

Abstract—Stochastic computing (SC) typically requires a low

design complexity compared with weighted binary computing, so
it has been successfully applied in neural networks (NNs). Usually,
SC utilizes random bitstreams as its medium, which makes it
suffer from a long delay that offsets its advantages. This drawback
can be alleviated by utilizing parallel datapaths, which, however,
will significantly increase the hardware cost due to the
requirement of multiple parallel computing units. In this paper, a
hybrid bit splitting generator (HBSG) is proposed to efficiently
produce parallel bitstreams in a single clock cycle to reduce delay.
The HBSG uniformly splits binary numbers into R segments, each
of which is encoded in parallel by using hardwired connections
according to the weight of each bit. A binary-interfaced parallel
stochastic multiplier (BipSMul) using the HBSG is then proposed
to accelerate the multiplication in SC. Experimental results show
that the BipSMul is more energy efficient than the state-of-the-art
parallel and serial stochastic designs, as well as their binary and
Booth counterparts, in delay, power-delay product (PDP), and
area-delay product (ADP).

Index Terms—Stochastic computing, parallel datapath,
multiplier, energy-efficiency, neural network.

I. INTRODUCTION
TOCHASTIC computing (SC) encodes binary numbers into
random bitstreams for fault-tolerant applications [1]. While

they suffer from random fluctuations, the bitstreams can be
serial or parallel, with all bits of equal weight to counter bit flip
induced errors and, thus, achieve a high fault tolerance [2].
Several other errors, such as rounding, constant-induced, and
cross-correlation errors, also exist, mainly due to the
representation of bitstreams in SC [2]. The main advantages of
SC also include simple and compact digital units. For example,
multiplication in SC can be realized by an AND gate [1]. Thus,
SC is applicable when a slight computing inaccuracy is
acceptable in applications, such as neural networks (NNs)
consisting of multiply accumulate (MAC) units [3].

This work was supported by the Fundamental Research Funds for the

Central Universities of China (Grant No. JZ2020HGQA0162, and
PA2021KCPY0043), by the Natural Sciences and Engineering Research
Council (NSERC) of Canada (Project Number: RES0048688), and by Natural
Science Foundation of Anhui Province (Grant No. 2108085MF226).

(Corresponding author: Guangjun Xie)
Y. Zhang, Z. Lin, S. Wang, X. Cheng and G. Xie are with the School of

Microelectronics, Hefei University of Technology, Hefei 230009, China (e-

However, SC suffers from a serious delay issue because it is
usually performed on long serial bitstreams. For example, 2n
clock cycles are required for multiplying two bitstreams with n-
bit precision. This delay will be 22n clock cycles if completely
accurate multiplication is expected by using the deterministic
approach [4, 5]. The delay can be significantly reduced by using
parallel datapaths to reduce it from 2n to 1. However, few works
on this aspect have been reported because the hardware cost
required by the computing units also exponentially increases.
For example, 256 AND gates are needed for multiplying two
numbers with 8-bit precision for parallel processing, while only
one is needed for serial processing. The thermometer coding-
based parallel bitstream generator has been designed for
computing in one clock cycle, thereby saving power [6].
However, its hardware cost is still very high.

To reduce delay and save energy, a hybrid bit splitting
generator (HBSG) is proposed in this paper for multipliers.
Binary numbers are split into R segments with equal bit width
before converting them into bitstreams. Then, the delay is
reduced to one clock cycle by encoding each segment in parallel.
The coding scheme uses hardwired connections according to
the weight of each bit in each segment. A binary-interfaced
parallel stochastic multiplier (BipSMul) using the HBSG is then
proposed to speed up the multiplication in SC. The
deterministic approach is applied to the BipSMul for improving
the computing accuracy. Although the deterministic approach
will require an increased number of AND gates, its hardware
cost is kept low because of the utilization of the bit splitting and
hardwire connection methods.

The main contributions of this work are summarized as
follows. 1) An HBSG is proposed for converting binary
numbers into parallel bitstreams in only one clock cycle. 2) A
BipSMul using the HBSG is developed to reduce delay and
energy. 3) An NN using the BipSMul is quantized to illustrate
the proposed designs.

