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Abstract— Reliability is an important feature in the design and 

maintenance of a large-scale system. Usually, for a two-terminal 

network reliability is a measure for the connectivity between the 

source and sink nodes. Various approaches have been presented to 

evaluate the system reliability, however they become cumbersome 

or prohibitive due to the large computational complexity, 

especially when multiple states are considered for the nodes. In 

this paper, a stochastic approach is presented for estimating the 

reliability of a two-terminal multi-state network. Randomly 

permuted sequences with fixed numbers of multiple values are 

generalized from non-Bernoulli binary sequences (so with fixed 

numbers of 0s and 1s) to model the multi-state property. The state 

probabilities are represented by randomly permuted sequences to 

improve both computational efficiency and accuracy. Stochastic 

models are then constructed for arcs and nodes with different 

capacities. The proposed stochastic analysis is capable of 

predicting a system’s reliability at high accuracy and without a 

need for constructing the commonly-used but complex multi-state 

minimal cut vectors (MMCVs). Non-exponential probability 

distributions and correlated signals are readily handled by the 

stochastic approach for a generalized multi-state two-terminal 

network. Results obtained through the stochastic analysis are 

compared with exact values and those found by Monte Carlo (MC) 

simulation. The accuracy, efficiency and scalability of the 

stochastic approach are assessed by evaluating several case 

studies.  

 
Index Terms—Stochastic computation, non-Bernoulli sequence, 

randomly permuted sequences, stochastic logic, network 

reliability evaluation, multi-state two-terminal network.  

ACRONYM 
DFT dynamic fault tree 

pdf  probability density function 

cdf cumulative density function 

MMCV multi-state minimal cut vectors 
MC Monte Carlo 

IE Inclusion-exclusion 
LBP lower boundary point 
UBP upper boundary point 

NOTATION 
𝑡 mission time 

𝑉 set of network nodes 

𝐸 set of network arcs 

𝑊𝑎 represent the max-capacity of arc 

𝑊𝑛 represent the max-capacity of nodes 

𝑆 source node in the network 

 
 

𝑇 sink node in the network 

𝐼𝑖 ,𝐽𝑖 intermediate nodes in the network 

→ unidirectional arc 

↔ bidirectional arc 

𝑆𝑇 stochastic sequence received by the sink node 𝑇 

𝜆 failure rate for an exponential distribution 

𝑑 the demand for the network which ensures the 

transformation  process to be successful 

𝐿 sequence length for the stochastic approach 

𝑅 reliability of the network 

I. INTRODUCTION 

two-terminal network often connects its two end 

terminals, referred to as the source and the sink 

respectively. This type of network is widely utilized in 

many systems such as computer and communication systems 

[1], [2], power delivery [3] and oil/gas production systems [4]. 

If failures occur in these systems, substantial losses are likely 

incurred. Since the goal is to provide reliable and better services, 

the analysis of network reliability is necessary for evaluating 

the performance of different topological designs [5]. The 

reliability evaluation of such networks usually deals with the 

connection probability between the source and sink nodes [6].  

Numerous approaches are presented in the literature for 

predicting the reliabilities of two-terminal binary-state 

networks. In these networks, the components are assumed to be 

either fully working or fully failed. However, this Boolean 

assumption is not applicable to a system with a multi-state 

property [7-11]. A component in a multi-state network often 

degrades gradually due to factors such as leakage. A binary 

state analysis is likely to result in a faulty outcome during 

decision making, so further incurring penalties such as large 

economic losses and security risks. Hence, the investigation of 

the reliability of a multi-state two-terminal network is highly 

important to avoid the inaccuracy incurred by the Boolean 

assumption.  

Multi-state two-terminal networks are usually considered as 

flow-networks consisting of arcs with independent, discrete, 

multi-valued capacities. For a given problem, the capacity is 

indicated by a non-negative integer as a flow requirement; the 

capacity distribution can be determined through continuous 

observation and forecasting. The maximum number of 

information units through an arc or node is referred to as the 

max-capacity; usually, the capacity is described by a discrete 

random variable taking values from 0 to the maximum 
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capacity. For multi-state two-terminal networks, the reliability 

is usually referred to as the probability that the maximal flow 

from the source to the sink is not smaller than the so-called  

demand value denoted by d, i.e., Pr⁡(𝜙(𝒙)) ≥ 𝑑, where 𝒙 is the 

component state vector, and 𝜙(∙)  is the system structure 

function that determines the system state, given the state vector. 

Various probabilistic methods have been proposed to 

analyze two-terminal networks using exact and approximate 

algorithms. In [13], an exact and direct algorithm is presented 

for analyzing a multi-state two-terminal network. An 

enumeration method is capable of predicting the reliability of a 

multi-state two-terminal network in an exact and 

straightforward manner through enumerating all possible 

combinations of arc states [12]; however, it is computationally 

expensive, i.e., the reliability analysis of a multi-state system is 

NP-hard.  

Some exact but indirect approaches have also been proposed; 

they are based on binary-state minimal paths/cuts. A network 

can be decomposed into disjoint paths for deriving an accurate 

result. These algorithms are mostly minimal cut based [14-20]; 

however, a large computational complexity is still incurred. For 

minimal cut based approaches, all lower/upper boundary points 

(LBPs/UBPs), also known as multi-state minimal path/cut, 

must be determined in advance. For multi-state networks, 

multi-state minimal cut vectors (MMCVs) must be determined. 

Then, the network reliability is computed by state space 

decomposition [21], inclusion–exclusion (IE) [15], or 

sum-of-disjoint-product methods [19], provided that all 

LBPs/UBPs are derived. Unfortunately, the processes of 

searching for binary-state minimal paths/cuts, LBPs/UBPs, the 

decomposition/IE/SDP methods are all NP-hard. Similarly, the 

MMCV deriving process becomes cumbersome or even 

impossible to solve with an increase in network size. In [22], all 

LBPs can be searched without knowing all binary-state 

minimal paths in advance; however, the network is still solved 

in terms of two NP-hard problems. Similarly, although a 

reduction in complexity has been widely investigated, the 

reliability analysis of a multi-state system is still NP-hard [23], 

thus the application of probabilistic approaches is largely 

limited and specifically for large systems.  

