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Abstract— Different schemes for approximate computing 
of matrix multiplication (MM) in systolic arrays are 
presented in this manuscript. Inexact full adder cells are 
utilized in a processing element (PE) for the Baugh-
Wooley multiplier and/or the final adder as circuits 
implementing the two computational steps required for 
MM. An extensive analysis and simulation-based 
assessment of three inexact schemes for the PE are 
pursued with respect to circuit level performance (such as 
delay, power consumption and number of transistors) and 
figures of merit of approximate computing (such as the 
error distance). The execution of MM in each PE results in 
an inexact computation affecting only the outputs of the 
same columns, so the extension of inexact computation to a 
systolic array can also be performed with very limited 
error. The discrete cosine transform as application of the 
proposed inexact systolic arrays, is evaluated; simulation 
results show that the proposed inexact array is very 
effective, incurring in a small error. 

 
Index Terms— Approximate computing, inexact design, 

systolic array, matrix multiplication 

I. INTRODUCTION 

Power dissipation has become of paramount concern when 
designing high performance computing systems. Computing 
systems are increasingly embedded and mobile, so a growing 
set of applications, related to recognition, data mining and 
synthesis (RMS), requires energy efficiency in processing. For 
many RMS applications, the exact result may not always be 
required; hence, an approximate (or inexact) result is often 
viable [1]. Approximate computing has been recently 
advocated as a possible framework by which accuracy of 
results can be traded off for improvement in other metrics, 
such as power dissipation, delay and circuit complexity. 

Matrix multiplication (MM) is one of the essential 
operations in various fields of science, engineering and 
technology, such as signal and image processing, systems 
theory, statistical and numerical analysis. It has a high 
complexity, but its computational regularity can be utilized to 
reduce it when real time constraints must be met [2]. So, the 
design and implementation of a high speed, area efficient 
matrix multiplier is highly desirable [3]. [4] has proposed a 

systolic array (SA) scheme for square matrix multiplication.  
A SA consists of modular processing elements (PEs) with 

homogeneous interconnections, hence high parallelism is 
achieved by replication [5]. A systolic array is controlled and 
synchronized by a global clock with a cycle of fixed length, 
such that data is periodically computed and passed through the 
array. A complexity of O(N3) operations is required to 
perform an N × N MM on a sequential processor i.e. N3 
multiplications, N×2(N − 1) additions and N2 operational 
cycles. SA reduces the time complexity of MM, because only 
(2N + 1) operational cycles are required using an N × N 
systolic array [3].   

This paper presents several schemes for approximate 
computing of matrix multiplication in a systolic array. In this 
paper, the processing element (PE) consists of a Baugh-
Wooley multiplier and a final adder; inexact full adder cells 
are utilized in both, or either of these circuits for the two 
computational steps required in MM. An extensive analysis 
and simulation-based assessment of three inexact schemes for 
the PE are pursued with respect to circuit level performance 
(such as delay, power consumption and number of transistors) 
and approximate computing figures of merit (such as the error 
distance). The execution of MM in a PE results in an inexact 
computation affecting only the outputs in the same column. 
The extension of inexact computation to the SA is presented. 
The discrete cosine transform as application of the proposed 
inexact systolic arrays is evaluated; simulation results show 
that the proposed inexact array is very effective, because it has 
a small error. 

II. SYSTOLIC MATRIX MULTIPLICATION 
In the SA of [6] [7], the PEs are interconnected in a two-

dimensional array (Figure 1) [6] [7] with communication 
between PEs occurring in cycles; so, the ith column incurs in a 
delay of i-1 cycles. Each PE stores the accumulated sum P(i,j). 
After 2N+1 operational cycles, the stored P(i,j) value forms 
the resulting product matrix P.  