This paper proceeds as follows. Section II reviews the
concepts of SC. Section III presents the designs of HBSG and

mail: ahzhangyq@hfut.edu.cn; zdlin@mail.hfut.edu.cn;
2019010121@mail.hfut.edu.cn; xcheng@hfut.edu.cn; gjxie8005@hfut.edu.cn)

S. Liu is with the School of Information Science and Technology,
ShanghaiTech University, Shanghai 201210, and Shanghai Engineering
Research Center of Energy Efficient and Custom AI IC, Shanghai 201210,
China (e-mail: liust@shanghaitech.edu.cn)

J. Han is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 1H9, Canada (e-mail:
jhan8@ualberta.ca)

An Energy-Efficient Binary-Interfaced
Stochastic Multiplier Using Parallel Datapaths

Yongqiang Zhang, Member, IEEE, Siting Liu, Jie Han, Senior Member, IEEE, Zhendong Lin,
Shaowei Wang, Xin Cheng, and Guangjun Xie

S

mailto:xcheng@hfut.edu.cn
mailto:jhan8@ualberta.ca

BipSMul. Section IV discusses the experimental results of the
proposed multiplier. An application of an NN is shown in
Section V. Section VI concludes this work.

II. BASIC CONCEPTS

A. Bitstream Generators
Random bitstreams in SC are generated by stochastic number

generators (SNGs). A typical SNG mainly consists of a linear
feedback shift register (LFSR) and a comparator for generating
serial bitstreams [7]. It produces a 1 (or 0) if the binary number
in the LFSR is smaller (or larger) than the input binary number
in each clock cycle. If the LFSR and the binary number are n-
bit wide, the generated bitstream length (BSL) will be 2n, or 2n
clock cycles are required for generating bitstreams with an n-
bit precision. This incurs a long delay and leads to significant
energy consumption.

The thermometer coding based SNG produces parallel
bitstreams to reduce the delay from 2n to one clock cycle [8].
That is, for an n-bit binary number, 2n parallel outputs are
simultaneously generated with this SNG, making use of a large
number of logic gates.

Compared with the two methods above, a natural method is
to generate bitstreams according to the weight of each bit in a
binary number. This method has been employed to build an n-
to-2n-1 SNG by using hardwired connections to generate
parallel bitstreams in one clock cycle [9]. However, the
bitstreams have a very high correlation, which has been reduced
through a four-stage omega-flip network, leading to a large
hardware cost and energy dissipation [9].

B. Deterministic Approaches
Typically, SC suffers from inherent random fluctuations,

which make it inaccurate. The deterministic approaches have
been developed to alleviate this issue [10]. Similar to the
convolution in mathematics, each bit in one bitstream interacts
with all bits in the other one so that the generated outputs are
accurate. For example, when multiplying two bitstreams a and
b, b0 interacts with a0, a1, a2, and a3, as illustrated in Fig. 1(a).

Fig. 1(b) and (c) illustrate the comparison between the
traditional and deterministic approaches when multiplying two
2-bit binary numbers. In Fig. 1(c), 1110 (encoding 3/4) is
repeated 4 times and 1100 (encoding 1/2) is rotated 4 times. It
is shown that the result generated using the deterministic
approach is completely accurate, whereas the traditional one
produces inaccurate results. However, the bitstream length in
the deterministic approach exponentially increases as the
precision increases, resulting in a much longer delay.

III. THE PROPOSED DESIGNS

A. A Hybrid Bit Splitting Generator (HBSG)
The advantages of parallel designs will be completely offset

if a higher precision is required because of the huge hardware
resources. Hence, simplifying the complexity of parallel
designs becomes imperative.

Bit splitting is a common method to lower the hardware costs
of digital arithmetic circuits, such as approximate adders [11].
This method splits binary numbers into several segments and
then processes each segment according to certain rules. It has
also been employed for accelerating serial SC [12]. However, a
high delay remains, which leads to a low energy efficiency. It
is noteworthy that the bit splitting method can be exploited
much further for reducing the complexity of parallel designs to
lower delay and energy.

