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Abstract— Approximate computing permits the improvement
of hardware efficiency with a relaxation of accuracy for
nanoscale technologies and devices. Instead of conventional
Boolean logic, voter-based majority logic (ML) is widely ap-
plicable to many emerging nanotechnologies. High-radix Booth
multipliers, such as radix-8 and radix-16 multipliers, suffer
from high complexity when generating odd multiples of the
multiplicand. In this paper, designs of approximate recoding
adders (ARAs) based on ML with no carry propagation are
proposed to alleviate this issue. For calculating the triple and
5× of the multiplicand, a 2-bit ARA and a 3-bit ARA are
designed to compute the sum of 1× and 2× multiplicand, and
the sum of 1× and 4× multiplicand, respectively. Moreover,
a 4-bit ARA is especially developed for computing 7× of the
multiplicand as the addition of −1× and 8× of the multiplicand.
The proposed ARAs show advantages in hardware evaluated by
delay and gate complexity, as well as in accuracy; for example,
in a 16×16 radix-8 multiplier, the use of 2-bit ARAs achieves a
reduction of 77% in the area-delay product with a normalized
mean error distance of 7.51 × 10−4 for computing the triple
multiplicand.

I. INTRODUCTION

As Dennard scaling is expected to come to an end soon,
it becomes more difficult to reduce power dissipation by
scaling down the feature size of CMOS transistors. Emerging
nanotechnologies have been investigated for low power and
high speed in digital circuit design. These nanotechnologies
often rely on majority logic (ML) as a computing primitive,
such as quantum-dot cellular automata, spin-wave devices
and nanomagnetic logic [1]. Moreover, minority logic-based
nanotechnologies, such as single electron tunneling and
tunneling phase logic, share similar logic synthesis for ML-
based circuits. The widely used basic unit in ML is the 3-
input majority gate (or voter), defined by the logic function,
F = M(A,B,C) = AB +BC +AC.
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Approximate computing provides an emerging paradigm
for energy efficient circuit design [2]. The conjunction of
approximate computing and ML-based emerging nanotech-
nology can lead to low power integrated circuits and systems
[3]. Approximate designs based on conventional Boolean
logic for CMOS circuits have been extensively explored.
However, a naive mapping method directly replacing the
logic gates in CMOS-based circuits with ML does not fully
utilize the specific properties of ML [4]. Therefore, to better
adapt to emerging nanotechnologies, efficient approximate
circuits must be specially designed by manipulating ML.

Prior ML-based approximate multiplier designs include
unsigned array multipliers made of approximate partial prod-
uct (PP) generators and compressors [5]–[7], signed radix-
4 Booth multipliers using approximate PP generation and
reduction [8], [9]. The Booth algorithm is commonly utilized
for efficient and fast signed multiplication [10]. In the radix-4
Booth algorithm, PPs are generated by shift operations or 2’s
complementing. The high-radix Booth algorithms generate
fewer PPs, which reduces the complexity of accumulating the
PPs [11]. However, the drawback occurs in the generation of
odd multiples of the multiplicand, which can not be done by
means of simple shifts. They require additions with a long
carry propagation and therefore, additional power and delay.
A Boolean logic-based approximate recoding adder (ARA)
has been designed for generating the triple multiplicand in
the radix-8 Booth algorithm [12]. However, research on ML-
based high radix multiplier designs has not been pursued.

In this paper, ML-based approximate recoding adders are
designed for high-radix Booth multipliers to generate the odd
multiples of the multiplicand. 2-bit, 3-bit, and 4-bit ARAs
that incur no carry propagation are, respectively, designed
for calculating the triple, 5× and 7× of the multiplicand in
radix-8 and radix-16 Booth algorithms. The ARAs are then
employed to generate the lower significant bits of the odd
multiples, thus overcoming the long delay issue in radix-
8 and radix-16 schemes. To assess the proposed ARAs,
an analytical investigation of the hardware complexity and
errors is presented.

The remainder of this paper is organized as follows.
Section II proposes ML-based AFA designs for radix-8 and
radix-16 Booth multipliers. Section III reports the results for
error and hardware metrics. Section IV concludes the paper.