III. EXACT PROCESSING ELE ENT (PE) M

Consider the multiplication of two NൈN matrices A and B, 
so 
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P୧୨ ൌ෍A୧୩ · B୩

N

୩ୀଵ

                    ሺ2ሻ ୨             

Thus, the cumulative sum (i.e. ∑ A୧୩ · B୩୨N
୩ୀଵ ) needs to be 

calculated; so, a PE needs to have two functions: (1) calculate 
the product of the two input binary operands (Aik and Bkj); (2) 
calculate the cumulative sum of the products. Therefore in the 
execution of this algorithm, a PE consists of an adder and a 
multiplier with signed operands. 
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 Figure 1 Systolic array for Matrix Multiplication 
Consider first the signed multiplication. The Baugh-Wooley 

algorithm is utilized in this paper [8], i.e. the multiplier for 
calculating the product of the two n-bit binary input operands 
A୧୩ = (an−1, . . . , a1,a0) and B୩୨ = (bn−1, . . . ,b1,b0). The result is 
represented by a 2n-bit output value M =A୧୩ · B୩୨ 
=(m2n−1, . . . ,m1,m0). Two 2’s complement numbers are used in 
the signed multip 9]lication [ n−1 and bn−1 e sign bits.  
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In the computation in a 3-bit Baugh-Wooley multiplier, 
each bit of the product mi is equal to the cumulative sum of 

the partial products ሺa୩b୧ି୩, i.e.   m୧ ൌ ∑ a୩b୧ି୩୧
୩ୀ଴ ) for any 

i ൌ 0, 1, 2, 3, 4. The most significant bit m5 is the carry out bit.  

 

                              (a)                                                    (b) 

Figure 2 Exact AND partial product cell (PPC): (a) Logic circuit; (b) symbol 

 
                              (a)                                                    (b) 

Figure 3 Exact NAND partial product cell: (a) Logic circuit; (b) symbol 
 
There are two types of basic operation in the partial 

product: AND and NAND. Thus, two types of a partial 
product cell (PPC) are needed. Figure 2 shows the first type of 
PPC; it computes a single bit multiplication of ai and bj using 
an AND-gate. The result is then added using a full adder (FA) 
cell with the previous sum output Sin from a cell located 
above, and the previous carry output Cin from a cell to the 
right to generate the final Sout and Cout..The second type of PPC 
is shown in Figure 3; it differs only in the gate (now a NAND) 
from the scheme of Figure 2. In this paper, the final sum is 
computed by a ripple carry adder (as an exact full adder (FA) 
cell, the circuit of  [11] consisting of 10 transistors is used in 
this manu )script . 

In the matrix multiplication algorithm, a PE 
calculates P୧୨ ൌ ∑ A୧୩ · B୩୨N

୩ୀଵ . An exact PE for matrix 
multiplication with 3-bit input operands is shown in Figure 4. 
It utilizes a Baugh-Wooley multiplier and a ripple carry adder. 
min is the calculated result of the last cycle. mout is the current 
calculated result. The 3 bit-operands are A୧୩  (a2, a1, a0) and 
B୩୨ (b2, b1, b0), where a0 and b0 are the least significant bits. 
In this case, A୧୩ ൈ B୩୨ could lead to a 6 bit result, shown by 
the dotted box in Figure 4. P୧୨  is the cumulative sum of the 
products. So in general for an N  ൈ N matrix multiplication 
with 3-bit input operands, the maximum value of P୧୨ is a 6-bit 
product and few additional upper bits (as shown in the dotted 
box in Figure 4) are required. For example in a 2ൈ2 matrix 
multiplication, N =2 and P୧୨ requires 8 bits.  



  

 
Figure 4 Exact PE for systolic array matrix multiplication with 3-bit input 

operands 
 

Therefore, a PE is made of two types of PPCs, AND/NAND 
gates and a ripple carry adder; its complexity in the number of 
transistors is determined by all of its circuits (Table I). There 
are n AND gates and the number of full adder cells is at least 
2n+1. 

