
Quantized Simulated Bifurcation for the Ising Model

Tingting Zhang and Jie Han

Abstract— Developed from the Ising model, Ising machines
are promising to be efficient domain-specific accelerators for
solving combinatorial optimization problems (COPs). A simu-
lated bifurcation (SB) algorithm enables an Ising machine to
achieve massive parallelism in the simulation of Hamiltonian
dynamics. Although SB significantly accelerates the search,
more resources are required due to the use of continuous
variables for the position of oscillators to obtain discrete spin
states, compared to conventional simulated annealing. This
article proposes ternary and multiple-value quantized SB (qSB)
algorithms by discretizing the position variables used for the
hardware-consuming multiply-accumulate (MAC) operations
in SB. These quantization schemes do not only reduce the
computational complexity, but also improve the solution quality
for COPs. Specifically, the ternary qSB with dynamic threshold
settings converts the MAC into addition and subtraction. To
improve the precision in number representation when solving
large-scale COPs, a uniform quantization scheme is applied
to provide multiple-valued quantization. Alternatively, a loga-
rithmic qSB leverages the evolution characteristics of position
variables and implements multiplication by using simple shift
operations. We demonstrate that using the proposed qSB
improves the solution quality in a long search and accelerates
energy convergence in a short search for solving COPs tackled
by up to 2000 fully connected spins.

I. INTRODUCTION

The performance improvement of general-purpose pro-
cessors is slowing down as the feature size of transistors
is reaching the physical limit. Domain-specific hardware
accelerators based on unconventional computing paradigms
are expected to lead to additional performance and efficiency
gains for a particular class of applications. Combinatorial
optimization problems (COPs) exist in various data-intensive
applications, such as cell placement, wire routing, and logic
minimization in very large-scale integration designs [1].
They are computationally non-deterministic polynomial-time
(NP)-hard to solve by using an enumeration method on
a general-purpose processor. A domain-specific computing
architecture provides a novel paradigm for solving COPs in
the post-Moore era.

The Ising model describes the spin dynamics in a fer-
romagnet, where spins naturally orient, leading the system
to converge to the lowest energy state. Many COPs can
be mapped to a problem of searching for the ground state
of the Ising model, referred to as an Ising problem [2].
Various types of domain-specific hardware platforms for

*This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada (Project Numbers: RES0048688,
RES0051374 and RES0054326). T. Zhang was supported by a Ph.D.
scholarship from the China Scholarship Council.

T. Zhang and J. Han are with the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
(ttzhang@ualberta.ca, jhan8@ualberta.ca).

efficiently solving Ising problems, called Ising machines, are
broadly categorized into two classes. One utilizes physical
models, including quantum annealers with superconducting
circuits [3], coherent Ising machines with pulse lasers [4]
and oscillator-based Ising machines [5]. The other class is
implemented by conventional circuits for various heuristic
algorithms to numerically simulate spin dynamics, such as
simulated annealing (SA) [6], stochastic cellular automata
annealing [7] and simulated bifurcation (SB) [8]. These
heuristic algorithm-based machines support solving Ising
problems with dense spin-to-spin interactions with a high
precision, which however may be challenging for the imple-
mentation of the first class of Ising machines.

Inspired by quantum mechanics, SB originates from sim-
ulations of Hamiltonian dynamics with quantum adiabatic
bifurcation in a nonlinear oscillator network [8]–[10]. Com-
pared with the commonly used SA, it does not require a
one-by-one spin update to guarantee energy convergence. It
benefits from the massive parallelism in updating spin states,
thus reducing the search time. However, SB uses continuous
variables for oscillator positions to obtain spin states (−1 or
+1). Thus, it incurs a high hardware cost for computation,
especially for the multiply-accumulate (MAC) operation.