II. APPROXIMATE RECODING ADDER DESIGNS

A. An ARA Design for Radix-8 Booth Multipliers

For an n×n signed multiplier, let A = an−1an−2...a2a1a0
be the multiplicand and B = bn−1bn−2...b2b1b0 be the



multiplier. The most significant bits of A and B are the
sign bits. In the radix-8 Booth algorithm, the multiplicand
is encoded into 0, ±A, ±2A, ±3A, or ±4A to generate
the PP array depending on four adjacent multiplier bits. The
addition for implementing A + 2A is required to calculate
the triple multiplicand (i.e., 3A), as in Fig. 1 (a). Consider
each 2-bit adder as a component, it computes the addition
(denoted by R) by

R = 2i+2Cout + 2i+1Si+1 + 2iSi

= 2i+1ai+1 + 3× 2iai + 2iai−1 + 2iCin, (1)

where ai+1, ai, ai−1 are three adjacent bits in A, Cin is the
carry-in from the addition of lower significance, Si+1 and
Si are the first and second bits of the sum, and Cout is the
carry out of the addition (omitted in Fig. 1).

(1) can be reformulated as

R = 2i+2ai + 2i+1ai+1 + 2i(Cin + ai−1 − ai). (2)

Let R̃ be the approximate R for the 2-bit ARA design,
given by R̃ = 2i+2C̃out + 2i+1S̃i+1 + 2iS̃i, where C̃out,
S̃i+1 and S̃i denote approximate Cout, approximate Si+1

and approximate Si, respectively. By comparing (2) with (1),
C̃out and S̃i+1 can be given by

C̃out = ai, (3)

S̃i+1 = ai+1. (4)

Then, we use a 1-bit S̃i to approximate Cin + ai−1 − ai.
Let r and r̃ be the exact and approximate results of a+b−c,
respectively. As shown in Table I, there are two cases that
r can not be represented by a 1-bit binary number. Then,
by rounding the results in these two cases to their nearest
binary numbers, r̃ is obtained by using a MV, as

r̃ ∼= a+ b− c ∼= a&c̄|a&b|c̄&b = M(a, b, c). (5)

Let e be the difference between r̃ and r, computed by

e = r̃ − r = M(a, b, c)− (a+ b− c)

=

 1, {a, b, c} = {0, 0, 1}
−1, {a, b, c} = {1, 1, 0}
0, others

. (6)

Thus, two errors are introduced to r̃, with one negative
and one positive, compared with r. Then, S̃i is given by

S̃i = M(Cin, ai−1, ai). (7)

The error E is defined as the difference between R̃ and
R, as E = R̃−R. Based on (2)-(7), E is obtained as

E = 2i{M(Cin, ai−1, ai)− (Cin + ai−1 − ai)}

=

 2i, {Cin, ai−1, ai} = {0, 0, 1}
−2i, {Cin, ai−1, ai} = {1, 1, 0}

0, others
. (8)

For two possible values of ai+1, thus, the 2-bit ARA
design introduces two negative and two positive errors with
|E| = 2i in all input assignments.
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Fig. 1: Generations of odd multiples of the multiplicand for
high-radix Booth multipliers.

TABLE I: The Truth Table of r and r̃ to Perform the
Function a+ b− c

a b c r r̃ e
0 0 0 0 0 0
0 0 1 -1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
1 0 0 1 1 0
1 0 1 0 0 0
1 1 0 2 1 -1
1 1 1 1 1 0

B. ARA Designs for Radix-16 Booth Multipliers

The radix-16 algorithm encodes the multiplicand into 0,
±A, ±2A, ±3A, ±4A, ±5A, ±6A, ±7A or ±8A depending
on five adjacent multiplier bits. 3A can be approximately
calculated by using the ARA design discussed in Section II-
A and 6A can be implemented by left shifting 3A by one
bit. Therefore, we consider the ARAs for calculating 5A and
7A next.

1) A 3-bit ARA Design for Computing 5A: To compute
5A, the addition of 4A and A is performed. As shown in
Fig. 1 (b), except for the addition of the two least significant
bits, let each 3-bit addition as a unit, the sum is given by

R = 2i+3Cout + 2iS

= 2i+3Cout + 2i+2Si+2 + 2i+1Si+1 + 2iSi

= 2i+2ai+2 + 2i+1ai+1 + 2i+1ai−1

+5× 2iai + 2iai−2 + 2iCin, (9)

where ai+2, ai+1, ai, ai−1, and ai−2 are five adjacent bits
in A, Cin is the carry-in, S (Si+2Si+1Si) is the 3-bit sum
and Cout is the 1-bit carry out.