Table I Circuit complexity of the Exact PE 

Cell type 

 Number 
of 

transistors 
per cell 

Number of 
cells 

AND gate  6  n‐1 

NAND gate  4  1 

AND PPC  12  n2‐3n+3 
NAND PPC  14  2n‐3 

FA  10  >2n+1 

Hence, the total number t  
given by  

of transis ors in an exact PE is

T ൒ 12nଶ ൅ 20n                        ሺ6ሻ 

IV. INEXACT PROCESSING ELEMENT (PE) 
In this paper, the approximate operation is introduced in the 

adder cells; the so-called AXA inexact design proposed in [12] 
is used in place of an exact full adder cell. Figure 5 shows the 
AXA circuit design resulting in an inexact Sum; for this cell, 
the Sum output is accurate for 6 out of the 8 possible 
combinations, while Cout is accurate for all 8 input 
combinations. The s t  the total error 
distance of this des

 tran is or count is now 7;
i
Sum ൌ ሺത
gn is 2. 

ሺXْ YሻCın  ൅  XYതതതതതതതതതതതതതതതതതതതതതതത)                   (7) 
Cout ൌ ሺXْ YሻCin  ൅  XY                     (8) 

So, an AXA cell can be used to replace an exact full adder 
cell (denoted by FA); exact full adder cells are utilized in two 
circuits of a PE for systolic matrix multiplication: (a) In a 
NAND/AND PPC cell as shown previously in Figure 2 and 
Figure 3. (b) In the final full adder (of width 2N). Let an 
inexact PPC be denoted as a black shaded box and shown in 
Figure 6. In this inexact PE, inexact circuits for the adder cells 

are utilized for processing the k least significant bits, so 
inexact computation affects only the outputs in the same 
columns. 

CoutX

Y X Vdd

Cin

Sum

 
Figure 5 Approximate XOR based adder cell (AXA) 

 
Three schemes are investigated in this paper to introduce 

inexact computation in a PE. 
• Inexact circuits in PPC(s) and adder cell(s) (Scheme 
A) 
• Inexact circuits in PPC(s) only (Scheme B) 
• Inexact circuits in the adder cell(s) only (Scheme C) 
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Figure 6 Inexact PE for systolic array matrix multiplication for 4-bit operands 
with 2 inexact columns (Scheme A) 

 
Figure 6 shows the proposed inexact schemes A for a PE; 

4-bit operands and 2 inexact columns are assumed. Shaded 
blocks identify the circuits with inexact adder cells, i.e. either 
PPC, or the final adder (identified by the FA cells) as affecting 
the multiplication or sum operations.  

In Scheme B (C) inexact computation occurs only in the 
multiplier (adder). When inexact computation is considered 
only for a PPC cell, the number of inexact columns (i.e. k) 
cannot be equal to 1, because the last bit for the product does 
not include a PPC cell, i.e.  it utilizes an AND gate only.  

V. SIMULATION RESULTS 
In this paper all circuits are simulated and evaluated using 

HSPICE at the 32nm technology node as found in the 
corresponding Predictive Technology Model (PTM). 

Delay: The delay of a single PE unit is defined as the latency 
from the operands as inputs to the generation of the final 
result; an exhaustive simulation is performed and the average 
delays are shown in Figure 7 for different numbers of bits in 
the input operands and inexact columns. The exact PE has the 
largest delay. It also has the highest complexity; the delay 
decreases by decreasing the number of inexact bits. 



  

Power: The total power dissipation (average value) for a 
single PE is plotted in Figure 8. Scheme A (C) has the lowest 
(highest) average power dissipation) 
 

 
Figure 7 Average Delay of inexact Schemes 

 

 
Figure 8 Average Power of inexact Schemes 

MED and NED: [13] has compared adders and proposed 
several new metrics for evaluating approximate and 
probabilistic adders with respect to unified figures of merit for 
design assessment in inexact computing applications. For each 
input to a circuit, the error distance (ED) is defined as the 
arithmetic distance between an erroneous and the correct 
outputs [13]. The mean error distance (MED) and normalized 
error distance (NED) are also proposed by considering the 
averaging effect of multiple inputs and the normalization of 
multiple-bit adders. The NED is nearly invariant with the size 
of an implementation and is therefore useful in the reliability 
assessment of a specific design. Exhaustive simulation is 
executed to find the MED and NED for the 3 bit and 4 bit 
cases; for the 8 bit cases, 1 million input combinations are 
generated for calculating the MED and NED. From the 
simulation results (Figure 9), several conclusions can be 
drawn. (1) The MED increases with an increase of k. (2) For 
the proposed inexact schemes, Scheme C (A) has the smallest 
(largest) values of MED and NED. As the multiplier 
accumulates an error by adding the partial products, the 
multiplier is the largest contributor to the error distance. From 
the simulation results (Figure 9), several conclusions can be 
drawn. (1) The MED increases with an increase of k. (2) For 
the proposed inexact schemes, Scheme C (A) has the smallest 
(largest) values of MED and NED. As the multiplier 
accumulates an error by adding the partial products, the 
multiplier is the largest contributor to the error distance.   