Quantization reduces the precision of input samples into
discrete levels, which is a lossy process by using less
memory space. Quantization of the position values for the
MAC can reduce the hardware for computation and also
introduce some unexpected noise. This noise is likely to
bring beneficial randomness to help the system jump out of
the local minima, but at a risk of dramatic loss in solution
quality due to the possibility of moving to another local
minimum with higher energy [11]. The recently developed
discrete SB (dSB) binarizes the position values by using
their signs for MAC [11]. It achieves a significant reduction
of computational complexity, but at the cost of a longer
search time than the original SB [8]. Therefore, it becomes
interesting to investigate the effect of quantizing the position
values in SB for a better trade off between the computational
cost and search time.

In this paper, quantized SB (qSB) is proposed for solving
COPs quickly in a short search and also accurately in a
long search. Different quantization schemes are applied for
position values as inputs to the MAC in SB. The ternary
qSB quantizes the position values into {0,±1}, depending
on a dynamic threshold that changes with time. It does
not only convert the costly MAC into addition and sub-
traction, but also compresses the data by quantizing a large
number of values to zero. Multiple-value qSB algorithms
based on uniform and logarithmic quantizations are further

developed to achieve a more accurate number representation
for solving large-scale COPs. Especially, logarithmic qSB
simplifies multiplication to shift operations. It produces more
accurate computation results for updating variables near
the bifurcation point and introduces randomness when the
magnitudes of position values become larger during the
search. The performance of the proposed qSB is evaluated
by solving instances of Ising problems with up to 2000 fully
and sparsely connected spins.

In the remainder of this paper, Section II presents prelim-
inaries. The SB algorithms with quantization schemes are
discussed in Section III. The experiment results are reported
in Section IV. Finally, Section V concludes the paper.

II. PRELIMINARIES

The Ising model is an abstract mathematical model to
describe the ferromagnetism of magnetic particles interacting
with each other in the presence of an external magnetic field
in statistical physics. An N -spin Ising problem is to find the
spin states that minimize the total energy (i.e., Hamiltonian)
of the Ising model. The Hamiltonian is given by [2]

H(s) = − 1
2

∑N
i,j Jijsisj −

∑N
i hisi, (1)

where si (or sj , ∈ {−1,+1}) denotes the state of the ith
(or jth) spin, Jij indicates the magnetic interaction strength
between si and sj (so Jij = Jji and Jii = 0), and hi is the
external magnetic field (or bias) placed on si.

SB was derived from a quantum bifurcation machine [9].
It applies the bifurcation phenomena, adiabatic processes,
and ergodic processes to solving COPs. An SB algorithm
essentially searches for an approximate solution by solving
a pair of differential equations related to the positions and
momenta of oscillator networks [8]. To restrain the errors in-
troduced by using continuous position variables to represent
discrete spin states, two variants, called ballistic SB (bSB)
and dSB [11] are developed. Both bSB and dSB follow the
Hamiltonian equations of motion, given by [11]

ẋi = a0yi, (2)

ẏi = −{a0 − a(t)}xi + c0JXi + η(t)hi, (3)

where xi and yi are the position and the momentum of the
ith oscillator, respectively; ẋi and ẏi denote their derivatives
with respect to time; a0 and c0 are manually tuned constants;
a(t) and η(t) are time-dependent control parameters to
guarantee the adiabatic evolution; JX is the computation
related to the interactions among spins (J) and position
variables (x), where JXi is used for updating yi. xi is
replaced by its sign (denoted by sgn(xj)) and yi is reset to 0
when |xi| > 1. The bSB and dSB differ from the expressions
of JXi, given by [11]

JXi =

{ ∑N
j=1 Jijxj in bSB∑N

j=1 Jijsgn(xj) in dSB
. (4)

To solve an Ising problem using SB, positions are first
randomly initialized. Then, the semi-implicit Euler method

