = 𝑃(𝐴 = 1). 
Proof: 
𝑐 = 𝑃(𝐶 = 1) = 𝑃(𝐴 = 1,𝐴 = 1) = 𝑃(𝐴 = 1) = 𝑎.         □ 
     By applying “AND,” “OR” and “NOT,” any Boolean 
logic function can be mapped to an arithmetic equation 
of signal probabilities. 

2.2 PGMs for Reliability Evaluation 
     A probabilistic gate model (PGM) relates the output 
probability of a gate to its input and error probabilities; 
this is accomplished according to the function and mal-
function (such as in the presence of an error) of the gate 
[9]. In general, the output probability of a gate can be 
calculated by the following equation, 
Z = P(output “1”|gate faulty)• P(gate faulty) +  

 P(output “1”|gate not faulty)• P(gate not faulty). (5)                                                                                                                                                            
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     Consider a von Neumann fault, i.e., a fault that flips the 
correct output of a gate and resembles the behavior of a 
soft error. Let  𝜀 denote the error rate, i.e., 
𝜀 = 𝑃(𝑔𝑎𝑡𝑒 𝑓𝑎𝑢𝑙𝑡𝑦), and p, the fault-free output probabil-
ity, i.e., 𝑝 = 𝑃(𝑜𝑢𝑡𝑝𝑢𝑡 “1”|𝑔𝑎𝑡𝑒 𝑛𝑜𝑡 𝑓𝑎𝑢𝑙𝑡𝑦). The following 
equation is then applicable to any logic gate/function for 
the calculation of its output probability, 

           𝑍𝑣 = (1 − 𝑝) ∙ 𝜀 + 𝑝 ∙ (1 − 𝜀).                        (6) 

     Stuck-at faults can also be modeled in a PGM. For a 
stuck-at-1 fault, (6) becomes  

          𝑍𝑆𝐴1 = 𝜀 + 𝑝 ∙ (1 − 𝜀).                                     (7) 

     For a stuck-at-0 fault, this is given by    

           𝑍𝑆𝐴0 = 𝑝 ∙ (1 − 𝜀).                                          (8) 

An accurate algorithm using the PGMs accounts for 
signal dependencies in a circuit [9]. If all inputs are mu-
tually independent, reconvergent fanouts are the only 
topological structures that introduce signal correlations 
in a circuit with no feedback. Signal correlations can be 
eliminated by decomposing a circuit into two sub-
circuits for each reconvergent fanout. When all 
reconvergent fanouts are eliminated by this fanout de-
composition, the gate PGMs can then be applied to ob-
tain the reliability of the original circuit. As the required 
computation almost doubles for each reconvergent 
fanout, however, the PGM algorithm has a computation-
al complexity that increases exponentially with the num-
ber of dependent reconvergent fanouts [9]. As applicable 
to any analytical approach, the accurate analysis of large 
circuits is therefore likely to be intractable due to its very 
large computational overhead. 

3 STOCHASTIC LOGIC USING NON-BERNOULLI 
SEQUENCES 

3.1 Stochastic Logic  
In stochastic computation, signal probabilities are encod-
ed into binary bit streams, i.e., serially in the time do-
main. Randomly generated bit streams are used to en-
code signal probabilities; a specific probability is repre-
sented by a number of bits set to a value that is usually in 
proportion to the mean number of 1’s in a bit stream. Fig. 
1 shows a stochastic encoding and an inverter. As Boole-
an operations can be mapped to arithmetic operations, 
the inverter probabilistically implements the comple-
ment operation of Rule I. Note that in Fig. 1, a sequence 
length of 10 bits is used for illustration purposes; a larger 
sequence length is usually needed in practice.  

              Fig. 1. An inverter and a stochastic encoding. 
Stochastic computation transforms Boolean logic op-

erations into probabilistic computations in the real do-
main. Although each binary bit is processed by a Boolean 
gate, signal operations are no longer Boolean in nature, 
but they are arithmetic computations by stochastic logic. 

Bernoulli sequences are often used as binary bit streams 
in stochastic computation [28, 29]. In a Bernoulli se-
quence, every bit is independently generated with a 
probability p. The mean and variance of the number of 
1’s in an N-bit Bernoulli sequence are respectively given 
by  

𝜇 = 𝑁𝑝,                                   (9) 
and 

𝑣 = 𝑁𝑝(1 − 𝑝).                            (10) 
For the inverter of Fig. 1 , if the input probability is a, 

the mean number of 1’s in its output sequence is 
𝜇1 = 𝑁(1 − 𝑎),                         (11) 

and the variance is 
𝑣1 = 𝑁𝑎(1 − 𝑎).                        (12) 

This is the same as the variance of the input sequence. 
Complex arithmetic operations can be implemented 

by simple stochastic logic. According to Rule II, for in-
stance, multiplication can be implemented by an AND 
gate, as shown in Fig. 2(b). In this multiplication, the in-
put binary streams must not be correlated for a correct 
computation. However, the bit-wise dependencies be-
tween the input random binary streams can be used to 
yield new stochastic logic models that account for the 
statistical correlation in input signals. This is shown in 
Fig. 2(a) as a general stochastic model of AND in which 
the two input signals may be correlated.  

 
 
 
 
 
 
 
 
 
Fig. 2. Stochastic AND logic: (a) the general model; (b) the 

special case of multiplication, when the two inputs are statisti-
cally independent. 

If the inputs of the AND are two independent Ber-
noulli sequences with generating probabilities a and b 
respectively, the mean number of 1’s in the output se-
quence is:  

𝜇2 = 𝑁𝑎𝑏,                                       (13) 
and the variance is given by: 

𝑣2 = 𝑁𝑎𝑏(1 − 𝑎𝑏).                         (14) 

     For the AND gate in Fig. 2(a) with possibly correlated 
inputs, 
              𝑃(𝐶 = 1) = 𝑃(𝐴 = 1,𝐵 = 1) 

        = 𝑃(𝐴 = 1)𝑃(𝐵 = 1|𝐴 = 1).                 (15) 
Let 𝑎 = 𝑃(𝐴 = 1), 𝑏 = 𝑃(𝐵 = 1) and 𝑝𝑐 = 𝑃(𝐵 = 1|𝐴 = 1); 
then 

𝑃(𝐶 = 1) = 𝑎𝑝𝑐.                                (16) 
     The use of Bernoulli sequences as inputs results in a 
Bernoulli sequence at the output with a generating prob-
ability given by (16); therefore, the mean number of 1’s in 
the output sequence and its variance are given by: 
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𝜇2,𝑔 = 𝑁𝑎𝑝𝑐,                                (17) 
and 

𝑣2,𝑔 = 𝑁𝑎𝑝𝑐(1 − 𝑎𝑝𝑐),                        (18) 
respectively.      
     The use of Bernoulli sequences however incurs a large 
computational overhead that severely limits its applica-
tion for reliability analysis. This aspect is addressed 
through the use of non-Bernoulli sequences, as discussed 
next. 

3.2 Non-Bernoulli Sequences 
     In this work, non-Bernoulli sequences are used for 
reducing the computational overhead and inaccuracy. 
Specifically, each initial input stochastic sequence con-
tains a fixed number of 1’s and the positions of the 1’s are 
determined by a random permutation. For a given prob-
ability p and a sequence length of N bits, the number of 
1’s to be generated is given by Np. When Np is not an 
integer, it must be rounded to an integer, thus introduc-
ing a quantization error into the representation. The ef-
fect of quantization errors is discussed in a later section; 
the output distributions of the inverter and AND gate 
when non-Bernoulli sequences are used as inputs, are 
treated in more detail next.  
     For an inverter, assume that the input has a probabil-
ity of a to be “1”; so Na is the number of 1’s in the input 
sequence of N bits. Then the expected value of 1’s in the 
output sequence is given by: 

𝜇1′ = 𝑁(1 − 𝑎).                               (19) 
Since there is no variation in the input, the variance in 
the output is considered to be 0, i.e.,  

𝑣1′ = 0.                                      (20) 
     For an AND gate, the use of the non-Bernoulli se-
quences resembles von Neumann’s NAND multiplexing 
technique, as discussed in [33 – 37, 40] for fault-tolerant 
logic design. The following Lemma shows that its output 
follows approximately a Gaussian distribution when the 
sequence length N is large. 