With this in mind, an HBSG is proposed for accelerating
parallel designs by means of bit splitting in this work. A given
n-bit binary number b=bn-1bn-2…b1b0 is split into R segments
with equal bit width. Each segment is then respectively
converted into a parallel bitstream by using hardwired
connections according to the weight of each bit in the segment,
as shown in Fig. 2, where R is set to 2 for simplicity and k equals
n/R as the bit width of each segment. In addition, a zero is added
to each generated bitstream to make the probability of 1s in the
bitstream proportional to the value of the segment divided by 2k,
as the insertion of an all-zero state to a linear feedback shift
register [13]. Therefore, the bitstream lengths of two parallel
bitstreams S<1, > and S<0, > are both 2k in Fig. 2, so the subscripts
of the bitstreams range from 0 to 2k-1. For example, the number
of connections of the i-th bit (i=1, 2, 3, …, n/2) in bn-1bn-

2…bn/2+1bn/2 is 2i-1, so the subscripts of the bitstreams range from
2i-1 to 2i-1. Note that just one clock cycle is required for
generating multiple parallel bitstreams.

Fig. 3. The proposed BipSMul (R=2).

Fig. 1. (a) An illustration of the deterministic approach. (b) A traditional
approach for multiplying two numbers. (c) The deterministic approach for
multiplying two numbers.

Fig. 2. The proposed HBSG.

B. A Binary-Interfaced Parallel Stochastic Multiplier
(BipSMul)

A BipSMul is proposed by using the HBSG, as illustrated in
Fig. 3, where R is set to 2 for convenience in description, “<<n”
means a left-shift by n bits. Two n-bit binary numbers a and b
are processed through the HBSG to generate 4 parallel
bitstreams with a length of 2n/2 bits. These bitstreams are then
handled by using the deterministic approach, as illustrated in
Fig. 1(a), to generate 4 deterministic bitstreams with a length of
2n bits. They are then paired into four AND arrays to perform
multiplication. Four parallel counters indicated as “SUM”
convert the bitstreams generated by AND arrays into binary
numbers. Finally, the converted numbers are left-shifted by
different numbers of bits and fed into an accumulator to obtain
the final binary result.

Unipolar and bipolar formats are two encoding methods in
SC, in which numbers range in [0,1] and [-1,+1], respectively.
For example, the bitstream 1100 encodes 1/2 in the unipolar
format, whereas it encodes 0 in the bipolar one. The unipolar
format is used in the proposed BipSMul. As for signed
multiplication, one more sign bit is added to the bitstreams. The
product is determined by the sign bit, which can be obtained
through an XOR gate.

C. An Example of Multiplying Two Binary Numbers
Fig. 4 shows an example of multiplying two 4-bit binary

numbers (a=a3a2a1a0 and b=b3b2b1b0) to illustrate the principle
of the proposed BipSMul.

At first, each number is split into two segments, i.e., a3a2 and
a1a0, b3b2 and b1b0. These segments are respectively converted
to 4 parallel bitstreams, including a3a3a20 and a1a1a00, b3b3b20
and b1b1b00, according to the weight of each bit in each segment.
For example, the weight of a3 in a3a2 is 2, so a3 is converted to
two bits, while a2 is converted to 1 bit. The length of these
bitstreams is 2n/2=24/2=4. This process is accomplished by using
the proposed HBSG. These 4 bitstreams are then composed by
the deterministic approach, i.e., copying a3a3a20 and a1a1a00
four times and rotating b3b3b20 and b1b1b00 four times,
respectively, to generate 4 deterministic bitstreams, denoted as
aH, aL, bH, and bL. The length of 4 deterministic bitstreams is
(2n/2)2=(24/2)2=16, as illustrated in Fig. 4(a).

aH, aL, bH, and bL are paired into four AND arrays, each of
which contains 16 AND gates, as shown in Fig. 4(b). The results
are then summed and left-shifted for subsequent usage. Two
key points should be noted here, one of which is the theory
behind the pairing of 4 bitstreams, while the other is the number
of left-shifted bits. The multiplication of two 4-bit binary
numbers generates 16 partial products that can be divided into

4 parts surrounded by four boxes, as shown in Fig. 4(c). Each
part corresponds to a pairing of two bitstreams; for example, the
multiplication of a3a2 and b3b2 is equivalent to the pairing of
aHbH. Thus, the binary multiplication process decides the
pairing of parallel bitstreams. In addition, each partial product
is one bit, so its length is 1. Thus, aHbH is left-shifted by n=4
bits. The same holds true for other parts. For different values of
R and n, the number of left-shifted bits is pre-determined,
according to the principle in Fig. 4(c).

