
  
Abstract—Stochastic computing (SC) typically requires a low 

design complexity compared with weighted binary computing, so 
it has been successfully applied in neural networks (NNs). Usually, 
SC utilizes random bitstreams as its medium, which makes it 
suffer from a long delay that offsets its advantages. This drawback 
can be alleviated by utilizing parallel datapaths, which, however, 
will significantly increase the hardware cost due to the 
requirement of multiple parallel computing units. In this paper, a 
hybrid bit splitting generator (HBSG) is proposed to efficiently 
produce parallel bitstreams in a single clock cycle to reduce delay. 
The HBSG uniformly splits binary numbers into R segments, each 
of which is encoded in parallel by using hardwired connections 
according to the weight of each bit. A binary-interfaced parallel 
stochastic multiplier (BipSMul) using the HBSG is then proposed 
to accelerate the multiplication in SC. Experimental results show 
that the BipSMul is more energy efficient than the state-of-the-art 
parallel and serial stochastic designs, as well as their binary and 
Booth counterparts, in delay, power-delay product (PDP), and 
area-delay product (ADP). 
 

Index Terms—Stochastic computing, parallel datapath, 
multiplier, energy-efficiency, neural network. 
 

I. INTRODUCTION 
TOCHASTIC computing (SC) encodes binary numbers into 
random bitstreams for fault-tolerant applications [1]. While 

they suffer from random fluctuations, the bitstreams can be 
serial or parallel, with all bits of equal weight to counter bit flip 
induced errors and, thus, achieve a high fault tolerance [2]. 
Several other errors, such as rounding, constant-induced, and 
cross-correlation errors, also exist, mainly due to the 
representation of bitstreams in SC [2]. The main advantages of 
SC also include simple and compact digital units. For example, 
multiplication in SC can be realized by an AND gate [1]. Thus, 
SC is applicable when a slight computing inaccuracy is 
acceptable in applications, such as neural networks (NNs) 
consisting of multiply accumulate (MAC) units [3]. 
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However, SC suffers from a serious delay issue because it is 
usually performed on long serial bitstreams. For example, 2n 
clock cycles are required for multiplying two bitstreams with n-
bit precision. This delay will be 22n clock cycles if completely 
accurate multiplication is expected by using the deterministic 
approach [4, 5]. The delay can be significantly reduced by using 
parallel datapaths to reduce it from 2n to 1. However, few works 
on this aspect have been reported because the hardware cost 
required by the computing units also exponentially increases. 
For example, 256 AND gates are needed for multiplying two 
numbers with 8-bit precision for parallel processing, while only 
one is needed for serial processing. The thermometer coding-
based parallel bitstream generator has been designed for 
computing in one clock cycle, thereby saving power [6]. 
However, its hardware cost is still very high. 

To reduce delay and save energy, a hybrid bit splitting 
generator (HBSG) is proposed in this paper for multipliers. 
Binary numbers are split into R segments with equal bit width 
before converting them into bitstreams. Then, the delay is 
reduced to one clock cycle by encoding each segment in parallel. 
The coding scheme uses hardwired connections according to 
the weight of each bit in each segment. A binary-interfaced 
parallel stochastic multiplier (BipSMul) using the HBSG is then 
proposed to speed up the multiplication in SC. The 
deterministic approach is applied to the BipSMul for improving 
the computing accuracy. Although the deterministic approach 
will require an increased number of AND gates, its hardware 
cost is kept low because of the utilization of the bit splitting and 
hardwire connection methods. 

The main contributions of this work are summarized as 
follows. 1) An HBSG is proposed for converting binary 
numbers into parallel bitstreams in only one clock cycle. 2) A 
BipSMul using the HBSG is developed to reduce delay and 
energy. 3) An NN using the BipSMul is quantized to illustrate 
the proposed designs. 

This paper proceeds as follows. Section II reviews the 
concepts of SC. Section III presents the designs of HBSG and 
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BipSMul. Section IV discusses the experimental results of the 
proposed multiplier. An application of an NN is shown in 
Section V. Section VI concludes this work. 