Lemma 1: For an AND gate, assume that the two inputs 
are “1” with probabilities a and b and represented by 
non-Bernoulli sequences of N bits (as random permuta-
tions of fixed numbers of 1’s and 0’s). For a large N, the 
output sequence follows a Gaussian distribution with a 
mean number of 1’s given by: 

𝜇2′ = 𝑁𝑎𝑏,                                (21) 
and a variance: 

𝑣2′ = 𝑁𝑎(1 − 𝑎)𝑏(1 − 𝑏).                (22) 
Proof: The two input probabilities a and b give r=aN and 
s=bN as the numbers of 1’s in the input sequences. In 
these two inputs, the numbers of possible permutations 
are: 

𝐶𝑎 = �𝑁𝑟 � = 𝑁!
𝑟!(𝑁−𝑟)!

,                           (23) 
and  

𝐶𝑏 = �𝑁𝑠 � = 𝑁!
𝑠!(𝑁−𝑠)!

,                           (24) 
respectively. Assume that the AND gate produces t 1’s in 
the output sequence; then, the number of permutations 
that causes this occurrence, 𝐶𝑜, can be obtained by com-
binatorial analysis [33, 40]. This leads to: 

𝐶𝑜 = �𝑁𝑡 � �
𝑁 − 𝑡
𝑟 − 𝑡� �

𝑁 − 𝑟
𝑠 − 𝑡 �

=
𝑁!

𝑡! (𝑟 − 𝑡)! (𝑠 − 𝑡)! (𝑁 − 𝑟 − 𝑠 + 𝑡)!
 

(25) 
The probability that t 1’s result in the output sequence, is 
given by the number of output permutations divided by 
the total possible number of input permutations, i.e.,  

𝑃(𝑡) = 𝐶𝑜
𝐶𝑎𝐶𝑏

= 𝑟!(𝑁−𝑟)!𝑠!(𝑁−𝑠)!
𝑡!(𝑟−𝑡)!(𝑠−𝑡)!(𝑁−𝑟−𝑠+𝑡)!𝑁!

.           (26) 
Assume that the expected output probability is z, and 
therefore 

𝑧 = 𝑡
𝑁

.                                               (27) 
As per [33], the application of Stirling’s formula results in: 

𝑃(𝑧)~ 1
√2𝜋𝑁

�𝛽𝑒−𝜃𝑁,                               (28) 
where 

 𝛽~ 1
𝑎(1−𝑎)𝑏(1−𝑏)

,                                     (29) 

 𝜃~ (𝑧−𝑎𝑏)2

2𝑎(1−𝑎)𝑏(1−𝑏)
.                                    (30) 

(28), (29) and (30) indicate that the output sequence fol-
lows approximately a Gaussian distribution with a mean 
number of 1’s given by (21) and a variance given by (22).
              □ 

3.3 Non-Bernoulli vs. Bernoulli Sequences 
Next, the comparison between the use of Bernoulli 

and non-Bernoulli input sequences in stochastic logic is 
pursued. For an inverter, it is easy to find that (19) = (11) 
and (20) = 0. This indicates that the use of non-Bernoulli 
input sequences results in a deterministic output value 
equal to the mean value of the one by using Bernoulli 
input sequences. For an AND gate, the following theo-
rem applies for independent inputs.  
Theorem 1: Compared to the case when Bernoulli se-
quences are used to represent input probabilities, the use 
of large non-Bernoulli sequences as random permuta-
tions of fixed numbers of 1’s and 0’s results in an output 
sequence with the same mean number of 1’s and a small-
er variance for an AND gate when its inputs are inde-
pendent.  
Proof: From Lemma 1, it can be seen that (21) = (13) and 
         𝑣2 − 𝑣2′ = 𝑁𝑎𝑏(1 − 𝑎𝑏) −𝑁𝑎(1 − 𝑎)𝑏(1 − 𝑏) 

= 𝑁𝑎𝑏(𝑎(1 − 𝑏) + 𝑏(1 − 𝑎)) ≥ 0,        (31) 
so proving the theorem.             □ 

     The general case of correlated inputs is considered as 
follows. When non-Bernoulli sequences are used as in-
puts, the random permutation allows for some random-
ness in the inputs, albeit with a correlation between them. 
Without loss of generality, assume that input A is first 
generated; input B is then generated conditionally on A. 
For the 1’s in the sequence of A, further assume that the 
corresponding bits in B are generated as a Bernoulli se-
quence with probability 𝑝𝑐. For the 0’s in the sequence of 
A, subsequently, the number of 1’ in the corresponding 
bits in B is actually determined due to the nature of the 
non-Bernoulli sequence used to represent the input B. 
Since the number of 1’s in the sequence of A is Na, the 
mean number of 1’s in the corresponding bits in B and its 
variance are given by:  

𝜇2,𝑔
′ = 𝑁𝑎𝑝𝑐,                              (32) 
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and 
𝑣2,𝑔
′ = 𝑁𝑎𝑝𝑐(1 − 𝑝𝑐).                        (33) 

The combinations of 1’s in inputs A and B produce the 
1’s in the output sequence, so the mean number of 1’s at 
the output and the variance are given by (32) and (33) 
respectively for an AND gate with non-Bernoulli input 
sequences that may be correlated. 
     Hence, it can be seen that (17) = (32) and from (18) and 
(33),  

𝑣2,𝑔 − 𝑣2,𝑔
′ = 𝑁𝑎𝑝𝑐(1 − 𝑎𝑝𝑐) − 𝑁𝑎𝑝𝑐(1 − 𝑝𝑐) 

=  𝑁𝑎𝑝𝑐2(1 − 𝑎) ≥ 0.               (34) 
This indicates that, when compared to Bernoulli input 
sequences, the use of non-Bernoulli input sequences as 
random permutations of fixed numbers of 1’s and 0’s 
results in an output sequence with the same mean num-
ber of 1’s and a smaller variance for an AND gate when 
its inputs may be correlated.  

As in [29], the accuracy of an evaluation result can be 
measured by the coefficient of variation (CV). The CV is 
defined as the ratio between the standard deviation and 
the mean, i.e.,  

𝐶𝑉 = 𝜎
𝜇
 .                                       (35) 

     For an AND gate, the following corollary applies for 
independent inputs.  
Corollary 1: For a specific accuracy given by a CV, the use 
of large non-Bernoulli sequences as random permuta-
tions of fixed numbers of 1’s and 0’s requires a smaller 
sequence length than using Bernoulli sequences for the 
independent input probabilities of an AND gate.  
Proof: As per (21), (22) and (35), the required sequence 
length for the use of non-Bernoulli sequences is given by: 

𝑁𝑁𝐵 = (1−𝑎)(1−𝑏)
𝑎𝑏(𝐶𝑉)2

.                                (36) 
Similarly, the required sequence length for using Ber-
noulli sequences is given by: 

𝑁𝐵 = 1−𝑎𝑏
𝑎𝑏(𝐶𝑉)2

.                                   (37) 
It is easy to show that 𝑁𝐵 > 𝑁𝑁𝐵 for 𝑎 ≠ 1 or 𝑏 ≠ 1, thus 
proving the corollary.              □ 
     Based on the analysis leading to (34), it can be shown 
that the use of non-Bernoulli sequences requires also a 
smaller sequence length than using Bernoulli sequences 
for an AND gate with correlated inputs. 
     Any logic function can be implemented with inverters 
and AND gates; so, a smaller variance in the output of 
AND gates (as achieved by using the non-Bernoulli in-
puts) will result in a smaller variance in the output of a 
function implemented with inverters and AND gates. 
Also, the same mean value results from the use of non-
Bernoulli and Bernoulli inputs. In a logic network, there-
fore, the use of non-Bernoulli and Bernoulli sequences as 
initial inputs will produce evaluation results with the 
same mean, but different variance; the former method 
results in a smaller variance than the latter method. 
     We conjecture this result as follows: compared to the 
case when Bernoulli sequences are used to represent ini-
tial input probabilities, the use of large non-Bernoulli 
sequences as random permutations of fixed numbers of 
1’s and 0’s results in an output sequence with the same 
mean number of 1’s and a smaller variance for a combi-

national logic network. Therefore, the use of non-
Bernoulli sequences requires a smaller sequence length at 
a desired accuracy.  