As 5 × 2iai = 2i+3ai − 2i+1ai − 2iai. (9) is first
reformulated as

R = 2i+3ai + 2i+2ai+2 + 2i+1(ai+1 + ai−1 − ai)

+2i(ai−2 + Cin − ai). (10)

Then, similar to the 2-bit ARA design, based on the



approximation methods in (3)-(5), the addition using the 3-
bit ARA is approximately given by

C̃out = ai, (11)

S̃i+2 = ai+2, (12)

S̃i+1 = M(ai+1, ai−1, ai), (13)

S̃i = M(ai−2, Cin, ai), (14)

where S̃i+2S̃i+1S̃i and C̃out are the approximate 3-bit S and
Cout, respectively.

Let R̃ = 2i+3C̃out + 2i+2S̃i+2 + 2i+1S̃i+1 + 2iS̃i. Then,
the error E for the 3-bit ARA design is given by

E = 2i+1{M(ai+1, ai−1, ai)− (ai+1 + ai−1 − ai)}
+2i{M(ai−2, Cin, ai)− (ai−2 + Cin − ai)}

=



2i+1 + 2i, {ai+1, ai, ai−1, ai−2, Cin}
= {0, 1, 0, 0, 0}

2i+1, {ai+1, ai, ai−1} = {0, 1, 0} and
{ai−2, Cin} ≠ {0, 0}

2i, {ai, ai−2, Cin} = {1, 0, 0} and
{ai+1, ai−1} ≠ {0, 0}

−2i+1 − 2i, {ai+1, ai, ai−1, ai−2, Cin}
= {1, 0, 1, 1, 1}

−2i+1, {ai+1, ai, ai−1} = {1, 0, 1} and
{ai−2, Cin} ≠ {1, 1}

−2i, {ai, ai−2, Cin} = {0, 1, 1} and
{ai+1, ai−1} ≠ {1, 1}

0, others

(15)

Thus, this 3-bit ARA introduces errors in 28 out of 64
possible cases, including two negative and two positive errors
with |E| = 2i+1+2i, six negative and six positive errors with
|E| = 2i+1, as well as six negative and six positive errors
with |E| = 2i.

2) A 4-bit ARA Design for Computing 7A: As shown in
Fig. 1 (c), the addition of 8A and −A in 2’s complement is
performed to generate 7A, where the 2’s complement of −A
is implemented by inverting each bit of A and then adding
1. Taking each 4-bit addition as a unit, R is given by

R = 2i+4Cout + 2iS

= 2i+4Cout + 2i+3Si+3 + 2i+2Si+2 + 2i+1Si+1 + 2iSi

= 2i+3āi+3 + 2i+3ai + 2i+2āi+2 + 2i+2ai−1

+2i+1āi+1 + 2i+1ai−2 + 2iāi + 2iai−3 + 2iCin, (16)

where ai+3, ai+2, ai+1, ai, ai−1, ai−2, and ai−3 are seven
adjacent bits in A, Cin is the carry-in, S (Si+3Si+2Si+1Si)
and Cout are the sum and the carry out, respectively.

Consider 2iāi = 2i+3ai − 2i+3ai − 2iai +2i. (16) can be
reformulated as

R = 2i+4ai + 2i+3(āi+3 − ai) + 2i+2(āi+2 + ai−1)

+ 2i+1(āi+1 + ai−2) + 2i(Cin + ai−3 − ai + 1). (17)

Then, for the terms in the brackets in (17) to be compatible
with the format in (5), consider 2i+2ai−1 = 2i+3ai−1 −
2i+2ai−1, 2i+1ai−2 = 2i+2ai−2 − 2i+1ai−2, 2iai−3 =

2i+1ai−3 − 2iai−3 and āi (logic operation) is equivalent to
−ai +1 (arithmetic operation), (17) can further be reformu-
lated as

R = 2i+4ai + 2i+3(āi+3 + ai−1 − ai)

+2i+2(āi+2 + ai−2 − ai−1) + 2i+1(āi+1 + ai−3

−ai−2) + 2i(Cin + āi − ai−3). (18)

Thus, the addition using the 4-bit ARA is computed by

C̃out = ai (19)

S̃i+3 = M(āi+3, ai−1, āi), (20)

S̃i+2 = M(āi+2, ai−2, āi−1), (21)

S̃i+1 = M(āi+1, ai−3, āi−2), (22)

S̃i = M(Cin, āi, āi−3), (23)

where S̃i+3S̃i+2S̃i+1S̃i and C̃out are the approximate 4-bit
S and Cout, respectively.