II. BASIC CONCEPTS 

A. Bitstream Generators 
Random bitstreams in SC are generated by stochastic number 

generators (SNGs). A typical SNG mainly consists of a linear 
feedback shift register (LFSR) and a comparator for generating 
serial bitstreams [7]. It produces a 1 (or 0) if the binary number 
in the LFSR is smaller (or larger) than the input binary number 
in each clock cycle. If the LFSR and the binary number are n-
bit wide, the generated bitstream length (BSL) will be 2n, or 2n 
clock cycles are required for generating bitstreams with an n-
bit precision. This incurs a long delay and leads to significant 
energy consumption. 

The thermometer coding based SNG produces parallel 
bitstreams to reduce the delay from 2n to one clock cycle [8]. 
That is, for an n-bit binary number, 2n parallel outputs are 
simultaneously generated with this SNG, making use of a large 
number of logic gates. 

Compared with the two methods above, a natural method is 
to generate bitstreams according to the weight of each bit in a 
binary number. This method has been employed to build an n-
to-2n-1 SNG by using hardwired connections to generate 
parallel bitstreams in one clock cycle [9]. However, the 
bitstreams have a very high correlation, which has been reduced 
through a four-stage omega-flip network, leading to a large 
hardware cost and energy dissipation [9]. 

B. Deterministic Approaches 
Typically, SC suffers from inherent random fluctuations, 

which make it inaccurate. The deterministic approaches have 
been developed to alleviate this issue [10]. Similar to the 
convolution in mathematics, each bit in one bitstream interacts 
with all bits in the other one so that the generated outputs are 
accurate. For example, when multiplying two bitstreams a and 
b, b0 interacts with a0, a1, a2, and a3, as illustrated in Fig. 1(a). 

Fig. 1(b) and (c) illustrate the comparison between the 
traditional and deterministic approaches when multiplying two 
2-bit binary numbers. In Fig. 1(c), 1110 (encoding 3/4) is 
repeated 4 times and 1100 (encoding 1/2) is rotated 4 times. It 
is shown that the result generated using the deterministic 
approach is completely accurate, whereas the traditional one 
produces inaccurate results. However, the bitstream length in 
the deterministic approach exponentially increases as the 
precision increases, resulting in a much longer delay. 

III. THE PROPOSED DESIGNS 

A. A Hybrid Bit Splitting Generator (HBSG) 
The advantages of parallel designs will be completely offset 

if a higher precision is required because of the huge hardware 
resources. Hence, simplifying the complexity of parallel 
designs becomes imperative. 

Bit splitting is a common method to lower the hardware costs 
of digital arithmetic circuits, such as approximate adders [11]. 
This method splits binary numbers into several segments and 
then processes each segment according to certain rules. It has 
also been employed for accelerating serial SC [12]. However, a 
high delay remains, which leads to a low energy efficiency. It 
is noteworthy that the bit splitting method can be exploited 
much further for reducing the complexity of parallel designs to 
lower delay and energy. 

With this in mind, an HBSG is proposed for accelerating 
parallel designs by means of bit splitting in this work. A given 
n-bit binary number b=bn-1bn-2…b1b0 is split into R segments 
with equal bit width. Each segment is then respectively 
converted into a parallel bitstream by using hardwired 
connections according to the weight of each bit in the segment, 
as shown in Fig. 2, where R is set to 2 for simplicity and k equals 
n/R as the bit width of each segment. In addition, a zero is added 
to each generated bitstream to make the probability of 1s in the 
bitstream proportional to the value of the segment divided by 2k, 
as the insertion of an all-zero state to a linear feedback shift 
register [13]. Therefore, the bitstream lengths of two parallel 
bitstreams S<1, > and S<0, > are both 2k in Fig. 2, so the subscripts 
of the bitstreams range from 0 to 2k-1. For example, the number 
of connections of the i-th bit (i=1, 2, 3, …, n/2) in bn-1bn-

2…bn/2+1bn/2 is 2i-1, so the subscripts of the bitstreams range from 
2i-1 to 2i-1. Note that just one clock cycle is required for 
generating multiple parallel bitstreams. 

 
Fig. 3.  The proposed BipSMul (R=2). 
 

 
Fig. 1.  (a) An illustration of the deterministic approach. (b) A traditional 
approach for multiplying two numbers. (c) The deterministic approach for 
multiplying two numbers. 

 
Fig. 2.  The proposed HBSG. 
 