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time Step

-1

0

1

2

3

C
u

t
V

a
lu

e

10
4

6000 6500 7000 7500 8000 8500 9000 9500 10000
3.3

3.305

3.31

3.315

3.32

3.325
10

4

bSB

dSB

(a) Time evolutions of cut values with the time step in a single trial

0 10 20 30 40 50 60 70 80 90 100

Trial

3.28

3.29

3.3

3.31

3.32

3.33

C
u
t
V

a
lu

e

10
4

bSB

dSB

(b) Distribution of cut values in multiple trials

Fig. 1: Solving a 2000-spin fully connected Ising problem
K2000 by using bSB and dSB. Parameters are δt = 0.5,
a0 = 1, and c0 = 0.01, a(t) linearly increases from 0 to 1.
A fast convergence in Hamiltonian (indicated by the quickly
increasing cut values) is preferred for accelerating the search.
The fluctuations in Hamiltonian (indicated by the instability
of cut values) are beneficial for jumping out of the local
minima in a long search.

is usually utilized to solve a pair of differential equations in
(2) and (3) with a time step δt. At the end of a search, the
sign of xi indicates the state of the ith spin.

The max-cut problem (MCP) is to split N vertices in an
undirected weighted graph into two groups (G0 and G1) to
maximize the cut value (fMCP), which is the total weight
of edges between G0 and G1. This is formulated as [2]

fMCP = 1
2

∑N
i,j wij

1−sisj
2 = − 1

2HMCP + 1
4

∑N
i,j wij ,(5)

where si (or sj) is a state variable for the ith (or jth) vertex
that belongs to G0 (as −1) or G1 (as +1), and wij (= wji)
denotes the edge weight between vertices i and j.

As a typical COP, the MCP is equivalent to an N -spin
Ising problem with the Hamiltonian (HMCP) given by [2]

HMCP = − 1
2

∑N
i,j Jijsisj , (6)

where Jij = −wij .
Fig. 1 presents instances of solving a benchmark MCP

K2000 by bSB and dSB, which is an Ising problem with 2000
fully connected spins [7], [8]. Fig. 1(a) shows the cut values
with time evolutions when using Ts = 104 time steps (i.e.,
iterations). Compared with the dSB, the cut value quickly
increases by using bSB at the beginning of the search. Near
the end of the search, the cut value remains nearly unchanged
because the spin states in bSB become stable. However, the
cut value obtained by using dSB fluctuates even at the end,
which increases the probability of jumping out of the local
minima.

−1 0 +1

-∆ +∆

(a) Ternary quantization in tSB

... ...

𝑠𝑛+1 =
2

𝑞

𝑞1 = −1 𝑞2 = −
2𝑛 − 2

𝑞
 𝑞𝑛 = −

2

𝑞
 𝑞𝑛+1 = 0 𝑞𝑛+2 =

2

𝑞
 𝑞2𝑛 =

2𝑛 − 2

𝑞
 𝑞2𝑛+1 = +1

𝑡1 = −1 𝑡2 = −
2𝑛−1

𝑞
 𝑡2𝑛+2 = +1 𝑡2𝑛+1 =

2𝑛−1

𝑞

(b) Uniform multiple-valued quantization in uSB

... ...

𝑞2𝑛−1 = 2−2 0 𝑞2 = −2−1 𝑞1 = −1 𝑞3 = −2−2

𝑠1 =
1

2
 𝑠2 =

1

4

𝑞2𝑛+1 = +1

𝑠2𝑛+1 =
1

2

𝑞2𝑛 = 2−1

𝑠2𝑛 =
1

4

(c) Logarithmic multiple-valued quantization in lSB

Fig. 2: Quantization schemes in SB algorithms.

Fig. 1(b) presents the distribution of cut values in 100
trials. Each trial adopts Ts = 103 time steps and differs in
the random initialization of position values. For bSB, the
majority of trials provides a large cut value between 33200
and 33300, which shows the general effectiveness of bSB.
As indicated by a broader distribution of cut values, the dSB
yields an unstable solution quality, but it is more likely to
find a better solution (with a larger cut value).

Unlike those gradient method-based Ising machines, such
as SimCIM [12], which utilizes a stochastic search process,
the SB algorithm uses a deterministic process except for the
random initialization of positions and momenta. For bSB, the
energy is converged to a local minimum in a short search,
while the binarized xi used as the inputs to the MAC in dSB,
as in (4), may introduce beneficial randomness to prevent the
Ising model from being stuck at the local minima in a long
search. In this work, we apply quantization schemes for the
MAC in SB to not only achieve fast energy convergence in
a short search but also increase the probability of jumping
out of the local minima in a long search.