Let R̃ = 2i+4C̃out + 2i+3S̃i+3 + 2i+2S̃i+2 + 2i+1S̃i+1 +
2iS̃i. Thus, E for the 4-bit ARA design is given by

E = 2i+3{M(āi+3, ai−1, āi)− (āi+3 + ai−1 − ai)}
+2i+2{M(āi+2, ai−2, āi−1)− (āi+2 + ai−2 − ai−1)}
+2i+1{M(āi+1, ai−3, āi−2)− (āi+1 + ai−3 − ai−2)}

+2i{M(Cin, āi, āi−3)− (Cin + āi − ai−3)}. (24)

The errors are analyzed using a method similar to (15).
Thus, errors are introduced in 176 combinations of inputs.

III. ERROR AND HARDWARE EVALUATION

A. Evaluation Metrics

Two error metrics are considered to evaluate the approxi-
mate designs, the normalized mean error distance (NMED),
and the root-mean-square error (RMSE) [13]. The NMED
is the normalized average of the absolute differences be-
tween the approximate and the exact results. The RMSE
is the root of the average squared differences between the
approximate and the exact results. To adapt to different
ML-based nanotechnologies, the circuit characteristics are
analytically evaluated by the number of utilized majority
voters (MV s), the critical path delay (D), and the area-delay
product (ADP , given by MV ×D). The critical path delay
is measured by the number of MV s on the critical path
because the delay of inverters is often very small for ML-
based nanotechnologies [14]. The ADP is used to assess the
overall hardware efficiency.

In this section, the approximate ARA designs are com-
pared with exact ML-based ripple carry adders (RCAs)
(implemented by cascading full adders). Let the inputs be
a, b and c, and the outputs be cout and s. An ML based full
adder performs 2cout+s = a+b+c, where cout = M(a, b, c)
and s = M(c̄out,M(a, b, c̄), c) [15]. Thus, the ML-based full
adder consists of three MVs and two inverters. There are one
and two majority gate delays, respectively for generating cout
and s. An m-bit ML-based RCA requires 3m MV s with
D = m+ 1.



B. Simulation Results and Analysis

For an n×n signed Booth multiplier, let the approximate
factor p denote the number of ARA blocks applied to
generate odd multiples of A. As shown in Fig. 1 (a), for the
radix-8 Booth algorithm, 2p-bit addition can approximately
be computed by using p blocks of 2-bit ARAs, where 0 <
p ≤ ⌊n+1

2 ⌋, except for the least significant bit. Compared
with an exact RCA, reduction rates of 5p

3(n+1) for the number
of MV s and 2p

n+2 for D are obtained. In the radix-16 Booth
algorithm, using p blocks of 3-bit ARAs to generate 5A leads
to 3p approximate least significant bits, where 0 < p ≤
⌊n+1

3 ⌋, except for the two least significant bits, as per Fig. 1
(b). The utilization of 3-bit ARAs achieves decrease rates of

7p
3(n+1) for the number of MV s and 3p

n+2 for D than using an
RCA. The use of p blocks of 4-bit ARAs computes 7A with
4p approximate least significant bits, where 0 < p ≤ ⌊n+1

4 ⌋,
except for the three least significant bit addition, as per Fig.
1 (c). Moreover, 8p MV s and 4p units of D are saved.

For n = 16, Fig. 2 presents the error results measured
by NMED and RMSE due to the use of ARAs in the
generation of the odd multiples of A. When p = 6, 4, 3,
errors for computing 3A, 5A and 7A significantly increase.
Thus, for n = 16, p = 5, 3, 2 are preferred when using
2-bit, 3-bit and 4-bit ARAs, respectively. Five 2-bit ARAs
reduce the ADP by 77% with an NMED of 7.51× 10−4

and an RMSE of 247.31. When using three 3-bit ARAs, a
reduction of 70% in the ADP is achieved with an NMED
of 6.34 × 10−4 and an RMSE of 314.36. Moreover, the
use of two 4-bit ARAs reduces the ADP by 55% with an
NMED of 1.2× 10−3 and an RMSE of 522.61.

IV. CONCLUSION

In this paper, approximate recoding adders (ARAs) based
on ML are proposed to compute the odd multiples of the
multiplicand in high-radix Booth multipliers. In particular,
2-bit, 3-bit, and 4-bit ARAs are designed for calculating the
triple, 5×, and 7× of the multiplicand, respectively. They
are then employed to generate the lower significant bits of
odd multiples of the multiplicand. Due to the advantage
of no carry propagation in these ARAs, the critical path
is significantly shortened. The performance of the proposed
ARAs has been analyzed using hardware and error metrics.
For a 16-bit multiplication, the use of ARAs reduces up to
77% of the ADP when generating the odd multiples of the
multiplicand, compared with exact computing.
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