3.4 Signal Correlations in Stochastic Logic 
Signal correlations are accounted in stochastic logic, as 

shown as follows. If an AND gate has two independent 
random bit streams 𝑋1 and 𝑋2 as inputs, then its output 
will be a sequence encoding  𝑍 = 𝑋1𝑋2 = 0.81  for 
𝑋1 = 𝑋2 = 0.9. If the inputs are not independent, the out-
put will depend on the correlation of the two input sig-
nals. If the two inputs are fully dependent, as shown in 
Fig. 3, then it results in 𝑍 = 𝑋1 = 𝑋2 = 0.9. This complies 
with Rule IV.  

Fig. 3. Signal correlation in stochastic logic pro-
cessing: 𝑿𝟏 and 𝑿𝟐 are fully correlated inputs.  

A more general case of signal correlation is caused by 
a reconvergent fanout, as shown in Fig. 4. In this case, 
even though the inputs A, B and C are independent, the 
random binary streams carrying the signals of 𝑋1  and 
𝑋2 originate from the same root (i.e. B); therefore, they 
are statistically correlated. Due to the bit-wise dependen-
cy in the two correlated stochastic sequences, the signal 
correlation is accounted in the output sequence when the 
signals reconverge at the output D. This output probabil-
ity can be calculated as 
𝐷 = 𝑃(𝑋1𝑎𝑛𝑑 𝑋2) = 𝑃�(𝐴 𝑎𝑛𝑑 𝐵) 𝑎𝑛𝑑 (𝐵 𝑎𝑛𝑑 𝐶)� =
𝑃(𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑛𝑑 𝐶) = 0.5 × 0.8 × 0.5 = 0.2 . This is differ-
ent from the independent case; if 𝑋1 and 𝑋2 were inde-
pendent, the output probability would be 𝐷 = 𝑋1𝑋2 =
0.1.      

This feature of stochastic computation is applicable to 
any logic function. For example, a stochastic OR gate 
implements the probabilistic analysis given by Rule III as 
a special case for independent inputs; in the general case, 
it computes 𝑃(𝐶) = 𝑃(𝐴 𝑜𝑟 𝐵).  

Fig. 4. A general case of signal correlation in stochastic 
logic processing: the correlated signals are 𝑿𝟏 and 𝑿𝟐. 

      
A stochastic XOR gate computes 𝑃(𝐶 = 1) =

𝑃((𝐴 = 1 𝑎𝑛𝑑 𝐵 = 0) 𝑜𝑟 (𝐴 = 0 𝑎𝑛𝑑 𝐵 = 1))  in general; 
for independent inputs, it computes  𝑃(𝐶 = 1) =
𝑃(𝐴 = 1) ∙ �1 − 𝑃(𝐵 = 1)� + (1 − 𝑃(𝐴 = 1)) ∙ 𝑃(𝐵 = 1)  as 
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a special case. Hence, stochastic logic implements a cor-
responding probabilistic operation as dictated by a map-
ping rule or a combination of rules; at the same time, it 
maintains the signal correlations present in the random 
binary bit streams. 
4     A STOCHASTIC APPROACH FOR 

CIRCUIT RELIABILITY EVALUATION 
4.1 Stochastic Computational Models (SCMs) 

This computational capability of stochastic logic al-
lows the numerical evaluation of circuit reliability using 
stochastic computational models (SCMs). SCMs are based 
on the operation of stochastic logic and the notions of 
PGMs. As discussed previously, any gate affected by a 
von Neumann fault can be modeled by (6). In fact, (6) can 
be implemented by the stochastic logic of an XOR gate 
[15], as follows:  

        𝑋𝑂𝑅𝑠𝑡𝑜(𝑝, 𝜀) = 𝑝(1 −  𝜀) + (1 − 𝑝)𝜀,             (38) 

where p is the fault-free output probability and ε is the 
gate error rate. The special case of a stochastic XOR is 
used to compute (6) because gate errors are assumed to 
occur independently. The general model must be used if 
there is a correlation between the gate error and the in-
put signals. (38) shows that regardless of the type of logic 
gate modeled by PGM, (6) can be implemented by a sto-
chastic XOR logic. Therefore, an SCM can be obtained by 
adding an XOR gate to an unreliable gate and using an 
input of XOR to implement the gate error rate. This is 
shown in Fig. 5, in which an unreliable AND gate (Fig. 
5(a)) is implemented by a general stochastic structure 
(Fig. 5(b)) and an SCM with an XOR gate (Fig. 5(c)). In 
this case, 

         𝑝 = 𝑃(𝑋1 = 1 𝑎𝑛𝑑 𝑋2 = 1),                      (39) 

and the XOR gate computes (38).       
In addition to the von Neumann fault that was origi-

nally modeled in [15], the stuck-at faults can also be 
modeled by SCMs. For (7) considering a stuck-at-1 fault, 
an SCM can be constructed by adding an OR gate to the 
unreliable gate and using an input of the OR to imple-
ment the gate error rate, as  

𝑂𝑅𝑠𝑡𝑜(𝑝, 𝜀) = 𝑝 + 𝜀 − 𝑝 ∙  𝜀 = 𝜀 + 𝑝 ∙ (1 − 𝜀).     (40) 

For a stuck-at-0 fault, AND and NOT gates are used to 
implement the function of (8):  

            𝐴𝑁𝐷𝑠𝑡𝑜(𝑝, 𝜀)̅ = 𝑝 ∙ (1 − 𝜀).                         (41) 

The SCMs for an unreliable AND gate affected by 
stuck-at-1 and stuck-at-0 faults are shown in Fig. 5 (d) 
and (e) respectively. 

As indicated in (38), (40) and (41), an SCM is univer-
sal, because it can be constructed for an arbitrary logic 
gate. Moreover, it also masks errors through the function 
of a logic gate; so logic masking is explicitly considered 
in an SER analysis. Signal correlations are inherently ac-
counted, so the use of SCMs significantly reduces the 
computational complexity of a probabilistic analysis by 
using redundancy in the time domain and stochastic log-
ic for processing and calculating the gate error rate.                                                                                             

Fig. 5. (a) An unreliable AND gate; (b) A stochastic logic imple-
mentation; (c) A stochastic computational model (SCM) for the 
von Neumann fault; (d) An SCM for the stuck-at-1 fault; (e) An 
SCM for the stuck-at-0 fault. 