For a simulation-based approach such as Monte Carlo (MC), 

the accuracy cannot be easily established even though the 

results from a large sample size are often considered stable. 

Due to its slow convergence, a large sample size is required for 

achieving a high accuracy. Furthermore, for the MC simulation 

in [24], MMCVs need to be determined in advance. For 

practical applications, capacity distributions of arcs or nodes 

are not limited to fixed values, but varying with time (either 

exponentially or non-exponentially). The provision to consider 

such scenarios tremendously increases the complexity of the 

analysis. 

Recently, stochastic computational approaches were 

proposed for reliability analysis of logic circuits [25], [26] and 

dynamic fault trees (DFTs) [27] using random binary bit 

streams. Furthermore, a stochastic analysis has been used for 

predicting the reliability of a binary-state two-terminal network 

[28]. Stochastic models are presented for imperfect arcs and 

nodes; non-Bernoulli sequences of random permutations of 

fixed numbers of 1’s and 0’s are utilized to encode the signal 

probabilities. The use of non-Bernoulli sequences leads to an 

efficient evaluation; the accuracy is shown to be high if a 

reasonable sequence length is used.  

In this paper, a stochastic analysis of a multi-state 

two-terminal network is proposed. A randomly permuted 

sequence of fixed numbers of multiple values [29] is utilized 

for modeling the multi-state property. Stochastic models are 

constructed for the information transition process through 

multi-state arcs; for an anticipated transition, the number of 

information units received by the sink should be no smaller than 

the pre-specified demand value 𝑑. Then, a stochastic analysis is 

performed to efficiently find the probability for the connection 

between the source and sink. Lastly, the node capacity can also 

be easily investigated through the proposed stochastic analysis.  

The remainder of the paper is organized as follows. Section 

II reviews the preliminaries for multi-state two-terminal 

networks and the fundamentals for stochastic computation. 

Sections III presents the stochastic models for multi-state arcs. 

Section IV deals with the analysis of general multi-state 

two-terminal networks using the proposed approach. Various 

case studies are presented in Section V to validate the proposed 

approach. Finally, Section VI concludes the paper. 

II. PRELIMINARIES AND REVIEW 

Let a multi-state two-terminal network be denoted as 

𝐺(𝑉, 𝐸,𝑊) consisting of a node set 𝑉 and an arc set 𝐸. In this 

paper, a pre-specified demand value 𝑑 is required for reliable 

communication between the source 𝑆  and the sink 𝑇 . An 

example of a multi-state two-terminal network is illustrated in 

Fig. 1.  

 The node set 𝑉 consists of nodes such as the source (𝑆 in Fig. 

1), the sink (𝑇 in Fig. 1) and intermediate nodes (𝐼𝑚 in Fig. 1). 

The node set is denoted as 𝑉 = {𝐼𝑗|1⁡⁡ ≤ 𝑗 ≤ 𝑁𝑢𝑚} , where 

𝑁𝑢𝑚 indicates the total number of nodes in the considered 

network, thus 𝑁𝑢𝑚 = 𝑚 + 2, where 𝑚 indicates the number 

of intermediate nodes in the investigated network.  

 The arc set 𝐸  consists of arcs between the nodes in the 

network (either unidirectional or bidirectional); 𝐸 = {𝑒𝑖|1 ≤
𝑖 ≤ 𝑁}, where 𝑁 denotes the total number of arcs. 

 Let 𝑊𝑎(𝑒𝑖) and 𝑊𝑛(𝑛𝑗) represent the max-capacity of arc 𝑖, 

i.e.,  𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑁 and the max-capacity of node 𝑗, i.e.,  𝑛𝑗 

for 1 ≤ 𝑗 ≤ 𝑁𝑢𝑚, respectively. Hence, for the network in Fig. 

1, the capacity vectors for nodes and arcs are denoted as 𝑾𝒂 =
(𝑊𝑎(𝑒1),𝑊𝑎(𝑒2),⋯ ,𝑊𝑎(𝑒𝑁)) and 𝑾𝒏 =

(𝑊𝑛(𝑛1),𝑊𝑛(𝑛2),⋯ ,𝑊𝑛(𝑛𝑁𝑢𝑚)),  respectively. If the 

max-capacity of a node is not specified, then the number of 

information units through this node is assumed to be infinity; 

otherwise, the capability of information transition is limited by 

the max-capacity of a node. 

A two-terminal network fails when the anticipated delivery 

service with a demand of 𝑑 units cannot be supplied from the 

source to the sink through multi-state arcs [24]. Hence, for a 

provided capacity, once the available capacity received by the 

sink is no less than 𝑑 , it is regarded as a successful 

communication. Thus, the reliability of a multi-state 

two-terminal network is defined as the probability of a 
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successful communication between the source and the sink of 

the network.  
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Fig. 1. A general structure for a multi-state two-terminal network. 𝐼𝑖 , 𝑖 ∈
{1, 2,⋯ ,𝑚}, is an intermediate node; 𝑒𝑗, 𝑗 ∈ {1, 2,⋯ ,𝑁}, is an intermediate 

arc. 
 

In this work, the arc or node capacities are assumed to be 

distributed with known probabilities; they are either fixed, or 

time-dependent (either exponentially or non-exponentially 

distributed). Some assumptions are presented as follows: 

1) The network configuration is a priori known; 

2) If the capacity distribution is time-dependent, the mission 

time is specified; 

3) The max-capacity of an arc or a node is provided; 

4) The demand value of 𝑑 is pre-specified; 

5) All possible states of the arcs are provided. 