IV. EXPERIMENTAL RESULTS
The binary, Booth, serial [5], thermometer [6], and the

proposed multipliers are evaluated and they all produce
accurate results because of the employed deterministic
approach. The binary multipliers are designed in three steps. 1)
Generating partial products using AND gates. 2) Compressing
partial products using the 4-2 compressor in [14], full adders,
and half adders based on the Dadda tree structure. 3) Generating
final results using a ripple carry adder. The Booth multipliers
are designed using the modified radix-4 method [15], of which
the partial products are also compressed by using compressors,
full adders, and half adders. All circuits are synthesized by
Synopsys Design Compiler with the TSMC 40 nm library. Two
commands ‘set_target_library_subset’ and ‘compile_ultra’ are
used to synthesize the circuits through AND, OR, NOT, XOR,
and XNOR gates. This method will avoid the usage of pre-built
special modules in the library and keep a balanced comparison.
The power is obtained in PrimePower using a vector-free power
analysis model.

A. Comparison of Multipliers
Hardware cost: TABLE I lists the area, power, delay (as the

critical path delay multiplied by the number of clock cycles),
power-delay-product (PDP), area-delay-product (ADP), and
energy-delay-product (EDP) versus different R values for 4-, 6-,
8, 16, and 32-bit multipliers (Mi_j denotes R=j for the proposed
i-bit BipSMul; R=1 means that numbers are not split).

For the 4-bit serial multiplier, its delay is equal to the critical
path delay multiplied by (2n)2=(24)2=256 (the power 2 is due to
the deterministic approach), which leads to a high energy
consumption, PDP, ADP, and EDP. Since half of the elements
in the truth table of an n-bit thermometer based SNG with 2n
outputs are 1, the logic expressions of outputs are very complex
[8]. These result in an inferior performance of the thermometer
based multipliers (shortened as Them), as shown in the
simulation results in TABLE I. Among them, the PDPs are
reduced by 4.84%, 12.56%, 13.73%, 13.89%, and 29.75% for
the 4-, 6-, 8-, 16-, and 32-bit BipSMuls compared to the binary

Fig. 4. An example of multiplying two 4-bit binary numbers by using the proposed BpSMul (R=2). (a) Bit splitting and bitstream generation. (b) Bitstream
multiplication and accumulation. (c) Illustration of left-shifting.

designs, and 42.50%, 41.01%, 47.30%, 15.40%, and 32.82%
compared to the Booth designs. Note that, since the used
deterministic approach, the bitstream length of M8_1 is (28)2=216,
so very complex SUM and accumulation in Fig. 3 are consumed,
leading to abnormal hardware costs.

Fault-tolerance: To investigate the fault tolerance of these 4-
bit multipliers, Monte Carlo simulations are carried out by
100000 times for each probability of error in [0 1] with a step
size of 1/24. Errors are injected into each computing element to
flip the outputs. This is implemented by an XOR gate. The
values of two inputs of a multiplier are then traversed to
compute the mean error distance (MED) as follows

22

2
1

1MED
2

n

in
i

ED
=

= ∑ , (1)

where n is the bit width of a multiplier and EDi is the arithmetic
distance between exact and stochastic results for each input.

As can be seen in the MEDs in Fig. 5, the thermometer, serial,
and M4_1 multipliers result in similar MEDs, which are slightly
smaller than that of the binary design, because these three
multipliers generate (24)2=256-bit outputs accumulated through
the same ripple carry adders. The Booth multiplier shows the
highest MEDs, so its fault tolerance is the worst among these
multipliers, while the M4_4 presents the best results. Although
the MEDs of the M4_2 are higher than that of the M4_4, the M4_2
is still used later, because of its lower hardware costs (in
TABLE I).