4.2 Reliability Evaluation by SCMs 
A stochastic computational network can be construct-

ed using the SCMs for reliability evaluation of a circuit. 
The output probabilities are obtained by using stochastic 
sequences as inputs and propagating them from the pri-
mary inputs to the outputs. A logic circuit may contain 
more than one primary output. Individual output relia-
bilities have been considered in [15]; in this paper, we 
consider the joint output reliability. As output signal 
probabilities are encoded by the proportion of 1’s in the 
output stochastic sequences, signal correlation is pre-
served in the distribution pattern. Let A, B, C, D be the 
output signals that may be correlated, then the output of 
a stochastic AND logic is given by 

𝐴𝑁𝐷𝑠𝑡𝑜(𝐴,𝐵,𝐶,𝐷) = 𝑃(𝐴 = 1,𝐵 = 1,𝐶 = 1,𝐷 = 1).   (42) 

By (42), a stochastic AND gate produces an output se-
quence containing the common 1’s in all outputs; so it 
evaluates the joint output probability of A, B, C and D, i.e., 
the probability that all outputs are “1.” A joint probability 
of the outputs can thus be calculated by applying a sto-
chastic AND, that takes into account the signal correla-
tions among output signals. (42) is still applicable when 
signal correlations among a few (but not all) outputs are 
of interest [22], i.e., by specifying the irrelevant outputs 
as sequences of all 1’s.  
    As the output signal probability is the probability of 
the output being “1,” the output reliability is the output 
signal probability if the fault-free output is expected to 
be 1 (or, the complement of the output signal probability 
otherwise). Hence, a stochastic XOR gate with one in-
verted input is used to convert the output probability 
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into reliability by either keeping or flipping the output 
sequence from each output of an unreliable circuit ac-
cording to the correct output value (as generated by the 
equivalent fault-free circuit). The joint output reliability 
can then be obtained by the output sequence of the AND 
gate that takes the outputs of the XOR gates as (correlat-
ed) input probabilities. The proposed SCM approach is 
demonstrated by an example of the benchmark circuit 
C17, as shown in Fig. 6. The von Neumann fault is used 
for illustration purposes.  

Fig. 6. A stochastic architecture using SCMs for the evaluation 
of circuit reliability (for C17). Sub-circuit 1: the stochastic 
computational circuit; sub-circuit 2: the original fault-free 
circuit. 

A general evaluation procedure is as follows: 
1.  Construct the stochastic computational architecture 

by adding stochastic logic gates according to a specific 
type of fault (Fig. 5), as well as XOR and AND gates for 
obtaining the joint output reliability;  

2.  Generate initial random bit streams encoding sig-
nal probabilities of the primary inputs and gate error 
rates in the circuit; 

3.  Propagate the binary streams from the primary in-
puts to the output and obtain the stochastic bit stream at 
the output;  

4.  Decode the signal probability as the joint output re-
liability of the circuit from the obtained output sequence. 

In SCMs, signal probabilities are carried in the ran-
dom binary bit streams, while signal dependencies are 
preserved in the stochastic logic network. Hence, the 
reliability found using the SCM approach is accurate. 
However, the precision of the obtained result is limited 
due to the inevitable random fluctuations in stochastic 
computation. The efficiency and accuracy of the SCM 
approach are discussed next.  

5 EFFICIENCY  
In this section, the efficiency of the proposed SCM 

approach is analyzed. Efficiency is affected by various 
features as related to the circuit structure and the simula-
tion process itself. 
5.1 Signal Correlation 

Due to signal correlation, an accurate analytical ap-
proach requires a computational complexity that increas-
es exponentially with the number of reconvergent 
fanouts. This makes it difficult, if not impossible, to eval-
uate the reliability of large circuits. A significant feature 
of the SCM approach is that it efficiently handles signal 
correlation introduced by reconvergent fanouts, as dis-

cussed in Section 3, thus significantly reducing the com-
putational complexity. Although not explicitly present-
ed, signal correlation due to feedbacks in sequential cir-
cuits can similarly be handled; hence, the proposed SCM 
approach is also applicable to the analysis of sequential 
circuits.  

5.2 Simulation Efficiency 
5.2.1 Pseudo-random number generation 
     A simulative approach such as Monte Carlo simula-
tion (MCS) is based on fault injections and random pat-
tern simulations. In MCS, pseudo-random numbers are 
independently generated for each gate and input to pro-
duce a random pattern that mimics the behavior of an 
erroneous circuit. Typically, a large number of random 
patterns must be simulated; the circuit reliability is then 
calculated based on the resulting statistical outcome. The 
efficiency of MCS is therefore limited by two factors: 1) 
the required number of pseudo-random number genera-
tions in a single simulation run and 2) the required num-
ber of simulation runs to obtain a stable output. As an 
example, consider a circuit with Nin primary inputs and 
Ng gates; if a total number of M simulations are required 
to achieve convergence in the statistical output, then the 
required number of pseudo-random number generations 
is given by NMCS = ( Ng  + Nin ) × M.  
     In contrast, the proposed SCM approach explicitly and 
efficiently implements analytical algorithms as well as 
taking advantage of statistical randomness in simulation. 
As discussed in Section 3, however, it is sufficient to use 
non-Bernoulli sequences with fixed numbers of 1’s (and 
0’s) as initial random binary streams rather than the Ber-
noulli sequences usually required in a random simula-
tion approach. For a sequence length of N bits and a gate 
error rate 𝜀, only 𝑁𝜀  pseudo-random numbers must be 
generated (for the positions of 1’s) in the representation 
of the error probability 𝜀. An equivalent MCS would re-
quire the generation of N pseudo-random numbers. As 𝜀 
usually has a (very) small value, the number of required 
generations of pseudo-random numbers is significantly 
reduced in the SCM approach. 

5.2.2 Convergence rate 
     The use of non-Bernoulli sequences as random permu-
tations of fixed numbers of 1’s (and 0’s) does not only 
produce accurate evaluation results (as discussed in Sec-
tion 3), but also leads to a smaller variance and thus, to a 
faster convergence of the output value compared to the 
conventional use of Bernoulli sequences in MCS. 
     Fig. 7 shows a comparison of the simulation results for 
C432 using SCM with the non-Bernoulli sequences and 
MCS (as equivalent to the use of Bernoulli sequences). 
While both approaches produce the same evaluation re-
sult (given by the mean value of 0.7969 for SCM and 
0.7970 for MCS), there is a clear difference in the output 
distributions of the evaluation results: each approach 
leads to a Gaussian distribution with a different standard 
deviation. Specifically, the SCM approach results in a 
standard deviation of 0.0054 (as shown in Fig. 7(a)), 
while for MCS, 0.0128 (as shown in Fig. 7(b)). This indi-
cates that for the same number of simulations, it is likely 
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to have a more accurate evaluation result by using SCM 
compared to MCS. Equivalently, a shorter sequence 
length in SCM is required to achieve an evaluation accu-
racy by utilizing an equivalent number of MCS runs. 
Hence, the SCM approach is more efficient because it 
reduces both the number of required pseudo-random 
number generations and the total number of required 
simulation runs (as equivalent to the required sequence 
length). Therefore, it requires a significantly shorter 
runtime compared to MCS.  

Fig. 7. Comparisons of the simulation results for C432 with an 
error rate of 0.005. (a) 10,000 SCM experiments with a se-
quence length of 1000 bits; (b) 10,000 Monte Carlo simulations 
with a number of 1000 runs in each simulation. 

6    ACCURACY  
The accuracy of the SCM is analyzed in terms of var-

ious precision errors as well as random fluctuations. 

6.1 Error Analysis 

6.1.1 Quantization Error 
A quantization error is due to the loss of precision in 

the process of converting a probability into the represen-
tation of a stochastic binary sequence [31]. It is deter-
mined by the length of the sequence, i.e., the number of 
bits used in a stochastic sequence. For a sequence length 
of N bits, a real value is rounded to the nearest value that 
can be represented by this sequence (in units of 1/N). 
Therefore, the maximum error due to quantization (by 
using an appropriate rounding scheme) is limited by 
1/2N, i.e.,  

𝑒𝑞 ≤
1
2𝑁

.                                      (43) 
In the SCM approach, the stochastic representation of 

inputs and the gate error rate can both lead to quantiza-
tion errors. Some of these errors are propagated through 
the circuits, while others are attenuated or masked due to 
the logic operations in the evaluation process. The quan-
tization error at the output can be estimated as follows. 
Initially assume that the circuit reliability represented by 
the output sequence is a function of the input and gate 
error probabilities, i.e.,  

𝑅 = 𝐹𝑞(𝑝1,𝑝2, … 𝑝𝑁𝑖𝑛 , 𝜀1, 𝜀2, … , 𝜀𝑁𝑔),              (44) 
where 𝑝𝑖  is the input probability of the ith input, 𝜀𝑗 is the 
error rate of the jth gate, and 𝑁𝑖𝑛  and 𝑁𝑔  are the input 
and gate numbers, respectively.  