Stochastic computation has been proposed in 1960s for 

reliable circuit design [30]. In a stochastic sequence, a number 

of bits are proportionally assigned to have a specific value; for 

instance, a fixed number of 1’s is utilized in a non-Bernoulli 

sequence to indicate a probability. Stochastic computation can 

be efficiently implemented by logic gates, while the stochastic 

sequence at the output encodes the (output) probability. In 

stochastic computation, the number of 1’s in the output 

sequence is not deterministic, but probabilistic due to the 

inevitable stochastic fluctuations. However, the fluctuations 

can be greatly reduced by using the non-Bernoulli sequences 

[26].  

In this paper, a multi-state two-terminal network is analyzed 

by stochastic computation. The non-Bernoulli sequence is 

generalized to a multi-state scenario, referred to as a randomly 

permuted sequence. As analyzed in [29], the inaccuracy can 

also be significantly reduced by the utilization of randomly 

permuted sequences; the effect of fluctuation is considerably 

reduced by utilizing a reasonable sequence length. For a 

component with 𝑀  states, the probability distribution of the 

states is given by a vector 𝑃 = [𝑝𝑀 , 𝑝𝑀−1, ⋯ , 𝑝1] , with 

∑ 𝑝𝑖
𝑀
𝑖=1 = 1. This probability vector can be encoded into a 

randomly permuted sequence of fixed numbers of multiple 

values [29]. Fig. 2(a) illustrates an encoding example of a 

ternary signal for stochastic computation by utilizing a 

sequence length of 10 values. . 

Fig. 2(b-e) shows the logic gates for stochastic computation 

used in this paper. A sequence length of 10 values is shown in 

Fig. 2(b)-(d) for the encoding and computing processes. A 

longer sequence length is usually required for achieving a 

higher accuracy, as shown in Fig. 2(e). A multiple-valued 

comparator is depicted in Fig. 2(c), by which the input 

sequence 𝑆(𝐴) is compared with a sequence of 1s. For the 𝑘th 

bit, if 𝑆(𝐴)𝑘 ≥ 1, then 𝑆(𝑂𝑢𝑡)𝑘 = 1; otherwise, 𝑆(𝑂𝑢𝑡)𝑘 is 0. 

The multiplexer in Fig. 2(e) computes the weighted sum with 

the output determined by the inputs and the distributions of 0s 

and 1s in the control sequence. 
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Fig. 2 (a) A stochastic encoding example of a ternary signal by utilizing a 

sequence length of 10 values [29]. (b) A sum module (i.e., adder) with 

randomly permuted sequences as inputs; (c) A comparator module with the 
input sequence being compared with a sequence of 1s; (d) A minimum module 

with randomly permuted sequences as inputs; (e) A multiplexer with the output 

sequence affected by the control sequence. 

 

III. PROPOSED STOCHASTIC MODELS FOR MULTI-STATE ARCS  

In a two-terminal network, the anticipated information, e.g., 

the telecommunication data in a wireless network or gas for a 

supply network, is delivered from the source to the sink. 

Usually, a demand value of 𝑑 is specified a priori. For each 

transition, if the number of information units received by the 

sink is equal or larger than 𝑑, then this delivery is regarded as a 

reliable transition; hence, the reliability of a multi-state 

two-terminal network is considered as the probability of 

reliable transitions.  

As presented in Fig. 1, a general two-terminal multi-state 

network consists of  two types of nodes, i.e., (1) a source or sink 

that only has outer or inner arcs, as in Fig. 3(a); and (2) 

intermediate nodes that usually have outer and inner arcs, as in 

Fig. 3(b). An arc connecting two intermediate nodes can be 

either bidirectional or unidirectional, while an arc connecting 

an intermediate node with the source or sink is usually 

unidirectional. 

A. A stochastic model for nodes with unidirectional multi-state 

arcs 

A unidirectional arc usually exists between either the source 

𝑆 and an intermediate node 𝐼𝑖 , or an intermediate node 𝐼𝑖  and 

the sink  𝑇; an unidirectional arc may also exist between two 

intermediate nodes. Fig. 3(a) illustrates a node 𝐴  with two 

unidirectional multi-state inner-arcs (where 𝐴 can be either the 

sink 𝑇 or intermediate nodes with unidirectional arcs). For the 

multi-state arc 𝑒𝑖 (or 𝑒𝑗), the capacity distribution is assumed to 

be given by a probability vector 𝒑(𝑒𝑖) (or 𝒑(𝑒𝑗)). The elements 

in the probability vector can be either fixed or varying with time. 

If the capacity of node is not specified, then the stochastic 

model for the node with unidirectional multi-state arcs in Fig. 

3(a) is shown in Fig. 3(b). 

Let 𝑆(𝐵) and 𝑆(𝐶) represent the output stochastic sequences 

for nodes 𝐵  and 𝐶  respectively. Let 𝑆(𝒑(𝑒𝑖))  and 𝑆(𝒑(𝑒𝑗)) 

denote the randomly permuted sequences encoding the capacity 

for the state probability distributions 𝒑(𝑒𝑖) and 𝒑(𝑒𝑗) for arcs 
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𝑒𝑖 and 𝑒𝑗, respectively. Then, for the 𝑘th trial, the states (i.e., 

the numbers of information units) of nodes 𝐵  and 𝐶  are 

represented as 𝑆(𝐵)𝑘  and 𝑆(𝐶)𝑘  respectively; 𝑆(𝒑(𝑒𝑖))𝑘  and 

𝑆(𝒑(𝑒𝑗))𝑘 denotes the real capacities of arcs 𝑒𝑖 and 𝑒𝑗 for the 

𝑘th trial. Then, the numbers of information units that can be 

transformed through arcs 𝑒𝑖  and 𝑒𝑗  are given as 𝑆′(𝑝(𝑒𝑖))𝑘= 

MIN(𝑆(𝑝(𝑒𝑖))𝑘 , 𝑆(𝐵)𝑘 ) and 𝑆′(𝑝(𝑒𝑗))𝑘  = MIN(𝑆(𝑝(𝑒𝑗))𝑘 , 

𝑆(𝐶)𝑘 ), respectively. Thus, the anticipated number of 

information units that can be transformed through a specific arc 

is limited by the arc capacity. 
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Fig. 3. (a) An illustration of node ⁡𝐴 with multi-state unidirectional arcs; (b) A 

stochastic model for node 𝐴 without the incorporation of max-capacity; (c) A 

stochastic model for node⁡𝐴 with the incorporation of max-capacity . 