V. APPLICATIONS
Recent machine learning models can compete with humans

in many tasks related to recognition and detections thanks to the
development of deep convolutional neural network models [16].
A convolutional network, however, usually involves a huge
amount of multiply-and-accumulate (MAC) operations. It
incurs high energy and delay to both move data between
memory and computing units and perform the MAC. Many
efforts have been devoted to quantizing the parameters so that
the model can be compressed and calculated with reduced
energy and delay. Advanced schemes can quantize a single-
precision floating-point (FP) model to a 4-bit one, leading to
roughly an energy efficiency improvement by 8 times. The
proposed design can then be used to execute the 4-bit
multiplications in these quantized models by replacing the
conventional binary multipliers, further lowering the energy
consumption and delay.

Without losing generality, AlexNet [17] is used to illustrate
this idea. It consists of 5 convolutional layers for feature
extraction and 3 fully connected layers for classification. Fig. 6
shows the structure of an AlexNet.

An AlexNet model contains a lot of parameters, usually
referred to as weights. They can be trained or adjusted to
perform specific recognition or classification tasks while
staying unchanged when making the inference. In the
convolutional layers, the weights are grouped as kernels or
filters and convolved with the input using multiplications and
additions, followed by a Rectified Linear Unit (ReLU) function
called activation function, e.g., y=max(0, x), where x and y are
the input and output of the ReLU function, respectively [3]. The
ReLU function generates a 0 if the input is less than 0, or it
outputs the input directly. After that, the results or the number
of outputs are optionally compressed through a pooling layer.
In the fully connected layers, the output is the ReLU results of
the matrix multiplication of the inputs and the weights. The last
stage is a softmax unit, used for multi-class classification.

We use the Brevitas package [18] to quantize the parameters
and intermediate variables in the network. The straight-through

TABLE I
THE COMPARISON OF 4-, 6-, 8-, 16-, AND 32-BIT BPSMULS VERSUS VARIOUS

R AND EXISTING MULTIPLIERS

Bit Design Area
(um2)

Power
(uW)

Delay
(ns)

PDP
(fJ)

ADP
(um2∙ns)

EDP
(fJ∙ns)

4

M4_1 132.12 7.6 1.05 8.03 138.73 8.43
M4_2 133.18 7.6 1.03 7.86 137.18 8.10
M4_4 128.42 7.5 1.28 9.64 164.38 12.34

Binary 135.30 7.7 1.07 8.26 144.77 8.84
Booth 178.16 9.7 1.41 13.67 251.21 19.28

Serial [5] 250.66 17.3 269 4656.4 67379 1251646
Them [6] 1689.56 59.4 3.12 185.34 5271.42 578.26

6

M6_1 318.05 16.7 1.61 26.88 512.06 43.28
M6_2 315.76 16.1 1.73 27.90 546.26 48.27
M6_3 344.69 17.2 1.72 29.59 592.86 50.89
M6_6 312.23 16.6 1.53 25.34 477.71 38.77

Binary 315.76 16.9 1.71 28.98 539.94 49.56
Booth 388.26 22.1 1.94 42.96 753.22 83.35

Them [6] 27783 114.4 5.51 630.45 153082 3473.80

8

M8_1 36755 1323 5.84 7728.7 214652 45135
M8_2 580.89 28.8 2.10 60.47 1219.86 126.98
M8_4 639.98 31.1 2.43 75.63 1555.15 183.78
M8_8 578.59 29.2 2.27 66.35 1313.40 150.62

Binary 583.53 30.7 2.28 70.09 1330.45 159.80
Booth 641.39 39.2 2.93 114.74 1879.27 336.18

Them [6] 412145 12349 8.21 101386 3383711 832380

16

M16_2 552870 17938 8.47 151936 4682805 1286895
M16_4 2534.3 132.2 5.92 782.62 15003.3 4633.1
M16_8 2702.1 144.2 5.13 739.75 13861.7 3794.9
M16_16 2430.3 134.5 4.99 671.16 12127.0 3349.1
Binary 2384.8 143.8 5.42 779.40 12925.4 4224.3
Booth 2211.0 162.9 4.87 793.32 10767.6 3863.5

32

M32_8 9047.0 510.9 7.95 4061.7 71923.9 32290
M32_16 9171.0 529.3 7.64 4043.9 70066.7 30895
M32_32 8069.9 507.1 7.56 3833.7 61008.8 28983
Binary 9616.6 665.5 8.20 5457.1 78856.3 44748
Booth 8170.5 675.3 8.45 5706.3 69040.7 48218

Fig. 5. Mean error distance versus the probability of error for 4-bit multipliers.