B. A Binary-Interfaced Parallel Stochastic Multiplier 
(BipSMul) 

A BipSMul is proposed by using the HBSG, as illustrated in 
Fig. 3, where R is set to 2 for convenience in description, “<<n” 
means a left-shift by n bits. Two n-bit binary numbers a and b 
are processed through the HBSG to generate 4 parallel 
bitstreams with a length of 2n/2 bits. These bitstreams are then 
handled by using the deterministic approach, as illustrated in 
Fig. 1(a), to generate 4 deterministic bitstreams with a length of 
2n bits. They are then paired into four AND arrays to perform 
multiplication. Four parallel counters indicated as “SUM” 
convert the bitstreams generated by AND arrays into binary 
numbers. Finally, the converted numbers are left-shifted by 
different numbers of bits and fed into an accumulator to obtain 
the final binary result.  

Unipolar and bipolar formats are two encoding methods in 
SC, in which numbers range in [0,1] and [-1,+1], respectively. 
For example, the bitstream 1100 encodes 1/2 in the unipolar 
format, whereas it encodes 0 in the bipolar one. The unipolar 
format is used in the proposed BipSMul. As for signed 
multiplication, one more sign bit is added to the bitstreams. The 
product is determined by the sign bit, which can be obtained 
through an XOR gate.  

C. An Example of Multiplying Two Binary Numbers 
Fig. 4 shows an example of multiplying two 4-bit binary 

numbers (a=a3a2a1a0 and b=b3b2b1b0) to illustrate the principle 
of the proposed BipSMul. 

At first, each number is split into two segments, i.e., a3a2 and 
a1a0, b3b2 and b1b0. These segments are respectively converted 
to 4 parallel bitstreams, including a3a3a20 and a1a1a00, b3b3b20 
and b1b1b00, according to the weight of each bit in each segment. 
For example, the weight of a3 in a3a2 is 2, so a3 is converted to 
two bits, while a2 is converted to 1 bit. The length of these 
bitstreams is 2n/2=24/2=4. This process is accomplished by using 
the proposed HBSG. These 4 bitstreams are then composed by 
the deterministic approach, i.e., copying a3a3a20 and a1a1a00 
four times and rotating b3b3b20 and b1b1b00 four times, 
respectively, to generate 4 deterministic bitstreams, denoted as 
aH, aL, bH, and bL. The length of 4 deterministic bitstreams is 
(2n/2)2=(24/2)2=16, as illustrated in Fig. 4(a). 

aH, aL, bH, and bL are paired into four AND arrays, each of 
which contains 16 AND gates, as shown in Fig. 4(b). The results 
are then summed and left-shifted for subsequent usage. Two 
key points should be noted here, one of which is the theory 
behind the pairing of 4 bitstreams, while the other is the number 
of left-shifted bits. The multiplication of two 4-bit binary 
numbers generates 16 partial products that can be divided into 

4 parts surrounded by four boxes, as shown in Fig. 4(c). Each 
part corresponds to a pairing of two bitstreams; for example, the 
multiplication of a3a2 and b3b2 is equivalent to the pairing of 
aHbH. Thus, the binary multiplication process decides the 
pairing of parallel bitstreams. In addition, each partial product 
is one bit, so its length is 1. Thus, aHbH is left-shifted by n=4 
bits. The same holds true for other parts. For different values of 
R and n, the number of left-shifted bits is pre-determined, 
according to the principle in Fig. 4(c). 

IV. EXPERIMENTAL RESULTS 
The binary, Booth, serial [5], thermometer [6], and the 

proposed multipliers are evaluated and they all produce 
accurate results because of the employed deterministic 
approach. The binary multipliers are designed in three steps. 1) 
Generating partial products using AND gates. 2) Compressing 
partial products using the 4-2 compressor in [14], full adders, 
and half adders based on the Dadda tree structure. 3) Generating 
final results using a ripple carry adder. The Booth multipliers 
are designed using the modified radix-4 method [15], of which 
the partial products are also compressed by using compressors, 
full adders, and half adders. All circuits are synthesized by 
Synopsys Design Compiler with the TSMC 40 nm library. Two 
commands ‘set_target_library_subset’ and ‘compile_ultra’ are 
used to synthesize the circuits through AND, OR, NOT, XOR, 
and XNOR gates. This method will avoid the usage of pre-built 
special modules in the library and keep a balanced comparison. 
The power is obtained in PrimePower using a vector-free power 
analysis model. 