 

The units of information received by node 𝐴 is equal to the 

sum of information units from the inner-arcs connected with it; 

for example, for the 𝑘 th trial, 𝑆(𝐴)𝑘 =

𝑠𝑢𝑚(𝑆′(𝑝(𝑒𝑖))𝑘 , 𝑆
′(𝑝(𝑒𝑗))𝑘), as depicted in Fig. 3(b). This 

can be efficiently implemented by a sum module (or adder) 

with randomly permuted sequences. As aforementioned, if the 

max-capacity of node 𝐴 is not specified, then the capability of 

the information transmission through node 𝐴 is assumed to be 

infinity. Thus, for the 𝑘 th trial, the 𝑘 th bit of 𝑆(𝐴)  can be 

obtained according to the previous analysis; then, a stochastic 

sequence 𝑆(𝐴) can be derived if the simulation is performed for 

a number of times. 𝑆(𝐴)  encodes the signal probability 

distribution of node 𝐴, so the signal probabilities for 𝐴 can be 

obtained by analyzing 𝑆(𝐴).  
If the max-capacity of 𝐴, i.e., 𝑊𝑛(𝐴), is specified, the number 

of information units (greater than this specified max-capacity) 

cannot be processed through 𝐴. Hence, the information units at 

𝐴 are limited by the provided max-capacity value. For the 𝑘th 

trial, the number of information units received by 𝐴  is 

calculated as 𝑆′(𝐴)𝑘 = 𝑠𝑢𝑚(𝑆′(𝑝(𝑒𝑖))𝑘 , 𝑆
′(𝑝(𝑒𝑗))𝑘) . Let 

𝑆′(𝐴)𝑘  denote the 𝑘 th bit of 𝑆′(𝐴) . Thus, if 𝑆′(𝐴)𝑘 ≥
𝑆(𝑊𝑛(𝐴))𝑘 , then 𝑆(𝑊𝑛(𝐴))𝑘 is selected as the output of 𝐴, i.e., 

𝑆(𝐴)𝑘 = 𝑆(𝑊𝑛(𝐴))𝑘, because the information units being sent 

from 𝐴 are limited by its max-capacity. Otherwise, 𝑆(𝐴)𝑘 =
𝑆′(𝐴)𝑘 . This can be efficiently implemented by the MIN 

module in Fig. 3(c). 

The stochastic model in Fig. 3(b) accurately implements the 

information transmission process for a node with unidirectional 

arc. If the max-capacity property of a node is specified, then 

this can be dealt with by using the stochastic model in Fig. 3(c). 

The stochastic model for node 𝐴  with two unidirectional 

inner-arcs can then be generalized to a general scenario, i.e., a 

node with multiple unidirectional inner-arcs. 

B. Stochastic analysis of nodes with bidirectional arcs 

A bidirectional arc usually exists between two intermediate 

nodes, e.g., 𝐼𝑖  and 𝐼𝑗, as shown in Fig. 4(a). The bidirectional 

arc between nodes 𝐼𝑖  and 𝐼𝑗  is represented by 𝐿𝑖𝑗 ; the 

bidirectional arc can equivalently be represented as in Fig. 4(b). 

Arc 𝐿𝑖𝑗  indicates the connection from 𝐼𝑖  to 𝐼𝑗 , while 𝐿𝑗𝑖 

represents the opposite direction. Due to limitations in actual 

capacity [31], only a single-directional flow is adopted for 

network realization, because the direction is determined by 

comparing the actual inner information units for nodes 𝐼𝑖  and 𝐼𝑗. 

Let 𝑆_𝑖𝑛(𝐼𝑖) and 𝑆_𝑖𝑛(𝐼𝑗) denote the actual inner information 

units received by 𝐼𝑖  and 𝐼𝑗  respectively. For the 𝑘 th trial, if 

𝑆_𝑖𝑛(𝐼𝑖)𝑘 ≥ 𝑆_𝑖𝑛(𝐼𝑗)𝑘 , then the information flow is 

transformed from 𝐼𝑖  to 𝐼𝑗; otherwise, the flow is in the opposite 

direction. The stochastic model for the transition process 

between 𝐼𝑖  and 𝐼𝑗  in Fig. 4(a) is further implemented by the 

stochastic models in Fig. 4(c) and Fig. 4(d) for different flow 

directions. 
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Fig. 4. (a) Illustration of two intermediate nodes 𝐼𝑖  and 𝐼𝑗  connected by a 

bidirectional arc; (b) Equivalent representation of the bidirectional arc by using 
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unidirectional arcs; (c) Stochastic model for deriving the information transit 

direction through the bidirectional multi-state arc; (d) Derivation of the 

sequences encoding the information units for nodes 𝐼𝑖 and 𝐼𝑗 . 

 

Let 𝑆(𝑝(𝑒𝑚)) denote the stochastic sequence generated for 

the state probability distribution of the multi-state arc ⁡  𝐿𝑖𝑗  

(denoted as 𝑒𝑚 for simplicity). For the 𝑘th trial, the state of the 

multi-state arc is denoted by 𝑆(𝑝(𝑒𝑚))𝑘 . As analyzed 

previously, the transition process can only be performed in one 

direction, i.e. either from 𝐼𝑖  to 𝐼𝑗 or vice versa. If the direction is 

from 𝐼𝑖  to 𝐼𝑗, i.e., 𝑆(𝐼𝑖)𝑘 > 𝑆(𝐼𝑗)𝑘, then the information through 

𝑒𝑚 is represented as 𝑆(𝐿)𝑘= MIN(𝑆(𝑝(𝑒𝑚))𝑘, 𝑆(𝐼𝑖)𝑘) because 

the information units to be transformed are limited by the 

capacity of arc 𝑒𝑚 . Otherwise, 𝑆(𝐿)𝑘 = MIN( 𝑆(𝑝(𝑒𝑚))𝑘 , 

𝑆(𝐼𝑗)𝑘). This is efficiently implemented by utilizing the 2-to-1 

multiplexer in Fig. 4(c) with the output sequence of a 

comparator as the control sequence, i.e., 𝑆(𝐶𝑖𝑗) .  𝑆(𝐶𝑖𝑗)  is 

obtained by comparing the sequences for nodes 𝐼𝑖  and 𝐼𝑗.  