The quantization error in the output reliability is de-
termined by the collective effect of the inputs and the 

gate error rates; therefore it is given by a first-order ap-
proximation as follows: 

𝐸𝑞 ≈ ∑ 𝜕𝐹𝑞
𝜕𝑝𝑖

𝑁𝑖𝑛
𝑖=1 ∙ 𝑒𝑞,𝑝𝑖 + ∑ 𝜕𝐹𝑞

𝜕𝜀𝑗

𝑁𝑔
𝑗=1 ∙ 𝑒𝑞,𝜀𝑗,            (45) 

where 𝑒𝑞,𝑝𝑖 is the quantization error in the ith input and 
𝑒𝑞,𝜀𝑗 is the quantization error in the error rate of the jth 
gate. Furthermore, assume that each quantization error 
has a maximum negative effect on the evaluation result; 
so as per (45), 

𝐸𝑞 ≤
1
2𝑁

(𝑁𝑖𝑛 + 𝑁𝑔).                            (46) 
(46) gives an upper bound of the quantization error as 

dependent on the numbers of inputs and gates, i.e. the 
bound is larger for a larger circuit. However, this bound 
can only be reached by circuits in which an output is de-
pendent on every input and internal signal. Therefore, 
this estimate of the quantization error is pessimistic for 
most practical applications. In practice, however, most 
quantization errors can be avoided by using an appro-
priate sequence length if the input probability and gate 
error rate can be represented by rational numbers. For 
example, for perfect inputs and a gate error rate of 0.05, a 
sequence length of 1000 bits suffices to avoid the genera-
tion of quantization errors.  

Note that in this paper, the discussion of quantization 
errors is limited to those due to the stochastic representa-
tion of the initial inputs and gate error rates; there are no 
further sources of quantization errors. The errors that 
occur during the evaluation of a circuit and are also due 
to the effect of quantization, are referred to as resolution 
errors and discussed next.  

6.1.2 Resolution Error 
The sequence length is an important parameter be-

cause it determines the resolution of the computation 
result. Due to a limited resolution, a resolution error oc-
curs in the result of a stochastic computation. As an ex-
ample for a sequence length of 10 bits, the resolution is 
0.1, i.e., any probability with a precision higher than that 
of 0.1 cannot be represented. A computational error due 
to a limited resolution is illustrated in Fig. 8. Fig. 8 (a) 
shows a scenario in which there are two independent 
inputs: X1=0.2 and X2=1. As Z=X1X2, it can be found from 
the output binary stream that Z=0.2. This is an accurate 
result. Fig. 8 (b) shows a scenario in which X1=0.8 and 
X2=0.8. The correct output is therefore 0.64. However, 
due to the limited resolution, it is found that Z=0.6 by 
this computation.  

As a further example, a sequence of 1000 bits can be 
used to give a resolution of 10−3. A computational result 
is rounded to its nearest available representation, so the 
maximum error due to this resolution is 5⨉10−4 . This 
indicates that the result obtained in a single computation 
can have a precision error of up to 1/2N for a sequence 
length of N bits, i.e.,  

𝑒𝑟 ≤
1
2𝑁

,                                    (47) 
where 𝑒𝑟 is the resolution error in a single computation.  

For a given input vector and a gate error rate, the reso-
lution error incurred at each evaluation step (i.e., for each 
logic gate) contributes to the precision error in the evalu-
ation result. The error due to this precision loss in the 
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computation at the ith logic gate is given by: 
𝐸𝑟,𝑖 = 𝜕𝑅

𝜕𝑟𝑖
∙ 𝑒𝑟,𝑖 ,                             (48) 

where R is the reliability function, 𝑟𝑖  is the evaluation 
result at the ith gate, and 𝑒𝑟,𝑖 is the incurred resolution 
error at this evaluation step.  

This process must also account for the stochastic com-
putational structures used in the SCM. In Fig. 5, an unre-
liable gate is modeled by two equivalent fault-free gates 
for each fault model (as an inverter does not introduce a 
resolution error). So, the total precision loss in the final 
evaluation result is given by a first-order estimate as: 

𝐸𝑟 ≈ ∑ 𝜕𝑅
𝜕𝑟𝑖

∙ 𝑒𝑟,𝑖
2𝑁𝑔
𝑖=1 .                            (49) 

Since each single bit flip in the output of the ith gate may 
or may not cause a change in the final output sequence, 
then 

�𝜕𝑅
𝜕𝑟𝑖
� ≤ 1.                                     (50) 

and thus 
𝐸𝑟 ≤

1
𝑁
𝑁𝑔.                                   (51) 

Again, (51) gives an upper bound and is often pessi-
mistic when used as an error estimate. Therefore, a sto-
chastic sequence with a length that satisfies the maxi-
mum resolution error requirement of (51), is usually suf-
ficient for the evaluation of a circuit of certain size (as 
determined by the number of gates 𝑁𝑔). 

For example, if quantization errors can be avoided 
and a maximum precision loss of 0.01 is acceptable due 
to resolution errors, the minimum sequence length can 
be determined by (51), i.e., 

𝑁 ≥ 100𝑁𝑔.                                 (52) 
A sequence length of one million bits would meet this 
precision requirement for a circuit with thousands of 
gates. In practice, a shorter sequence length can often 
produce a result at a desired accuracy. This is shown by 
the simulation results in Section 7. 

6.1.3 Random Permutation 
Errors can also be caused by the random permutation of 

bits in a sequence. Fig. 9 illustrates an example of a ran-
domized permutation; the logic operation in Fig. 9 (a) 
gives the desired output value, while the operation in 
Fig. 9 (b) gives an output that is considered to be in error. 
In general, longer sequences tend to be better random-
ized; however, random permutations are probabilistic in 
nature and therefore, they do not always provide the 
desired results. The error due to a random permutation 

occurs in each stochastic computation and is considered 
as “noise.” It also contributes to the stochastic fluctuation 
in the evaluation result of a probabilistic logic network. 

Fig. 9. Random permutations in stochastic computation: 
(a) The desired permutation; (b) A permutation resulting in 
an error. 

6.2 Random Fluctuations 
     A random fluctuation is a result of the aforementioned 
precision errors; it is an inherent feature of stochastic 
computation. For example, simulation of C17 has shown 
that the result of each experiment fluctuates around the 
expected mean value [15]; the output follows approxi-
mately a Gaussian distribution, similar to the one shown 
in Fig. 7(a) for C432. This fluctuation can then be ana-
lyzed quantitatively by investigating the mean and vari-
ance of the output distribution. A detailed discussion of 
different relations (such as between sequence length and 
accuracy, error rate and circuit size) is presented in the 
next section.  

7 SIMULATION RESULTS 
In this section, the proposed SCM approach is com-

pared to the following reliability evaluation techniques: 
the accurate PGM algorithm, the PTM approach, the sig-
nature-based SER analyzer and the Monte Carlo simula-
tion. Simulations have been performed on a computer 
with a 2.66-GHz Pentium microprocessor and a 2 GB 
memory.  

7.1 SCM vs. PGM and PTM 
To validate the model, the proposed SCM approach is 

initially compared with the accurate PGM and PTM ap-
proaches on several small circuits. While individual out-
put reliabilities are reported in [15], only joint output 
reliabilities are reported in this section. Table 1 shows the 
evaluated circuit reliability and the relative error for a 
von Neumann fault with ε=0.05. The relative error is de-
fined as the ratio of the difference between an approxi-
mate value and the accurate value over the accurate val-
ue. A maximum of 1000 randomly-selected inputs are 
used in the simulation. As shown in Table 1, the SCM 
approach yields highly accurate results; the maximum 
relative error is around 0.2% by using a sequence length 
of 1000 bits. The results for stuck-at faults are shown in 
Table S1 in the supplementary material, with a maxi-
mum relative error around 0.1% for both stuck-at-1 and 
stuck-at-0 faults. 