Fig. 6. The AlexNet structure. The first six outer boxes indicate the input data.
The corresponding numbers denote the filter sizes and the number of channels
for each input to the convolutional layer. The last three rectangles are the output
of each fully-connected layers and the number denotes the dimension. The last
layer has 10 elements, standing for the 10 classes of the images.

estimator [19] is used to perform quantization-aware training
and the weights and inputs to each layer are quantized to 4-bit
width. The first layer (for the input images) is not quantized in
order to maintain a high accuracy. Thus, all the multiplications
except the first layer can be implemented by either a 4×4 binary
multiplier or the proposed multiplier.

The AlexNet is trained for image recognition on the
CIFAR10 dataset. This image recognition task is to classify the
color images in the dataset into 10 classes. It contains 50,000
images for training and 10,000 images for testing. The
recognition accuracy is compared for a baseline FP AlexNet
model, a 4-bit quantized model using a conventional multiplier,
and a 4-bit quantized model using the proposed stochastic
multiplier. The results are shown in TABLE II.

As can be seen, the recognition accuracy of the quantized
models is slightly degraded due to the quantization error
compared to the FP model. However, the quantized model using
stochastic and binary multipliers shows the same accuracy since
the proposed stochastic multiplier produces exactly the same
4×4 computation result as a binary multiplier. In terms of
energy, since the 4-bit stochastic multiplier is more efficient
than its binary counterpart as shown in TABLE I, we can
estimate that using the 4-bit proposed2-type multiplier, energy
can be saved by around 2.6 μJ compared to the binary design
because there are in total 710M 4×4 multiplications in the
quantized NN at a clock frequency of 100 MHz. TABLE III
provides the hardware measurements of an m-input MAC (m=2,
4, 8, 16), which also shows the higher energy efficiency of the
proposed multiplier.

VI. CONCLUSION
Research on accelerating stochastic computing (SC) based

neural networks (NNs) has received extensive attention in
recent years. In this paper, a hybrid bit split generator (HBSG)
is proposed to reduce the delay in the generation of bitstreams
by splitting binary numbers into several segments in advance
and then encoding them through hardwired connections. The
HBSG is then used for a binary-interfaced parallel stochastic

multiplier (BipSMul) design. Synthesized results show that the
proposed BipSMul outperforms its stochastic counterparts and
conventional binary designs in overall hardware performance.
Experimental results for an NN application indicate that with a
limited loss of accuracy, the proposed BipSMul indeed reduces
the required energy consumption, compared with conventional
binary designs.

REFERENCES
[1] A. Alaghi, W. Qian, and J. Hayes, "The promise and challenge of

stochastic computing," IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 37, no. 8, pp. 1515-1531, Aug. 2018.

[2] W. Gross and V. Gaudet, Stochastic computing: Techniques and
applications. Springer Nature Switzerland AG: Springer, 2019.

[3] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, "A survey of stochastic
computing neural networks for machine learning applications," IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 2809-2824, Jul. 2021.

[4] H. Najafi and D. Lilja, "High quality down-sampling for deterministic
approaches to stochastic computing," IEEE Trans. Emerging Top.
Comput., vol. 9, no. 1, pp. 7-14, Mar. 2018.

[5] Z. Lin, G. Xie, W. Xu, J. Han, and Y. Zhang, "Accelerating stochastic
computing using deterministic halton sequences," IEEE Trans. Circuits
Syst., II, Exp. Briefs, vol. 68, no. 10, pp. 3351-3355, Oct. 2021.

[6] Y. Zhang, R. Wang, X. Zhang, Y. Wang, and R. Huang, "Parallel hybrid
stochastic-binary-based neural network accelerators," IEEE Trans.
Circuits Syst., II, Exp. Briefs, vol. 67, no. 12, pp. 3387-3391, Dec. 2020.

[7] S. Shenoi, "A comparative study on methods for stochastic number
generation," M.S., College of Engineering and Applied Sciences,
University of Cincinnati, Ann Arbor, 2017.

[8] Y. Zhang et al., "A parallel bitstream generator for stochastic computing,"
presented at the 2019 Silicon Nanoelectronics Workshop, Kyoto, Japan,
9-10 Jun., 2019.