The state of node 𝐼𝑗 is derived as 𝑆′(𝐼𝑗)𝑘 = 𝑆(𝐿)𝑘 + 𝑆(𝐼𝑗)𝑘, 

while the remaining information units for node 𝐼𝑖  are equal to 

𝑆′(𝐼𝑖)𝑘 = 𝑆(𝐼𝑖)𝑘 − 𝑆(𝐿)𝑘 with the information sent from 𝐼𝑖  to 

𝐼𝑗 excluded. Otherwise, the information transmission process is 

performed in the opposite direction; hence, 𝑆′(𝐼𝑖)𝑘 = 𝑆(𝐿)𝑘 +
𝑆(𝐼𝑖)𝑘 , while the information units for node 𝐼𝑗  are equal to 

𝑆′(𝐼𝑗)𝑘 = 𝑆(𝐼𝑗)𝑘 − 𝑆(𝐿)𝑘 . Therefore, 𝑆(𝐿) can be derived as 

per the previous analysis. 

In general, if the state probability distribution of the 

multi-state arc ⁡𝐿𝑖𝑗  is provided, then the corresponding 

stochastic sequence 𝑆(𝑝(𝑒𝑚))  can be obtained through 

stochastic encoding. Thus, the stochastic model in Fig. 4(d) 

accurately derives the sequences for nodes connected by a 

bi-directional arc.  

C. Requirements for the flow of nodes 

For arcs connected with the sink  in Fig. 5 (a), let 𝑆(𝑒𝑇𝑖)  
denote the stochastic sequence received by the sink through 𝑒𝑇𝑖, 
where 𝑖 ∈ {1, 2,⋯ , 𝑗}. Hence, the sequence received by the sink 

𝑇 is given by 𝑆(𝑇) = ∑ 𝑆(𝑒𝑇𝑖)
𝑗
𝑖=1 . 
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Fig. 5. (a) A sink node 𝑇 with 𝑗 inner-arcs (unidirectional), i.e.,⁡𝑒𝑇1⋯𝑒𝑇𝑖; (b) 

An intermediate node 𝐼𝑁  with 𝑗  inner-arcs (unidirectional), 𝑖  outer-arcs 

(unidirectional) and 𝑚 bidirectional-arcs. 

 

For the intermediate node 𝐼𝑁 with multiple arcs as in Fig. 5 

(b), there are 𝑗  inner-arcs ( 𝑒𝑖𝑛1⋯𝑒𝑖𝑛𝑗 ), 𝑖  outer-arcs 

(𝑒𝑜𝑢1⋯𝑒𝑜𝑢𝑖) and 𝑚 bidirectional arcs (𝑒𝑏𝑖1⋯𝑒𝑏𝑖𝑚). As per the 

previous analysis, only one direction is possible at a time for the 

bidirectional arc. Once its direction is established, the inner and 

outer arcs are determined for the stochastic analysis. Let 𝑆(𝑒𝑖𝑛) 

and 𝑆(𝑒𝑜𝑢)  denote the information sequences for the 

intermediate node 𝐼𝑁 through the inner-arc and the outer-arc 

respectively. For the 𝑘th trial, the input and output units can be 

represented as 𝑆(𝑒𝑖𝑛)𝑘 and 𝑆(𝑒𝑜𝑢)𝑘. For any intermediate node, 

the total number of information units received should be equal 

to the number of units sent from this node; hence, the restrictive 

condition of 𝑆(𝑒𝑖𝑛)𝑘 = 𝑆(𝑒𝑜𝑢)𝑘 must also be met.  

Furthermore, for any arc 𝑒𝑙 in the investigated network, let 

𝑆(𝑒𝑙)𝑘 denote the 𝑘th bit processed through arc 𝑒𝑙 , then 0 ≤
𝑆(𝑒𝑙)𝑘 ≤ 𝑊𝑎(𝑒𝑙), where 𝑊𝑎(𝑒𝑙) indicates the max-capacity of 

arc 𝑒𝑙. 

D. A stochastic model to process the sequence for the sink node 

For reliable transmission, the available capacity from the 

source to the sink should be no less than the pre-specified 

demand 𝑑 , thus a comparator is necessary to process the 

information units received by the sink . This process can be 

efficiently implemented by the adoption of a comparator. 

For the comparator, the two input sequences are referred to as 

𝑆(𝑇) and 𝑆(𝑑); here, 𝑆(𝑇) indicates the stochastic sequence 

received at the sink 𝑇, while 𝑆(𝑑) is a sequence with each bit 

equals to 𝑑 . The output sequence of the comparator is 

𝑆(𝑠𝑦𝑠𝑡𝑒𝑚) . For the 𝑗 th trial (or bit), 𝑆(𝑇)𝑗  represents the 

available information units received by the sink 𝑇; if 𝑆(𝑇)𝑗 ≥

𝑆(𝑑)𝑗 , then 𝑆(𝑠𝑦𝑠𝑡𝑒𝑚)𝑗 = 1  indicates a successful 

transmission; otherwise, it is set to be 0. Hence, the system 

reliability is given by 

𝑅 =
∑ 𝑆(𝑠𝑦𝑠𝑡𝑒𝑚)𝐿
𝑖=1

𝐿
                             (1) 

where 𝐿 is the sequence length of stochastic computation. 