A. Comparison of Multipliers 
Hardware cost: TABLE I lists the area, power, delay (as the 

critical path delay multiplied by the number of clock cycles), 
power-delay-product (PDP), area-delay-product (ADP), and 
energy-delay-product (EDP) versus different R values for 4-, 6-, 
8, 16, and 32-bit multipliers (Mi_j denotes R=j for the proposed 
i-bit BipSMul; R=1 means that numbers are not split). 

For the 4-bit serial multiplier, its delay is equal to the critical 
path delay multiplied by (2n)2=(24)2=256 (the power 2 is due to 
the deterministic approach), which leads to a high energy 
consumption, PDP, ADP, and EDP. Since half of the elements 
in the truth table of an n-bit thermometer based SNG with 2n 
outputs are 1, the logic expressions of outputs are very complex 
[8]. These result in an inferior performance of the thermometer 
based multipliers (shortened as Them), as shown in the 
simulation results in TABLE I. Among them, the PDPs are 
reduced by 4.84%, 12.56%, 13.73%, 13.89%, and 29.75% for 
the 4-, 6-, 8-, 16-, and 32-bit BipSMuls compared to the binary 

 
Fig. 4.  An example of multiplying two 4-bit binary numbers by using the proposed BpSMul (R=2). (a) Bit splitting and bitstream generation. (b) Bitstream 
multiplication and accumulation. (c) Illustration of left-shifting. 
 



designs, and 42.50%, 41.01%, 47.30%, 15.40%, and 32.82% 
compared to the Booth designs. Note that, since the used 
deterministic approach, the bitstream length of M8_1 is (28)2=216, 
so very complex SUM and accumulation in Fig. 3 are consumed, 
leading to abnormal hardware costs. 

Fault-tolerance: To investigate the fault tolerance of these 4-
bit multipliers, Monte Carlo simulations are carried out by 
100000 times for each probability of error in [0 1] with a step 
size of 1/24. Errors are injected into each computing element to 
flip the outputs. This is implemented by an XOR gate. The 
values of two inputs of a multiplier are then traversed to 
compute the mean error distance (MED) as follows 
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where n is the bit width of a multiplier and EDi is the arithmetic 
distance between exact and stochastic results for each input. 

As can be seen in the MEDs in Fig. 5, the thermometer, serial, 
and M4_1 multipliers result in similar MEDs, which are slightly 
smaller than that of the binary design, because these three 
multipliers generate (24)2=256-bit outputs accumulated through 
the same ripple carry adders. The Booth multiplier shows the 
highest MEDs, so its fault tolerance is the worst among these 
multipliers, while the M4_4 presents the best results. Although 
the MEDs of the M4_2 are higher than that of the M4_4, the M4_2 
is still used later, because of its lower hardware costs (in 
TABLE I). 

V. APPLICATIONS 
Recent machine learning models can compete with humans 

in many tasks related to recognition and detections thanks to the 
development of deep convolutional neural network models [16]. 
A convolutional network, however, usually involves a huge 
amount of multiply-and-accumulate (MAC) operations. It 
incurs high energy and delay to both move data between 
memory and computing units and perform the MAC. Many 
efforts have been devoted to quantizing the parameters so that 
the model can be compressed and calculated with reduced 
energy and delay. Advanced schemes can quantize a single-
precision floating-point (FP) model to a 4-bit one, leading to 
roughly an energy efficiency improvement by 8 times. The 
proposed design can then be used to execute the 4-bit 
multiplications in these quantized models by replacing the 
conventional binary multipliers, further lowering the energy 
consumption and delay.  

Without losing generality, AlexNet [17] is used to illustrate 
this idea. It consists of 5 convolutional layers for feature 
extraction and 3 fully connected layers for classification. Fig. 6 
shows the structure of an AlexNet. 

An AlexNet model contains a lot of parameters, usually 
referred to as weights. They can be trained or adjusted to 
perform specific recognition or classification tasks while 
staying unchanged when making the inference. In the 
convolutional layers, the weights are grouped as kernels or 
filters and convolved with the input using multiplications and 
additions, followed by a Rectified Linear Unit (ReLU) function 
called activation function, e.g., y=max(0, x), where x and y are 
the input and output of the ReLU function, respectively [3]. The 
ReLU function generates a 0 if the input is less than 0, or it 
outputs the input directly. After that, the results or the number 
of outputs are optionally compressed through a pooling layer. 
In the fully connected layers, the output is the ReLU results of 
the matrix multiplication of the inputs and the weights. The last 
stage is a softmax unit, used for multi-class classification. 