III. QUANTIZED SIMULATED BIFURCATION

Depending on the sign bit, dSB binarizes xj to {−1, 1}
when computing JXi, as in (4). Thus, the MAC is simplified
to addition and subtraction, so dSB achieves a significant
reduction in hardware. However, as discussed in Section II,
it results in an unstable solution quality and relatively slow
convergence in energy. In this section, we improve the SB
with different quantization methods for the position values
used as inputs to the MAC for a better trade-off between
solution quality and computational complexity.

A. Ternary Simulated Bifurcation

The ternary SB (tSB) utilizes three-valued position vari-
ables (such as xj ∈ {−1, 0, 1}, where j ∈ [1, N]) to compute
JX . Similar to dSB, the computation of JX avoids using
multipliers. Moreover, x is compressed as a result of a high
probability of quantizing position values to zeros.

Let x̂ be the quantized position values. As shown in Fig.
2(a), a dynamic threshold ∆ determines the mapping from
x to x̂. In this way, JXi is computed as

JXi =
∑N

j=1 Jijtri(xj), (7)

where

tri(xj) =

{
0 |xj | ≤ ∆

sgn(xj) others
. (8)

An empirically optimized value for ∆ when using the
ternary quantization method is ∆∗ =

0.7∥x∥l1

N to minimize
the Euclidean distance between x̂ and x [13].

To compute ∆∗, the L1 norm of x needs to be evaluated
and it requires the accumulation of N elements in x in each
time step, thus incurring a high cost. The elements in x
evolve from random values around 0 to +1 or −1. Therefore,
∆∗ increases from an extremely small positive value to
around 0.7 with time. We then use a less computationally
expensive function related to time ∆(t) to simulate the func-
tion of ∆∗. Linear, exponential, and logarithmic increasing
functions are considered, given by

∆(t) =

0.7× t

Ts
linear

0.7× 2
t

Ts
−1 exponential

0.7× log2(
t
Ts

+ 1) logarithmic
, (9)

where t and Ts denote the current time step and the total
number of time steps, respectively.

B. Uniformly Quantized Simulated Bifurcation

Multiple-valued quantization is further considered to im-
prove computational accuracy. It is relatively costly to use
a dynamic threshold to identify different quantization levels.
Thus, a fixed threshold is used in the multiple-value qSB.
Assume that the position values are quantized to q (= 2n+1)
levels. The gap between two adjacent levels is called the
quantization step size. Let ql be the quantized value of the
lth level of the quantization intervals from tl to tl+1. Its step
size is denoted by sl (= tl+1 − tl).

As shown in Fig. 2(b), uniform quantization shares the
same step size sl (= 2

q) in different quantization levels. To
simplify the computation, the position variables in the 1st and
(2n + 1)th quantization levels, i.e., when 2n−1

q < |xj | ≤ 1,
are quantized to sgn(xj). Except for these two levels, for
the lth level, ql is given by the middle value in [tl, tl+1), as
ql = −1 + 2l−1

q to maintain the accuracy. In this way, xj is
quantized to {0,± 2

q , ...,±
2n−2

q ,±1}. Thus, assuming pxj
=

round(
q|xj |
2), where round() changes a value to its nearest

integer, the q-level uniform qSB (uSB) computes JXi as

JXi =
∑N

j=1 Jiju(xj), (10)

where

u(xj) =

{
sgn(xj) ·

2pxj

q pxj <= n− 1

sgn(xj) others
. (11)

C. Logarithmic Quantized Simulated Bifurcation

The bifurcation that occurs at the beginning of a search
plays an important role in SB. Thus, the computation with a
high precision is preferred for small position values. When
the magnitudes of position values become larger with time,
it will be harder to change their sign bits, which makes the
system vulnerable to local minima. Therefore, less accurate

computation for positions with relatively large absolute val-
ues may help the system search for a better solution.