IV.  ANALYSIS PROCEDURE FOR A GENERAL MULTI-STATE 

TWO TERMINAL NETWORK 

A procedure for evaluating the reliability of a general 

multi-state two-terminal network is as follows: 

(1) Construct a stochastic model for the investigated 

two-terminal network. The stochastic models in Fig. 4(b) and 

Fig. 4(c) are applied for the established unidirectional or 

bidirectional arcs.  

 (2) The state distribution probabilities (i.e., the capacity 

distribution) for the arcs at a specified mission time are 

determined by the provided parameters. 

(3) Encode the obtained probability distribution into 

randomly permuted sequences for different arcs; if the capacity 

properties of nodes are specified, then the encoding process can 

be performed. A fixed number of each value is assigned in the 

sequence to indicate the probability distribution, as shown in 

Fig. 2(a). 

 (4) Propagate the obtained randomly permuted sequences in 

step (3) through the constructed stochastic model for the 

investigated multi-state two-terminal network. 

(5) Derive the stochastic sequence at the sink node. 

(6) The stochastic model for the comparator is utilized to 

process the sequence obtained at the sink node to find the 

reliability;  

(6) The reliability of the multi-state two-terminal network 

with a demand 𝑑 can be derived as per Equation (1). 

The aforementioned procedures is given as the flow chart in 

Fig. 8. 
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Fig. 6 A flowchart for the evaluation procedure of a general multi-state two 

terminal network by stochastic analysis. 

V. CASE STUDIES 

In this section, several cases are considered to assess the 

efficiency of the proposed stochastic approach. The accuracy of 

the stochastic approach is compared with Monte Carlo 

simulation. Different scenarios are investigated; all simulations 

are run on a computer with a 3.50 GHz E5-1620 

microprocessor and a 16 GB memory. 

Example 1: A bridge network [24] is shown in Fig. 7(a). This 

network consists of four nodes (2 intermediate nodes, 𝐴 and 𝐵, 

a source 𝑆, and a sink 𝑇) and five arcs (4 unidirectional arcs and 

1 bidirectional one). This is the simplest example of a 

multi-state two-terminal network.  

An equivalent representation of the bridge network in Fig. 7(a) 

is illustrated in Fig. 7(b). It is analyzed to validate the proposed 

methodology. The max-capacity of each node is assumed to be 

infinity for this network and the demand is set to 3. So, the 

objective is to find the probability that the number of message 

units received by the sink is greater than or equal to 3 units. 

Table 1 shows the different probabilities assigned to the 

corresponding arc states [24]. 

 

Table 1 Arc state parameters for Example 1 [24].  

Scenario 1 

Arc States Probability (pij) 

e1 0 1 2 3 0.050 0.025 0.025 0.900 

e2 0 1 2  0.025 0.025 0.950  

e3 0 1   0.050 0.950   

e4 0 1   0.020 0.980   

e5 0 1 2  0.075 0.025 0.900  

 

Following the general procedure in Fig. 6, Example 1 is 

analyzed by: 

(1) constructing the stochastic model in Fig. 7(c) by using the 

models in Fig. 4 and Fig. 5  for the unidirectional arcs, SA, SB, 

AT and BT, or the bidirectional arch, AB 

 (2) encoding the state distribution probabilities (i.e., the 

capacity distribution) in Table 1 for the arcs into randomly 

permuted sequences; 

 (3) propagating the obtained stochastic sequences through 

the stochastic model in Fig. 7(c); 

(4) Obtaining the stochastic sequence at the sink node, T; 

(5) using the stochastic model for the comparator to process 

the sequence obtained at the sink node for deriving the 

reliability.  

(6) The reliability of the multi-state two-terminal network 

with a demand 𝑑 is derived as per Equation (1). 

Let 𝑆𝐴𝐵_𝑏𝑖  denote the sequence representing the messages 

received through the bidirectional arc. Let 𝑆𝑖𝑛𝐴_𝑢𝑛𝑖  and 

𝑆𝑜𝑢𝑡𝐴_𝑢𝑛𝑖  denote the inner and outer summations of the 

sequences for node 𝐴 , respectively, through the remaining 

unidirectional arcs; similar notations are applicable to 𝑆𝑖𝑛𝐵_𝑢𝑛𝑖 
and 𝑆𝑜𝑢𝑡𝐵_𝑢𝑛𝑖. Then by applying the stochastic model of Fig. 

4(c), the stochastic sequences for the information units 

transmitted through the bidirectional arc can be determined. For 

the 𝑘th trial, the direction of the bidirectional arc is determined 

by comparing the 𝑘th bits of sequences 𝑆𝑖𝑛𝐴_𝑢𝑛𝑖 and 𝑆𝑖𝑛𝐵_𝑢𝑛𝑖. 
For example, if (𝑆𝑖𝑛𝐴_𝑢𝑛𝑖)𝑘 > (𝑆𝑖𝑛𝐵_𝑢𝑛𝑖)𝑘 , then the message 

flow is from 𝐴 to 𝐵 . Otherwise, the transmission process is 

completed in the opposite direction. The stochastic model of 

Fig. 4(d) can be utilized to determine the states of nodes 𝐴 and 

𝐵. 

The network is analyzed by different approaches. The 

obtained results are reported in Table 2; 𝐿 and 𝑁 denote the 

simulated sequence length for the stochastic approach and the 

simulation runs for MC. In this case, the exact reliability is 

0.8310 as obtained by the inclusion/exclusion method in [16]. 

For a large number of simulation runs or a large sequence 

length, the results by MC simulation or the stochastic approach 

follow approximately a Gaussian distribution. At each point, 

simulation is performed 30 times to derive the mean and 

variance. Table 2 compares the mean and variance for the 

reliabilities found using the stochastic analysis and MC 

simulation. It can be seen that the obtained reliability is close to 

the accurate value, which shows that the stochastic approach 

can evaluate a network with a high accuracy.  

For a confidence level of 95%, the error is calculated as 𝐸 =

⁡
𝑧𝑐

𝜇
√

𝑣

𝑚
, where μ and 𝑣 denote the accurate mean and the  
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Fig. 7. (a) A bridge network [24]; (b) Equivalent representation of the network in (a); (c) Stochastic model for the bridge network. 