[9] V. Sehwag, N. Prasad, and I. Chakrabarti, "A parallel stochastic number
generator with bit permutation networks," IEEE Trans. Circuits Syst., II,
Exp. Briefs, vol. 65, no. 2, pp. 231-235, Feb. 2018.

[10] D. Jenson and M. Riedel, "A deterministic approach to stochastic
computation," presented at the 2016 IEEE/ACM International Conference
on Computer-Aided Design, Austin, TX, USA, 7-10 Nov., 2016.

[11] S. Dutt, S. Dash, S. Nandi, and G. Trivedi, "Analysis, modeling and
optimization of equal segment based approximate adders," IEEE Trans.
Comput., vol. 68, no. 3, pp. 314-330, Mar. 2019.

[12] M. Najafi, S. Faraji, B. Li, D. Lilja, and K. Bazargan, "Accelerating
deterministic bit-stream computing with resolution splitting," presented at
the 20th International Symposium on Quality Electronic Design, Santa
Clara, CA, 6-7 Mar., 2019.

[13] R. Wang, J. Han, B. Cockburn, and D. Elliott, "Stochastic circuit design
and performance evaluation of vector quantization for different error
measures," IEEE Trans. Very Large Scale Integr. VLSI Syst., Article vol.
24, no. 10, pp. 3169-3183, Oct. 2016.

[14] C. Chang, J. Gu, and M. Zhang, "Ultra low-voltage low-power cmos 4-2
and 5-2 compressors for fast arithmetic circuits," IEEE Trans. Circuits
Syst. I-Regul. Pap., vol. 51, no. 10, pp. 1985-1997, Oct. 2004.

[15] H. Waris, C. H. Wang, and W. Q. Liu, "Hybrid low radix encoding-based
approximate booth multipliers," IEEE Trans. Circuits Syst., II, Exp. Briefs,
vol. 67, no. 12, pp. 3367-3371, Dec. 2020.

[16] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521,
no. 7553, pp. 436-444, May 2015.

[17] A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with
deep convolutional neural networks," Commun. ACM, vol. 60, no. 6, pp.
84-90, Jun. 2017.

[18] A. Pappalardo. (2021). Xilinx/brevitas. Available:
https://github.com/Xilinx/brevitas

[19] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
"Binarized neural networks," presented at the Proceedings of the 30th
International Conference on Neural Information Processing Systems,
Barcelona, Spain, 2016.

TABLE II
RECOGNITION ACCURACY OF ALEXNET USING DIFFERENT MULTIPLIERS

AlexNet
models

FP
baseline

4-bit quantized model
using the conventional

binary multipliers

4-bit quantized model
using the proposed

stochastic multipliers
Accuracy 83.5% 80.9% 80.9%

TABLE III

THE HARDWARE RESOURCES OF M-INPUT MACS USING 8-BIT MULTIPLIERS
Designs 2 4 8 16

Binary

Area (um2) 882.71 1752.00 3486.37 7053.35
Power (mW) 0.0633 0.1191 0.2298 0.4425
Delay (ns) 1.87 1.87 1.8700 3.31
PDP (pJ) 0.12 0.22 0.43 1.46

ADP (um2∙ns) 1650.66 3276.25 6519.51 23346.60
EDP (fJ∙ns) 224.4 411.4 804.1 4832.6

Proposed

Area (um2) 875.30 1740.01 3458.67 6894.24
Power (mW) 0.0616 0.1161 0.2238 0.4378
Delay (ns) 1.48 1.46 1.47 1.45
PDP (pJ) 0.09 0.17 0.33 0.63

ADP (um2∙ns) 1295.44 2540.41 5084.25 9996.65
EDP (fJ∙ns) 133.2 248.2 485.1 913.5

https://github.com/Xilinx/brevitas

	I. INTRODUCTION
	II. Basic Concepts
	A. Bitstream Generators
	B. Deterministic Approaches

	III. The Proposed Designs
	A. A Hybrid Bit Splitting Generator (HBSG)
	B. A Binary-Interfaced Parallel Stochastic Multiplier (BipSMul)
	C. An Example of Multiplying Two Binary Numbers

	IV. Experimental Results
	A. Comparison of Multipliers

	V. Applications
	VI. Conclusion
	References