Logarithmic quantization [14] is then applicable in the
multiple-value qSB. Different from uniform quantization,
logarithmic quantization results in an exponential difference
in sl and sl+1. The two quantized values are uniformly
distributed in the base 2 logarithmic domain. In this way,
as presented in Fig. 2(c), the q-level logarithmic qSB
(lSB) quantizes xj into {0,±20,±2−1, ...,±2−(n−1)}, so
the multiplications in JX are realized directly through shift
operations with a wide numerical representation range for
xj . Assume |xj | = 2x̃j , then x̃j = ⌈log2|xj |⌉. In the q-level
lSB, JXi is computed by

JXi =
∑N

j=1 sgn(xj)s(Jij , x̃j), (12)

where s() right shifts the binary representation of Jij by |x̃j |
bits, when x̃j > −n; otherwise s() outputs 0.

IV. EXPERIMENTAL RESULTS

A. Time Evolutions of tSB, uSB and lSB

Fig. 3 compares the time evolutions of Hamiltonian when
using tSB, uSB, and lSB on solving the K2000 benchmark in
a single trial. Since tSB using different kinds of ∆ (∆∗ and
∆(t)) shows a similar pattern in energy convergence, the tSB
with ∆∗ is considered as an example. The obtained solution
quality partly depends on the random initialization, which
can not be accurately evaluated by one trial experiment.
Thus, instead of evaluating the solution quality at the end of a
search, this section discusses the convergence and fluctuation
in Hamiltonian in short and long searches.

The tSB shows a similar tendency in energy convergence
as dSB due to their similar mechanism. At the beginning
of the search, the cut value obtained by using tSB increases
more quickly than using dSB when Ts = 1000 and 10000.
Near the end of the search, the tSB has a stronger fluctuation,
which indicates that the tSB is more likely to find a better
solution. The uSB with n = 3, 4 and the lSB with n = 3
lead to a slow convergence at the beginning due to the lack
of ability to recognize the small position values (quantized
to zeros) when computing JX . Benefiting from the wide
range of numerical representation, the lSB with n ≥ 4
increases the cut value quickly at the beginning, whereas
the uSB requires n ≥ 5 for a quick convergence. The
uSB with n = 5 performs similarly as bSB. Although bSB
sharply increases the cut value at the beginning, it cannot
continuously decrease the energy throughout the iterations,
especially for a large number of iterations. However, in the
uSB, the randomness introduced by quantization makes the
system transverse more local minima. Thus, the energy still
shows a decreasing tendency even near the end of the search.
The lSB with n ≥ 4 shows a better convergence compared
with other SB algorithms. It decreases the energy in a short
time at the beginning of a search and maintains a slight
fluctuation at the end.

0 10 20 30 40 50 60 70 80 90 100

Time Step

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
u

t
V

a
lu

e

10
4

bSB

dSB

tSB

uSB (n=5)

uSB (n=4)

uSB (n=3)

lSB (n=5)

lSB (n=4)

lSB (n=3)

80 90 100
3

3.1

3.2

3.3
10

4

(a) Ts = 100

0 100 200 300 400 500 600 700 800 900 1000

Time Step

-2

-1

0

1

2

3

C
u

t
V

a
lu

e

10
4

900 950 1000
3.3

3.305

3.31

3.315

3.32
10

4

bSB

dSB

tSB

uSB (n=5)

uSB (n=4)

uSB (n=3)

lSB (n=5)

lSB (n=4)

lSB (n=3)

0 50 100

0.5

1

1.5

2

2.5

3

10
4

(b) Ts = 1000

(c) Ts = 10000

Fig. 3: Time evolutions of cut values in a single trial on
the K2000 benchmark by using SB algorithms with different
time steps Ts.