Fig. 8. Resolutions in stochastic computation: (a) The desired 
output; (b) An imprecise output due to a limited resolution. 
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Although the runtime of the SCM approach appears 
mostly longer than that of the PGM and PTM approach-
es, the longer time required for identifying and decom-
posing reconvergent fanouts in PGM (required in excess 
of several hours), as well as the time required for analyz-
ing the circuit structure in PTM, is not included in the 
runtime reported in the tables. For the SCM approach, 
accuracy can further be improved by increasing the se-
quence length. As the stochastic simulations are inde-
pendent processes, it would be possible to further reduce 
the runtime by using a parallelized procedure.  

7.2 SCM vs. Signature-based approach 
     The SCM approach is further compared with the sig-
nature-based approach [25] for SER analysis of the 
LGSynth91 benchmarks [41]. For a gate affected by soft 
errors, the SER is defined as its output error probability 
while for a circuit, the SER is defined as the complement 
of its joint output reliability. The simulation results are 
shown in Table 2. The signature-based SER analyzer 
finds the testability of a circuit by using bit-parallel simu-
lation for SER calculation; this process is similar to the 
stochastic simulation as used in the SCM approach. Only 
temporary single stuck-at (TSA) faults are analyzed in 
[25]. 
     In most previous studies, the SER is expressed in Fail-
ures in Time (or FIT, usually in the number of failures in 
109 hours) [16-19], [25], [26]. Since the effect of multiple 
errors is considered in the SCM approach, probabilities 
are instead used in this section as SER values. In Table 2, 
the stuck-at faults are assumed to be uniformly distribut-
ed with a gate SER 𝜀 = 10−6 and 𝜀 = 10−2. Although an 
SER is generally considered small, a rather large value 
(10−2) is used in the simulation to show the difference 
between the approaches. The overall circuit SER is given 
by the sum of the stuck-at-0 and stuck-at-1 SER values. 
Table 2 shows that the two approaches produce very 
close results for most circuits when 𝜀 = 10−6; however, 
the relative differences of the SER increases at 𝜀 = 10−2. 
A signature-based approach considers the sensitivity of 
each gate separately and sums over the resulting circuit 
SER for each gate. This is different for the SCM approach 
that accounts for multiple error occurrences as well as 
their correlation by considering the joint effects of multi-
ple errors in the evaluation of a circuit. 

These two approaches model a similar error scenario 
as long as the node (or gate) SER is small. In this case, the 
probability that more than one error occur is even small-
er and thus negligible. This is confirmed by the simula-
tion results for 𝜀 = 10−6. As the circuit size or the SER of 
each node increases, however, the probability of inde-
pendent multiple-error occurrence increases. This may 
result in large discrepancies using these two evaluation 
methods, as indicated in the reported simulation results 
for 𝜀 = 10−2. 

In the scenario of multiple dependent transient faults 
caused by a single radiation upset [22], the SCM ap-
proach can readily be adapted to model the correlated 
multiple errors by using dependent stochastic sequences. 
Although the SCM approach needed a longer runtime 
due to its use of the redundant stochastic sequences, the 
signature-based approach required a greater effort in 
execution due to the complicated programming and al-
gorithms involved. The SER analysis by both approaches 
primarily considers logic masking; however the results 
obtained can be enhanced by modeling technology-
dependent factors such as the electrical and timing ef-
fects on SER. 

7.3 SCM vs. Monte Carlo simulation 
Finally, large benchmarks of ISCAS’85 are simulated 

to compare the efficiency of the SCM approach with 
Monte Carlo simulation (MCS). As more computational 
power is required, these simulations were performed on 
a computer with a 3.10 GHz i3-2100 microprocessor and 
a 6 GB memory.  

For MCS (equivalent to the use of Bernoulli sequenc-
es), the number of simulation runs required at a given 
CV can be estimated by considering (9), (10) and (35), i.e.,  

𝑁𝑚𝑐𝑠 = 1−𝑅
𝑅
∙ 1

(𝐶𝑉)2
 ,                                       (53) 

where R is the output reliability of a circuit. Since relia-
bility usually decreases with circuit size (at a constant 
component failure rate), (53) indicates that the number of 
required MCS runs may increase with circuit size at a 
given accuracy. Next, simulations are performed at a 
specified accuracy to find the least required sequence 
length for SCM, as well as the least number of runs for 
MCS. The results at a CV of 0.001 are shown in Table 3 
for 𝜀 = 10−3 and in Table S2 in the supplementary mate-
rial for 𝜀 = 5⨉10−4  respectively. The same randomly-
selected input vector is used for an accurate and fair 
comparison. Twenty experiments are run for each circuit 
to obtain the reported statistics. It can be seen that both 
methods produce similar results; however, the SCM re-
quires a significantly shorter runtime (by several orders 
of magnitude) compared to MCS.  
     As the number of MCS runs is a function of circuit 
reliability, then the relationship between the sequence 
length of SCM (as well as the number of MCS runs) and 
circuit reliability is plotted in Fig. 10(a) and compared to 
the analytical results provided by (53). It can be seen that 
the MCS results are in good agreements with those 
found by (53). Also, the sequence length of SCM is signif-
icantly smaller than the number of MCS runs; this is con-
sistent with the analysis in Section 3. The runtimes of 
these two approaches are compared in Fig. 10(b); a sig-
nificantly longer runtime (by several orders of magni-
tude) is encountered for MCS compared to SCM at the 
desired evaluation accuracy. 
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Table 1. Accuracy comparison of the SCM, PGM and PTM approaches for the von Neumann fault. 

  Table 2. SER analysis using the SCM and signature-based approaches. 

 
Circuit 

No. 
Gates 

Signature-based SER analyzer 
 𝑺𝒊𝒈𝒏𝒂𝒕𝒖𝒓𝒆 𝒍𝒆𝒏𝒈𝒕𝒉 = 𝟏𝟎,𝟎𝟎𝟎 

SCM approach 
𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒍𝒆𝒏𝒈𝒕𝒉 = 𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎 , 𝟏𝟎,𝟎𝟎𝟎 𝒊𝒏𝒑𝒖𝒕 𝒗𝒆𝒄𝒕𝒐𝒓𝒔 

SER 
 𝜺 = 𝟏𝟎−𝟔 

SER 
 𝜺 = 𝟏𝟎−𝟐 

SER 
 𝜺 = 𝟏𝟎−𝟔 

Relative 
difference 

SER 
 𝜺 = 𝟏𝟎−𝟐 

Relative 
difference 

majority 10 𝟑.𝟒𝟓𝟎𝟑 × 𝟏𝟎−𝟔 𝟑.𝟒𝟒𝟕𝟑 × 𝟏𝟎−𝟐 𝟑.𝟒𝟑𝟕𝟒 × 𝟏𝟎−𝟔 𝟎.𝟑𝟖% 𝟑.𝟑𝟏𝟖𝟓 × 𝟏𝟎−𝟐 𝟑.𝟗% 
parity 15 𝟏.𝟓 × 𝟏𝟎−𝟓 𝟏.𝟓 × 𝟏𝟎−𝟏 𝟏.𝟒𝟗𝟕𝟔 × 𝟏𝟎−𝟓 𝟎.𝟏𝟔% 𝟏.𝟑𝟗𝟕𝟕 × 𝟏𝟎−𝟏 𝟕.𝟑% 
decod 22 𝟏.𝟗𝟖𝟖𝟒 × 𝟏𝟎−𝟓 𝟏.𝟗𝟖𝟕𝟑 × 𝟏𝟎−𝟏 𝟐.𝟎𝟎𝟏𝟐 × 𝟏𝟎−𝟓 𝟎.𝟔𝟑% 𝟏.𝟖𝟔𝟒𝟐 × 𝟏𝟎−𝟏 𝟔.𝟔% 