 
Table 2 Mean and variance for the reliability of the multi-state bridge network, obtained by different approaches (each simulation is 

performed 30 times).  

Algorithm in [16] Reliability 0.8310 Avg. (s) 0.0013 

Stochastic  

computation 

𝑳 Reliability Variance Avg. (s) 

1k 0.8290 1.541× 10−5 0.0009 

10k 0.8302 1.130× 10−6 0.0069 

100k 0.8307 1.087× 10−7 0.0518 

Monte Carlo 𝑵 Reliability Variance Avg. (s) 

1k 0.8270 1.408× 10−4 0.0025 

10k 0.8241 1.632× 10−5 0.0132 

100k 0.8299 1.163× 10−6 0.1381 

 

variance of the distribution of the results respectively, 𝑚 

denotes the number of simulation runs or sequence length, and 

the parameter 𝑧𝑐   is equal to 1.96. It indicates that the error 

decreases by increasing 𝑚 . For 𝑚  = 10,000, the standard 

deviations for the stochastic analysis and the MC simulation are 

found to be 2.507× 10−6  and 9.528× 10−5 , respectively. 

Therefore, the obtained error for the stochastic analysis is 

smaller than MC simulation at a confidence level of 95%. Thus, 

the stochastic analysis is more accurate than MC simulation. If 

an error is specified, then the sequence length to meet the error 

requirement can be determined. 

For assessing the computing efficiency, the average run time 

(Avg.) is also shown in Table 2. For the algorithm in [16], all 

MMCVs are identified as a prior, however the required time for 

determining the MMCV is not included. As can be seen, the 

stochastic analysis is more efficient than MC simulation for the 

same sequence length or number of simulation runs. Compared 

with the algorithm in [16], the efficiency of stochastic analysis 

is also comparable with an acceptable accuracy (for 𝐿 = 10,000 

with a relative error 0.09%). 

 

 
(a) 

 
(b) 

Fig. 8 (a) Convergence of the reliability obtained by stochastic analysis for the 

network in Fig. 7; (b) Illustration of the relationship between the demand d and 
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reliability, obtained by the stochastic analysis with a sequence length of 100k 

bits. 

 

As shown in Table 2, the accuracy of the stochastic approach 

is affected by the sequence length; a more accurate result can be 

obtained by increasing the sequence length (as indicated by the 

decreasing variance). This is also validated by Fig. 8(a) in 

which the simulation results converge with the increase of 

sequence length. The stochastic sequence length is determined 

by a tradeoff between accuracy and efficiency. However, the 

stochastic approach provides a relatively accurate estimate of 

the reliability of a two-terminal network with a reasonable 

sequence length. The relationship between reliability and 

demand value is further presented in Fig. 8(b); so the system 

reliability is reduced if a larger demand value is specified. 

  Example 2: As shown in Fig. 9, this network consists of 12 

nodes (a source, 𝑆, a sink, 𝑇 and 10 intermediate nodes) and 21 

unidirectional arcs. The arcs could be in one of three states (i.e., 

0, 3, 5). The state distribution is reported in Table 3. According 

to [32], 669 MMCVs need to be determined in advance. Thus, it 

is difficult to use an exact approach to analyze a network of 

such size. Therefore, the reliability can be estimated by using 

the proposed stochastic analysis and MC simulation. The 

results are shown in Table 4, in which 𝐿 denotes the simulated 

sequence length for the stochastic analysis and the average run 

time (Avg.) indicates the efficiency of the stochastic analysis. 
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Fig. 9 The two-terminal network of [24].  

 

In Table 4, the efficiency and the accuracy are indicated by 

the average run time and variance in reliability, respectively. 

The stochastic analysis can predict the reliability more 

accurately than MC simulation, as indicted by the smaller 

variance. The stochastic analysis is also more efficient than MC 

simulation, as indicated by the shorter simulation time. For a 

different threshold as shown in Table 4, the average run time 

varies slightly with the demand value. This is incurred by the 

different simulation runs; however, the threshold has almost no 

effect on the run time. 

The approximate reliability obtained by the stochastic 

analysis is further compared with the bounds obtained by 

MESP [32] and MLQ [33]. The respective absolute relative 

errors are reported in Table 5 for different cases. For the 

relative error, the stochastic analysis finds the reliability at an 

acceptable inaccuracy. For the three cases in Table 3, the 

relative error for Case 2 is generally smaller than the other two  

  
Table 3 Arc state distribution for different cases for the network in Fig. 9 [24]. 

Arc States Case 1 Case 2 Case 3 

State Probability (𝑝𝑖𝑗) State Probability (𝑝𝑖𝑗) State Probability (𝑝𝑖𝑗) 