Complexity: The complexity of an inexact PE employing 
AXA is determined by the number of input bits (i.e. n) and the 
number of inexact columns (i.e. k); the number of exact FA 
cells is determined by the matrix size. Table II shows the 
results; 2n+1-k is the least number for N=2. 

 

(a) 

 

(b) 
Figure 9 Error distance of inexact PE for different number of inexact columns: 

(a) MED; (b) NED 
. 

Table II Circuit complexity of inexact PE with AXA (Scheme A) 

Cell type 
Number of 
transistors 
per cell 

Number of cells 

AND gate 6  n‐1

NAND gate 4  1

Exact AND PPC  12  n2‐3n+3‐∑ i୩ିଵ
୧ୀଵ  

Exact NAND PPC 14  2n‐3
Inexact PPC 9   ∑ i୩ିଵ

୧ୀଵ  
Exact FA 10  >2n+1‐k
Inexact FA 7  k

 
The total number of transistors in an inexact PE under 

Scheme A is given   by

TA ൒ 12n2 ൅ 20n  െ 3෍i
k

iൌ1

.                 ሺ9ሻ 

For the other two  h s, th tota  
counts are given as fo w  

 proposed sc eme e l transistor
llo s

 TB ൒ 12n2 ൅ 20n  െ 3∑ i,kെ1
iൌ1          ሺ10ሻ 



  

T
1

C ൒ 12n2 ൅ 20n െ 3k.                 ሺ11ሻ 
) Inexact Systolic Array Simulation : Next, systolic arrays 

are simulated for 32 ൈ 32 matrix multiplication. A different 
number of inexact columns (as discussed previously) is 
present in each PE and each PE generates a final output as an 
element of the resulting product matrix. The delay of the array 
is the same as the single PE, because all PEs are enabled 
simultaneously after each cycle begins. The average MED and 
power consumption are established for the systolic array and 
evaluated in this section. A difference matrix is calculated for 
measuring the average MED; each element in the difference 
matrix is given by the difference of the corresponding 
elements in the exact and the inexact matrices. The average 
MED is the average va f ev nt in ifference 
matrix.i.e. 

lue o ery eleme  the d

MEDୟ୴୥ ൌ
∑ሾ|Pୣ ୟ୶ୡ୲ሺi, jሻ െ P୧୬ୣୟ୶ୡ୲ሺi, jሻ|ሿ

N ൈ N        ሺ12ሻ 
The results for the average MED are presented in Figure 10 

using PEs of 8 bits as input operands for matrix multiplication. 
There is no substantial difference in MED in the proposed 
schemes, however at a higher value of matrix size N, the MED 
yields a higher value too.  The results for power dissipation 
under the same conditions are reported in Figure 11. 

 

Figure 10 Average MED for matrix multiplication 

VI. APPLICATION: DCT 
Next, the application of the proposed schemes of an inexact 

systolic array to Discrete Cosine Transforms (DCT) is 
presented (note that all electrical based performance metrics 
have already been presented in previous sections, so only the 
results as related to the DCT computation are presented). DCT 
removes the correlation of image elements in the transform 
domain [14]; it is considered a quasi-optimal transform and 
has been widely applied in the fields of image and video 
compression coding. The three proposed inexact schemes are 
evaluated by considering different numbers of columns with 
respect to the transform of images and the loss of accuracy 
compared to an exact array. DCT matrix elements can be 
expressed in floating point format for which a significant 
number of multiplication and addition operations are 
required [15]. Under the condition of fixed word length, its 
accuracy is not very high, floating-point operations incur in a 
truncation error, and the drifting between encoding and 
decoding data causes a data mismatch in the decoder. An 
integer DCT uses integer instead of floating point numbers to 

fill the transformation matrix; the transformation core is an 
integer transform involving no floating-point calculation and 
achieving a high accuracy. The core transformation can be 
completed only with simple addition and shift operations, such 
that its computing complexity is significantly reduced [16] 
[17]. 