B. Solution Quality of using tSB, uSB and lSB

Fig. 4 illustrates the solution quality on the K2000 bench-
mark by using the proposed qSB, bSB, and dSB algorithms
from 100 trials. Compared with the dSB, a higher solution
quality (in Ave, Max and Min) can be obtained by using
the bSB due to the fast convergence when Ts = 100.
However, with the increase of Ts, the randomness from the
initialization has less effect on energy convergence than the
influence from JX . It is vulnerable for bSB to be stuck on
the local minima. Therefore, when Ts = 10000, the standard
deviation (Std) obtained by using bSB becomes 0. Due to
the computational accuracy loss from the binarized position
values used for computing JX , the dSB struggles to achieve
a large cut value in a short time. However, the dSB shows
its advantage in a long search, as discussed in Section II.

100 1000 10000
Time Step

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

A
ve

104

1
2
3
4

1
2

1

155

6
7
8
9 14

13
12
11

10

3 4

5 6

7

8

9

10

11

2 6
8 9

10

1514

13

1211

7

1 2 3 4 5 6

10

1514

13

1211

7

1514

1312

3 4 5

100 1000 10000
Time Step

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

M
ax

104

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

1
2

3

4

5 6

7

8
9

10

11
12

13

14
15

8 9
10

1112

13

1415 8 91011

13

14151 2 3 4

7

1
2 3 4 5 6

7

125 6

(a) The average (Ave) of the obtained cut values. (b) The maximum (Max) of the obtained cut values.

100 1000 10000
Time Step

2.8

2.9

3

3.1

3.2

3.3

M
in

104

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

1 2

3 4

5
6

7

8
9

10

11

12
13

1415

8 9

10

11 12

13

14151 2 3

7

4 5 6

8 9

10

1112

13

14151 2 3

7

4 5 6

100 1000 10000
Time Step

0

50

100

150

200

250

300

350

S
td

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

1
2
3 4

5

1

2

3

4 5

6

7

8 9

10

2
3 4 5

6

7

8
9

10

6

7

8 9

10

11

12
13

14

15

11

12

13

14
15

11
12

13

14
15

(c) The minimum (Min) of the obtained cut values. (d) The standard deviation (Std) of the obtained cut values.

Fig. 4: Solution quality (in the statistics of cut values from 100 trials) of using qSB, bSB, and dSB algorithms to solve the
K2000 benchmark with Ts = 100, 1000, and 10000. When a single SB machine is used to search for the solution, larger
Ave and Min values are preferable. When multiple SB machines are used to search for solutions, higher Max and Std
values are preferable because the best one can be selected as the result.

TABLE I: Summary of Simulated Bifurcation Algorithms
SB Complexity of JX Solution Search

Algorithms Compression Operation Time Structure
bSB [8] N/A MUL H SS SM
dSB [8] N/A SIN L LS MM

tSB DYN H SIN L SS, LS SM, MM
uSB STA M MUL M SS, LS SM, MM
lSB STA L SHIF L SS, LS SM, MM

Compression: x is dynamically (DYN) or statically (STA) compressed.
Operation: Jijxj in JX is implemented by multiplication (MUL), sign
conversion (SIN), or shift (SHIF) operations. “H”, “M”, and “L” indicate
that the compression degree or the complexity of the operation is high,
moderate, or low. Time: the algorithm is suitable for a short search (SS) or a
long search (LS). Structure: the algorithm is suitable for a single SB machine
(SM) or multiple SB machines (MM) for choosing the best solution.

In the tSB, linear, exponential and logarithmic ∆(t) are
denoted by ∆1(t), ∆2(t) and ∆3(t), respectively. For Ts =
1000 and 10000, compared with using ∆∗, using ∆1(t)
obtains a larger Max, Std and a smaller Min. It indicates
that using ∆1(t) allows the system to transverse more energy
states, especially for a large number of time steps. For
Ts = 100, the tSB with ∆1(t), denoted by tSB1, can find
a better solution than bSB. Different from bSB, with the
increase of Ts, tSB1 can achieve a competitive cut value
with dSB. For the multiple-value qSB, when n ≥ 4, both
uSB and lSB obtain a better solution quality than dSB and
bSB. For the uSB, as indicated by the evolutions of cut
values in Fig. 3, the solution quality is improved with an

increased n. Compared with lSB, uSB performs better when
Ts is small. The uSB with n = 5, namely uSB5, produces
improvements over bSB for Ts = 100. The lSB shows its
potential of finding a better solution when using a large Ts.
Unlike uSB, the increase of n in lSB does not always lead to
a quality improvement. The lSB with n = 4, namely lSB4,
outperforms the lSB with n = 5.