x2 38 𝟏.𝟖𝟓𝟒𝟕 × 𝟏𝟎−𝟓 𝟏.𝟖𝟓𝟏𝟗 × 𝟏𝟎−𝟏 𝟏.𝟖𝟒𝟔𝟑 × 𝟏𝟎−𝟓 𝟎.𝟒𝟓% 𝟏.𝟕𝟓𝟔𝟑 × 𝟏𝟎−𝟏 𝟓.𝟒% 
pm1 41 𝟏.𝟖𝟗𝟐𝟑 × 𝟏𝟎−𝟓 𝟏.𝟖𝟖𝟕𝟏 × 𝟏𝟎−𝟏 𝟏.𝟖𝟖𝟗𝟕 × 𝟏𝟎−𝟓 𝟎.𝟏𝟒% 𝟏.𝟕𝟗𝟔𝟓 × 𝟏𝟎−𝟏 𝟓.𝟎% 
cu 43 𝟏.𝟔𝟓𝟕𝟕 × 𝟏𝟎−𝟓 𝟏.𝟔𝟓𝟕𝟖 × 𝟏𝟎−𝟏 𝟏.𝟔𝟔𝟑𝟏 × 𝟏𝟎−𝟓 𝟎.𝟑𝟐% 𝟏.𝟓𝟖𝟏𝟔 × 𝟏𝟎−𝟏 𝟒.𝟖% 

z4ml 45 𝟐.𝟔𝟎𝟎𝟓 × 𝟏𝟎−𝟓 𝟐.𝟔𝟎𝟏𝟎 × 𝟏𝟎−𝟏 𝟐.𝟔𝟏𝟎𝟓 × 𝟏𝟎−𝟓 𝟎.𝟑𝟖% 𝟐.𝟒𝟐𝟎𝟖 × 𝟏𝟎−𝟏 𝟕.𝟒% 
mux 50 𝟔.𝟔𝟗𝟒𝟏 × 𝟏𝟎−𝟔 𝟔.𝟕𝟔𝟖𝟗 × 𝟏𝟎−𝟐 𝟔.𝟕𝟑𝟔𝟗 × 𝟏𝟎−𝟔 𝟎.𝟔𝟒% 𝟔.𝟒𝟗𝟔𝟓 × 𝟏𝟎−𝟐 𝟒.𝟎% 
pcle 61 𝟐.𝟖𝟗𝟔𝟑 × 𝟏𝟎−𝟓 𝟐.𝟖𝟖𝟗𝟔 × 𝟏𝟎−𝟏 𝟐.𝟗𝟎𝟔𝟏 × 𝟏𝟎−𝟓 𝟎.𝟑𝟒% 𝟐.𝟔𝟔𝟑𝟐 × 𝟏𝟎−𝟏 𝟖.𝟓% 

 
     For SCMs, an empirical function based on (53) is used 
to fit the experimental results for 𝜀 = 10−3 (in Fig. 10(a)); 
this is given by  
 𝑁𝑚𝑐𝑠 = (5.15𝑅3 − 9.52𝑅2 + 4.65𝑅 − 0.19)(1−𝑅

𝑅
) 1

(𝐶𝑉)2
 ,   (54) 

where R is the circuit reliability and CV gives the desired 
accuracy. Then the simulation results for 𝛆 = 𝟓⨉𝟏𝟎−𝟒 are 
used for validation of (54). As shown in Fig. 10(a), (54) 
fits the data very well. This indicates that the application 
of (54) is not limited to a specific gate error rate, ε. Hence, 
the sequence length to achieve a specific accuracy for an 
arbitrary circuit using SCMs can be obtained as follows. 
Initially, a short sequence can be used to obtain an 
estimate of the circuit reliability; then, an empirical 
formula (such as (54)) can be used to predict the 
minimum sequence length for evaluating the reliability. 
As the predictive function is not unique, the required 
sequence length may deviate from the predicted value. 
Therefore, the evaluation results must be carefully 
analyzed and a different sequence length may be 
eventually needed to ensure the desired accuracy. 

8 DISCUSSION  
8.1 Sequence length vs. Circuit reliability 
It has been observed that a longer sequence is required 
for evaluating a circuit with lower reliability to achieve a 
specific accuracy. This is primarily due to the use of the 
coefficient of variation (CV) as metric of accuracy, be-

cause CV is determined by the standard deviation and 
the mean value of the obtained circuit reliability. The 
reliability of a circuit usually decreases by increasing its 
size (i.e., the number of gates) when a constant gate error 
rate is assumed [36], so it is generally believed that a 
longer sequence is required for evaluating a larger circuit. 
In fact, this is a result of the decreasing reliability (given 
by 𝜇) and increasing random fluctuations due to various 
analysis errors (as indicated by 𝜎). However, a larger 
circuit may not necessarily have a reduced reliability and 
therefore, it may not require a larger sequence length in 
SCM. Hence, reliability appears to be a more relevant 
factor when determining the minimum length of the re-
quired sequence, because it considers many other factors, 
such as the logic function, the circuit topology and the 
number of inputs and outputs of a circuit. 
     Another factor that determines the minimum se-
quence length, is the gate error rate, ε. To allow for min-
imum representation, at least 1/ε bits are required in the 
sequences. Albeit not included (due to space limitation), 
the simulation results for 𝜀 = 10−4 show that this mini-
mum requirement in sequence length has already met 
the accuracy requirement for most of the benchmark cir-
cuits. However, longer sequences (such as those of k/ε 
bits with k > 1) may be desired for a better resolution 
and/or proper statistical operation. When the use of this 
sequence length does not produce satisfactory results, 
the procedure outlined in the previous section can be 

 
 

Circuit 

Characteristics SCM 
 𝜺 = 𝟎.𝟎𝟓      𝑵 = 𝟏𝟎𝟎𝟎 bits 

Accurate PGM 
 𝜺 = 𝟎.𝟎𝟓 

PTM 
 𝜺 = 𝟎.𝟎𝟓 

Gates PIs POs 
R Time (s) Rel. error R Time (s) R Time (s) 

C17 6 5 2 0.7830 0.06 0.11% 0.7839 0.002 0.7839 0.001 

Majority 10 5 1 0.8634 0.15 0.13% 
 

0.8623 0.002 0.8623 0.05 

Full adder (Majority) 8 3 2 0.7896 0.02 0.1% 0.7904 0.0007 0.7904 0.18 

Full adder 
(XOR/NAND) 

6 3 2 0.8016 0.01 0.2% 0.8000 0.001 0.8000 0.001 

Full adder (NAND) 12 3 2 0.6547 0.03 0.21% 0.6533 0.008 0.6533 0.002 

Comparator 4 2 3 0.8265 0.008 0.01% 
 

0.8264 0.006 0.8264 0.0009 

Decoder2 6 2 4 0.7385 0.01 0.09% 
 

0.7392 0.03 0.7392 0.009 

MUX4 7 6 1 0.8228 0.14 0.09% 
 

0.8221 0.001 0.8221 0.52 
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utilized to find the minimum sequence length at a given 
accuracy. Nevertheless, it remains a challenge to effi-
ciently determine the required minimum sequence 
length when no prior knowledge of the circuit is availa-
ble. It is also an open question if further theoretical re-
sults can be obtained on this respect.       

8.2 Electrical and latching-window masking 
So far we have only considered logic masking in the 

modeling of SERs. In [22], an analysis framework using 
BDDs and ADDs has been developed. The attenuation of 
electrical signals is computed using a glitch propagation 
model [42], in which the amplitude and duration of a 
glitch at a gate’s output are determined for several dif-
ferent scenarios related to the input parameters of the 
glitch. The probability that the propagated glitch is 
latched by a flip-flop, is then determined by the expected 
value of the duration and the timing information of the 

glitch.  
     Electrical and latching-window masking can be in-
cluded in the proposed stochastic approach by integrat-
ing the attenuation and latching models developed in [22, 
42] with the current SCM framework. For instance, the 
initial glitch duration and its distribution can be repre-
sented by a stochastic sequence of multiple values based 
on the discrete sampling over the full range of the possi-
ble glitch length. The attenuation process can then be 
implemented using stochastic logic designs [29] that se-
lectively compute the output amplitude according to 
different input parameters. As logic masking is also in-
herently accounted for, the SCM approach can provide a 
unified treatment of these masking features. Due to space 
limitation, this topic is not further covered in this paper; 
it will be investigated in future work. 