 

Figure 11 Average Power for matrix multiplication  
In matrix notation, the discrete two-dimensional radix-8 

DCT is given by Y = P·X·PT , where X is the 8x8 input image 
frame and Y tion 
matrix P is g

 is the transformed matrix. The transforma
iven as  
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The sample input images (in integer format) are shown in 
Figure 12; the Peak Signal to Noise Ratio (PSNR) is used as a 
metric. The simulation is performed using a 32 ൈ 32 matrix 
multiplication; the results for this application (Tables III, IV 
and V) yield the following conclusions. 1) At the same k, 
Scheme C has the best PSNR, because the error is only 
introduced in the adder. (2) In all cases, the PSNR decreases 
when k increases; therefore, an increase in the number of 
inexact columns causes a more inexact final result for the 
approximate multiplier. 

VII. CONCLUSION 
This paper has presented the analysis of matrix 

multiplication using systolic arrays whose operation is based 
on approximate computing. Approximate computing reduces 



  

circuit complexity, delay and power consumption. Inexact cell 
circuits have been included in the design of a processing 
element (PE) of the array and three inexact schemes have been 
proposed. 

 

     
            (a)                                    (b)                                    (c) 
Figure 12 Integer DCT sample image: (a) Lena; (b) Clock; (c) Bridge. 

 
Table III PSNRs for DCT of array with inexact PEs (Scheme A) 

 
Lena  Clock  Bridge 

Exact DCT  61.34 dB  60.72dB  59.84dB

Inexact DCT,k=1  61.34 dB  60.72dB  59.84dB

Inexact DCT,k=2  61.31 dB  60.67dB  59.82dB
Inexact DCT,k=4  60.31 dB  60.14dB  58.89dB
Inexact DCT,k=8  42.99 dB  43.87dB  42.48dB

 
Table IV PSNRs for DCT of array with inexact PEs (Scheme B) 

 
Lena  Clock  Bridge 

Exact DCT  61.34 dB  60.72dB  59.84dB

Inexact DCT,k=1  ‐  ‐  ‐

Inexact DCT,k=2  61.31 dB  60.68dB  59.82dB
Inexact DCT,k=4  60.42 dB  60.38dB  59.03dB
Inexact DCT,k=8  44.65 dB  44.78dB  44.28dB

 
Table V PSNRs for DCT of array with inexact PEs (Scheme C) 

 
Lena  Clock  Bridge 

Exact DCT  61.34 dB  60.72dB  59.84dB

Inexact DCT,k=1  61.34 dB  60.72dB  59.84dB

Inexact DCT,k=2  61.33 dB  60.70dB  59.83dB
Inexact DCT,k=4  60.68 dB  60.57dB  59.34dB
Inexact DCT,k=8  46.36 dB  45.67dB  46.74dB

 
These schemes (A, B, C) introduce inexact computation in a 

PE cell(s) for either the multiplier, and/or the final adder. The 
PEs have been designed at nanometric feature sizes and 
simulated using HSPICE to assess different figures of merit 
such as delay, power dissipation and circuit complexity. n 
particular, the following conclusions are applicable. (i) An 
increase in the number of inexact columns (k) results in a 
decrease of power and delay; however, the error distance 
increases too. (ii) Scheme A (with approximate cells in both 
the multiplier and the final adder) has the smallest delay and 
consumes the least amount of power; however, the error 
distance is the largest. (iii) Scheme C (with approximate cells 
in the final adder only) has the shortest error distance, but it is 

the worst for the delay and power consumption. 
 Current research deals with new approximate designs of the 

multiplier and the adder of a PE [18] [19] as well as additional 
image processing applications. 
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