Table I summarizes the characteristics of different SB
algorithms. The proposed qSB can compress the data by
quantizing a group of position values to zeros. The position
values are highly compressed in the tSB, but the dynamic
threshold will incur additional overhead in implementation.
The tSB, dSB, and lSB significantly simplify the multiplica-
tion in JX . Compared with bSB, the design of multipliers
can be customized in uSB for the quantized position values
to improve hardware efficiency. Moreover, the proposed qSB
can obtain a good solution in a short search, and also jump
out of the local minima for energy convergence in a long
search.

The n in lSB plays a similar role as ∆ in tSB, which
determines the numerical range of position values to be
quantized to 0. Since the position values evolve with time,
the precision requires to be higher at the beginning. A small
value of n may lead to a large number of xj being quantized
to 0 at the beginning, thus it is difficult to accurately evolve

TABLE II: The Values of Pg and Sg for the Max-cut Problems on 2000-node Fully and Sparsely Connected Graphs
Vaules of Pg G22 K2000

and Sg with Ts bSB dSB tSB1 uSB5 lSB4 bSB dSB tSB1 uSB5 lSB4

TS = 100
P99% 33% 2% 7% 25% 13% 0 0 3% 12% 6%
S99% 1150 22794 6345 1600 3306 - - 15119 3602 7442

TS = 1000
P99.5% 86% 82% 85% 90% 86% 75% 0 55% 83% 70%
S99.5% 2342 2685 2427 2000 2342 3321 - 5767 2598 3824

TS = 10000
P99.9% 0 64% 84% 63% 71% 0 0 15% 4% 12%
S99.9% - 45075 25129 46317 37202 - - 283362 1128110 360247

* G22: 2000 nodes, 19990 edges, a random graph, edge weight wij ∈ {0,+1}, best-known cut value: 13359;
K2000: 2000 nodes, 1999000 edges, a complete graph, edge weight wij ∈ {−1,+1}, best-known cut value: 33337.

the position values with time. Moreover, in lSB, no matter
what n is, as long as the position value becomes larger than
0.5, it is considered as 1. Therefore, dynamic quantization
is considered that uses a high-level (9-level) lSB at the
beginning and the simple 3-level lSB near the end. We use
η to indicate the percentage of time steps that adopts the
3-level lSB. When η ≥ 0.5, the solution quality is similar to
or even higher than only using lSB4. It indicates that using
a dynamic quantization scheme can accelerate search and
improve solution quality.

C. Performance Comparison

We further consider the metrics of probability-to-target
(Pg) and step-to-target (Sg) for the evaluation of SB algo-
rithms [15]. Pg is computed by dividing the number of trials
required to obtain the target solution by the total number of
trials, where g indicates the quality of the target solution. For
example, P99.9% gives the probability of obtained solutions
reaching 99.9% of the best-known value. Sg estimates the
number of time steps required to find the target solution with
a probability of 99%, given by Sg = Ts

log0.01
log(1−Pg)

, where Ts

is the total number of time steps.
Table II compares qSB (tSB1, uSB5, lSB4) with the bSB

and dSB in terms of Pg and Sg on MCPs with 2000-node
graphs, K2000 and G22 dataset from the Gset benchmark
[16] in 103 trials. For the G22 benchmark, bSB can quickly
find a good solution, and dSB is better suited for reaching
a high solution quality by a long search. Compared with
dSB, the proposed qSB algorithms perform better for both
long and short searches in most cases. Moreover, they also
perform similarly as bSB for a short search. Due to the
massive node connectivity in the K2000, SB requires a larger
number of time steps to obtain a good solution. For Ts =
10000, it is difficult for bSB and dSB to reach 99.9% of the
best-known cut value, whereas the proposed qSB can find a
better solution due to their ability to jump out of the local
minima. It indicates that the proposed qSB can obtain 99.9%
of the best-known cut value with fewer time steps by up to
an order of magnitude.