Table 3. Simulation results of ISCAS’85 benchmarks by SCM and MCS at a fixed CV of 0.001 (𝜺 = 𝟏𝟎−𝟑). 

 
                                                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (a)            (b) 
Fig. 10. Comparisons of SCM and MCS for different gate error rate, ε, at a fixed CV of 0.001: (a) Required sequence length in SCM and 
number of MCS runs vs. circuit reliability, fitted using (53) and (54); (b) Required runtime for the two methods. In (a), (54) is fitted us-
ing the data for 𝜺 = 𝟏𝟎−𝟑 and validated by the data for 𝜺 = 𝟓⨉𝟏𝟎−𝟒. 

9   CONCLUSION 
Advances of VLSI circuits and systems into the 

nanometric regimes require accurate and efficient relia-

bility evaluation techniques. In this paper, a novel sto-
chastic approach is proposed as a computational frame-
work for the reliability evaluation of logic circuits. Using 
stochastic computational models (SCMs), this approach 

 
Circuit 

Characteristics MCS   ( 𝜺 = 𝟏𝟎−𝟑)   SCM     ( 𝜺 = 𝟏𝟎−𝟑)    

gates inputs outputs 
Number of      

Simulations 
Reliability Runtime (s) 

Sequence length 
(bits) 

Reliability Runtime (s) 

C432 250 36 7 25,000 0.9773 58.592 1,000 0.9777 0.048695 
C499 202 41 32 60,000 0.9372 142.28 4,000 0.9375 0.051646 
C880 383 60 26 150,000 0.8622 623.48 13,000 0.8624 0.14022 

C1355 546 41 32 500,000 0.6580 3019.5 110,000 0.6582 1.6674 
C1908 880 33 25 500,000 0.6358 4882.1 110,000 0.6355 3.3146 
C2670 1193 157 64 600,000 0.6120 8904.6 130,000 0.6118 4.9834 
C3540 1669 50 22 700,000 0.5398 12582 400,000 0.5396 16.409 
C5315 2307 178 123 1,300,000 0.4039 45500 700,000 0.4034 40.604 
C6288 2416 32 32 4,800,000 0.1207 158146 1,800,000 0.1207 81.382 
C7552 3512 207 108 2,000,000 0.2777 115724 1,200,000 0.2772 177.29 
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accurately evaluates the reliability of a circuit with a pre-
cision limited by the inherent randomness of the binary 
bit streams used in stochastic computation. Compared to 
accurate analytical approaches found in the technical 
literature, the proposed SCM approach efficiently handles 
signal correlations introduced by reconvergent fanouts 
and thus significantly reduces the computational complex-
ity. 

Compared to the simple simulation of random vec-
tors, the proposed approach has the following distin-
guishing features: 1) Versatility. The SCM is flexible due 
to its pronounced arithmetic nature. 2) Generality. The 
SCM approach has been developed as a general compu-
tational framework to efficiently implement analytical 
algorithms. 3) Scalability. Compared to Monte Carlo sim-
ulation, the SCM approach is more efficient because it 
benefits from the use of non-Bernoulli sequences thus 
requiring a reduced number of pseudo-random number 
generations. At a specified evaluation accuracy, a proce-
dure based on an empirical (curve-fitting) formula has 
been proposed for finding the required minimum se-
quence length in SCM for evaluating a circuit.  

The runtime can further be reduced through a paral-
lelization of the stochastic sequences, so the proposed 
approach is potentially useful in the design and test of 
reliable VLSI circuits and systems. It is shown that it is 
potentially applicable to account for electrical and latch-
ing-window masking in the evaluation of SERs; this topic 
will be pursued in future investigation. 
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Supplementary Material 

Table S1. Accuracy comparison of the SCM, PGM and PTM approaches for stuck-at faults. 

 
 

Table S2. Simulation results of ISCAS’85 benchmarks by SCM and MCS at a fixed CV of 0.001 (𝜺 = 𝟓⨉𝟏𝟎−𝟒). 

 
  

  

 

 

Circuit 

Stuck-at-1 (TSA-1) Fault  Stuck-at-0 (TSA-0) Fault  

SCM 
 𝜺 = 𝟎.𝟎𝟓    𝑵 = 𝟏𝟎𝟎𝟎 

Accurate PGM 
 𝜺 = 𝟎.𝟎𝟓 

PTM 
 𝜺 = 𝟎.𝟎𝟓 

SCM 
 𝜺 = 𝟎.𝟎𝟓    𝑵 = 𝟏,𝟎𝟎𝟎  

Accurate PGM 
 𝜺 = 𝟎.𝟎𝟓 

PTM 
 𝜺 = 𝟎.𝟎𝟓 

R 
Time 

(s) 
Relative 

error 
R 

Time 
(s) 

R 
Time 

(s) 
R 

Time 
(s) 

Relative 
error 

R 
Time 

(s) 
R 

Time 
(s) 

C17 0.9152 0.068 0.03% 0.9149 0.003 0.9149 0.001 0.8548 0.068 0.01% 
 

0.8549 0.003 0.8549 0.001 

Majority 0.9298 0.158 0.04% 
 

0.9294 0.003 0.9294 0.047 0.9175 0.165 0.04% 
 

0.9171 0.003 0.9171 0.047 

Full adder 
(M j) 

0.8835 0.023 0.01% 
 

0.8834 0.0005 0.8834 0.175 0.8839 0.023 0.09% 0.8834 0.0005 0.8834 0.189 

Full adder 
(XOR/NAND) 

0.9054 0.015 0.09% 0.9046 0.002 0.9046 0.001 0.8836 0.015 0.06% 0.8831 0.002 0.8831 0.001 

Full adder 
( A ) 

0.8250 0.033 0.11% 
 

0.8241 0.008 0.8241 0.002 0.7732 0.033 0.12% 
 

0.7741 0.008 0.7741 0.003 

Comparator 0.8918 0.007 0.07% 
 

0.8912 0.006 0.8912 0.001 0.9263 0.007 
 

0% 
 

0.9263 0.007 0.9263 0.001 

Decoder2 0.8157 0.015 0.08% 
 

0.8150 0.028 0.8150 0.009 0.9038 0.016 
 

0.08% 
 

0.9031 0.029 0.9031 0.009 

MUX4 0.9408 0.153 0.02% 0.9406 0.001 0.9406 0.523 0.8679 0.151 0.01% 0.8678 0.001 0.8678 0.536 

 
Circuit 

Characteristics MCS    (𝜺 = 𝟓⨉𝟏𝟎−𝟒)   SCM      (𝜺 = 𝟓⨉𝟏𝟎−𝟒)    

gates inputs outputs 
Number of      

Simulations 
Reliability Runtime (s) 

Sequence length 
(bits) 

Reliability Runtime (s) 

 C432 250 36 7 10000 0.9884 24.896 2,000 0.9885 0.050223 
C499 202 41 32 30000 0.9686 54.105 2,000 0.9684 0.047493 
C880 383 60 26 70000 0.9285 316.46 2,000 0.9284 0.094566 

C1355 546 41 32 240000 0.8100 1545.5 20,000 0.8102 0.20498 
C1908 880 33 25 250000 0.7963 3541.9 20,000 0.7960 0.38428 
C2670 1193 157 64 270000 0.7805 3871.4 24,000 0.7808 0.56057 
C3540 1669 50 22 350000 0.7332 7047.5 60,000 0.7329 1.3109 
C5315 2307 178 123 600000 0.6327 7980.3 120,000 0.6327 3.4718 
C6288 2416 32 32 2000000 0.3426 61351 600000 0.3427 32.640 
C7552 3512 207 108 900000 0.5223 53833 350000 0.5212 65.199 
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