1 0 3 5 0.1163 0.0616 0.8221 0.0939 0.0288 0.8773 0.0457 0.1129 0.8414 

2 0 3 5 0.1624 0.1224 0.7152 0.0199 0.0017 0.9784 0.1614 0.0474 0.7912 

3 0 3 5 0.2014 0.0900 0.7086 0.0293 0.0208 0.9499 0.0448 0.0729 0.8823 

4 0 3 5 0.0689 0.1155 0.8156 0.0606 0.0417 0.8977 0.0982 0.0039 0.8979 

5 0 3 5 0.1863 0.1366 0.6771 0.0188 0.0076 0.9736 0.1820 0.1068 0.7112 

6 0 3 5 0.2244 0.0214 0.7542 0.0995 0.0328 0.8677 0.0190 0.1769 0.8041 

7 0 3 5 0.2221 0.1334 0.6445 0.0072 0.0325 0.9603 0.0159 0.1230 0.8611 

8 0 3 5 0.1265 0.0762 0.7973 0.0698 0.0337 0.8965 0.1198 0.0032 0.8770 

9 0 3 5 0.2993 0.0343 0.6664 0.0852 0.0483 0.8665 0.1082 0.0007 0.8911 

10 0 3 5 0.3016 0.0813 0.6171 0.0540 0.0498 0.8962 0.0153 0.1136 0.8711 

11 0 3 5 0.2385 0.0785 0.6830 0.0572 0.0352 0.9076 0.0562 0.0778 0.8660 

12 0 3 5 0.3460 0.0268 0.6272 0.0191 0.0375 0.9434 0.0673 0.1711 0.7616 

13 0 3 5 0.3511 0.0441 0.6048 0.0690 0.0272 0.9038 0.1830 0.1752 0.6418 

14 0 3 5 0.0326 0.0182 0.9492 0.0672 0.0017 0.9311 0.0410 0.1582 0.8008 

15 0 3 5 0.0231 0.1268 0.8501 0.0197 0.0118 0.9685 0.0309 0.0766 0.8925 

16 0 3 5 0.0373 0.0830 0.8797 0.0457 0.0066 0.9477 0.0245 0.1499 0.8256 

17 0 3 5 0.0222 0.0192 0.9586 0.0490 0.0378 0.9132 0.0131 0.0753 0.9116 

18 0 3 5 0.0052 0.0411 0.9537 0.0243 0.0082 0.9675 0.0347 0.0175 0.9478 

19 0 3 5 0.3935 0.0625 0.5440 0.0830 0.0465 0.8705 0.0558 0.1944 0.7498 

20 0 3 5 0.0650 0.0457 0.8893 0.0314 0.0137 0.9549 0.1740 0.1876 0.6384 

21 0 3 5 0.1260 0.0495 0.8245 0.0503 0.0356 0.09141 0.1905 0.0572 0.7523 
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Table 4 Mean and variance for the reliability of the network in Example 2, obtained by the stochastic approach and Monte Carlo (MC) 

simulation for different cases (the simulation is performed for 30 times), with average run time (Avg.)  also shown.  

 Case 1 Case 2 Case 3 

 𝑳/𝑵 Reliability 

(Mean) 

variance Avg. 

(s) 

Reliability 

(Mean) 

variance Avg. 

(s) 

Reliability 

(Mean) 

variance Avg. 

(s) 

Stochastic 

analysis 

𝒅 = 5 

10k 0.9384 6.4421×
10−7 

0.0166 0.9078 2.9463×
10−7 

0.0171 0.8876 9.5905×
10−7 

0.0168 

100k 0.9380 2.5084×
10−7 

0.2960 0.9079 5.4950×
10−8 

0.1020 0.8878 2.4366×
10−7 

0.1020 

1000k 0.9381 1.8174×
10−8 

1.7824 0.9079 5.3667×
10−9 

1.9151 0.8877 2.2634×
10−8 

1.8017 

MC 

Simulation 

𝒅 = 5 

10k 0.9379 4.7775×
10−6 

0.0254 0.9090 6.1207×
10−6 

0.0294 0.8870 1.68725×
10−5 

0.0275 

100k 0.9381 4.2368×
10−7 

0.2552 0.9076 1.4242×
10−6 

0.2915 0.8875 1.0975×
10−6 

0.3432 

1000k 0.9381 4.7928×
10−8 

3.2966 0.9079 8.5410×
10−8 

3.3464 0.8877 1.3801×
10−7 

3.3953 

Stochastic 

analysis 

𝒅 = 3 

10k 0.9727 6.3818×
10−7 

0.0168 0.9466 3.5187×
10−7 

0.0169 0.9829 2.6892×
10−7 

0.2020 

100k 0.9727 4.2585×
10−7 

0.1021 0.9467 2.3317×
10−8 

0.1033 0.9827 4.4653×
10−8 

0.1016 

1000k 0.9726 5.3776×
10−8 

1.8026 0.9467 3.3812×
10−9 

1.8524 0.9828 2.3960×
10−9 

1.8155 

MC 

Simulation 

𝒅 = 3 

10k 0.9724 3.5335×
10−6 

0.0261 0.9465 3.4947×
10−6 

0.0249 0.9832 2.3883×
10−6 

0.0269 

100k 0.9725 2.9296×
10−7 

0.2855 0.9466 4.3404×
10−7 

0.3281 0.9826 1.5714×
10−7 

0.3362 

1000k 0.9727 3.1540×
10−8 

2.8291 0.9468 5.1360×
10−8 

2.5509 0.9828 2.1847×
10−8 

3.4313 

 
Table 5 Accuracy and performance of stochastic analysis, with L = 100k bits and 𝒅 = 5. 

Case  Stochastic Analysis Bounds Relative error  Avg.(s) 

MESP MLQ MESP MLQ 

1 0.9381 0.9308 0.9308 0.783% 0.732% 0.1050 

2 0.9079 0.9105 0.9105 0.286% 0.286% 0.1016 

3 0.8875 0.8911 0.8911 0.406% 0.409% 0.1034 

 

cases. This validates the claim in [24] that if the components’ 

state probabilities are high for a perfect performance, the 

proposed simulation-based approach predicts more accurate 

results with a smaller relative error. The average run time (Avg.) 

of the stochastic analysis is also shown in Table 5. The 

simulation time is mainly affected by the sequence length, but it 

is not significantly affected by a change in the arc state 

distribution. 

 

VI. CONCLUSION 

In this paper, a stochastic computational approach is 

proposed to evaluate the reliability of a general multi-state 

two-terminal network. The reliability denotes the probability of 

connectivity between the source and sink nodes. Both arcs and 

nodes at different capacity distributions have been considered. 

Random permutations have been used to improve the 

computational efficiency and accuracy of the stochastic 

approach. Due to the stochastic encoding, a capacity 

distribution, either fixed or varying with time, and the arcs, 

either unidirectional or bidirectional, can be stochastically 

modeled for the information transmission process. A stochastic 

model is then constructed through combinations of logic gates. 

Validated by two case studies, the proposed stochastic 

approach can efficiently and accurately predict the reliability of 

a general two-terminal network under a capacity distribution.  
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