V. CONCLUSION

This paper investigates efficient quantization schemes in
simulated bifurcation (SB) Ising machines for fast and ac-
curate large-scale combinatorial optimization. Specifically,
various quantized SB (qSB) algorithms are proposed. A
ternary qSB algorithm dynamically ternarizes the position
values for the MAC by introducing a linearly increasing

threshold. It does not only compress data by using zero
elements to represent a group of position values, but also
reduces computational complexity by converting MAC into
addition and subtraction. Multiple-value qSB algorithms
are further developed by using uniform and logarithmic
quantizations to improve the precision. The qSB algorithms
realize fast energy convergence and increase the probability
of jumping out of the local minima. The experiments on
2000-spin Ising problems show that they are up to an order
of magnitude faster than a recently developed SB algorithm
to obtain a similar solution quality. This study also shows
the feasibility of dynamic quantization in the development
of energy-efficient fully connected parallel Ising machines.

REFERENCES

[1] K. Tanahashi, S. Takayanagi, T. Motohashi, and S. Tanaka, “Ap-
plication of Ising machines and a software development for Ising
machines,” JPSJ, vol. 88, no. 6, p. 061010, 2019.

[2] A. Lucas, “Ising formulations of many NP problems,” Front. Phys.,
2014.

[3] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze,
N. Dickson et al., “Quantum annealing with manufactured spins,”
Nature, vol. 473, no. 7346, pp. 194–198, 2011.

[4] Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coher-
ent Ising machine based on degenerate optical parametric oscillators,”
Phys. Rev. A, 2013.

[5] J. Chou, S. Bramhavar, S. Ghosh, and W. Herzog, “Analog coupled
oscillator based weighted Ising machine,” Sci. Rep., vol. 9, no. 1, pp.
1–10, 2019.

[6] R. A. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE
Circuits Syst. Mag., 1989.

[7] K. Yamamoto, K. Kawamura, K. Ando, N. Mertig, T. Takemoto,
M. Yamaoka et al., “STATICA: A 512-spin 0.25 m-weight annealing
processor with an all-spin-updates-at-once architecture for combinato-
rial optimization with complete spin–spin interactions,” JSSC, 2020.

[8] H. Goto, K. Tatsumura, and A. R. Dixon, “Combinatorial optimization
by simulating adiabatic bifurcations in nonlinear Hamiltonian sys-
tems,” Sci. Adv., vol. 5, no. 4, p. eaav2372, 2019.

[9] H. Goto, “Bifurcation-based adiabatic quantum computation with a
nonlinear oscillator network,” Sci. Rep., vol. 6, no. 1, pp. 1–8, 2016.

[10] T. Zhang and J. Han, “Efficient traveling salesman problem solvers
using the Ising model with simulated bifurcation,” in DATE. IEEE,
2022, pp. 548–551.

[11] H. Goto, K. Endo, M. Suzuki, Y. Sakai, T. Kanao, Y. Hamakawa et al.,
“High-performance combinatorial optimization based on classical me-
chanics,” Sci. Adv., 2021.

[12] E. S. Tiunov, A. E. Ulanov, and A. Lvovsky, “Annealing by simulating
the coherent Ising machine,” Optics express, vol. 27, no. 7, pp. 10 288–
10 295, 2019.

[13] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[14] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong,
“Lognet: Energy-efficient neural networks using logarithmic compu-
tation,” in ICASSP. IEEE, 2017, pp. 5900–5904.

[15] T. Kanao and H. Goto, “Simulated bifurcation assisted by thermal
fluctuation,” Commun. Phys., vol. 5, no. 1, p. 153, 2022.

[16] C. Helmberg and F. Rendl, “A spectral bundle method for semidefinite
programming,” SIAM J. Optim., vol. 10, no. 3, pp. 673–696, 2000.