We use the Brevitas package [18] to quantize the parameters 
and intermediate variables in the network. The straight-through 

TABLE I 
THE COMPARISON OF 4-, 6-, 8-, 16-, AND 32-BIT BPSMULS VERSUS VARIOUS 

R AND EXISTING MULTIPLIERS 

Bit Design Area 
(um2) 

Power 
(uW) 

Delay 
(ns) 

PDP 
(fJ) 

ADP 
(um2∙ns) 

EDP 
(fJ∙ns) 

4 

M4_1 132.12 7.6 1.05 8.03 138.73 8.43 
M4_2 133.18 7.6 1.03 7.86 137.18 8.10 
M4_4 128.42 7.5 1.28 9.64 164.38 12.34 

Binary 135.30 7.7 1.07 8.26 144.77 8.84 
Booth 178.16 9.7 1.41 13.67 251.21 19.28 

Serial [5] 250.66 17.3 269 4656.4 67379 1251646 
Them [6] 1689.56 59.4 3.12 185.34 5271.42 578.26 

6 

M6_1 318.05 16.7 1.61 26.88 512.06 43.28 
M6_2 315.76 16.1 1.73 27.90 546.26 48.27 
M6_3 344.69 17.2 1.72 29.59 592.86 50.89 
M6_6 312.23 16.6 1.53 25.34 477.71 38.77 

Binary 315.76 16.9 1.71 28.98 539.94 49.56 
Booth 388.26 22.1 1.94 42.96 753.22 83.35 

Them [6] 27783 114.4 5.51 630.45 153082 3473.80 

8 

M8_1 36755 1323 5.84 7728.7 214652 45135 
M8_2 580.89 28.8 2.10 60.47 1219.86 126.98 
M8_4 639.98 31.1 2.43 75.63 1555.15 183.78 
M8_8 578.59 29.2 2.27 66.35 1313.40 150.62 

Binary 583.53 30.7 2.28 70.09 1330.45 159.80 
Booth 641.39 39.2 2.93 114.74 1879.27 336.18 

Them [6] 412145 12349 8.21 101386 3383711 832380 

16 

M16_2 552870 17938 8.47 151936 4682805 1286895 
M16_4 2534.3 132.2 5.92 782.62 15003.3 4633.1 
M16_8 2702.1 144.2 5.13 739.75 13861.7 3794.9 
M16_16 2430.3 134.5 4.99 671.16 12127.0 3349.1 
Binary 2384.8 143.8 5.42 779.40 12925.4 4224.3 
Booth 2211.0 162.9 4.87 793.32 10767.6 3863.5 

32 

M32_8 9047.0 510.9 7.95 4061.7 71923.9 32290 
M32_16 9171.0 529.3 7.64 4043.9 70066.7 30895 
M32_32 8069.9 507.1 7.56 3833.7 61008.8 28983 
Binary 9616.6 665.5 8.20 5457.1 78856.3 44748 
Booth 8170.5 675.3 8.45 5706.3 69040.7 48218 

 

 
Fig. 5.  Mean error distance versus the probability of error for 4-bit multipliers. 

 
Fig. 6.  The AlexNet structure. The first six outer boxes indicate the input data. 
The corresponding numbers denote the filter sizes and the number of channels 
for each input to the convolutional layer. The last three rectangles are the output 
of each fully-connected layers and the number denotes the dimension. The last 
layer has 10 elements, standing for the 10 classes of the images. 
 



estimator [19] is used to perform quantization-aware training 
and the weights and inputs to each layer are quantized to 4-bit 
width. The first layer (for the input images) is not quantized in 
order to maintain a high accuracy. Thus, all the multiplications 
except the first layer can be implemented by either a 4×4 binary 
multiplier or the proposed multiplier. 

The AlexNet is trained for image recognition on the 
CIFAR10 dataset. This image recognition task is to classify the 
color images in the dataset into 10 classes. It contains 50,000 
images for training and 10,000 images for testing. The 
recognition accuracy is compared for a baseline FP AlexNet 
model, a 4-bit quantized model using a conventional multiplier, 
and a 4-bit quantized model using the proposed stochastic 
multiplier. The results are shown in TABLE II. 

As can be seen, the recognition accuracy of the quantized 
models is slightly degraded due to the quantization error 
compared to the FP model. However, the quantized model using 
stochastic and binary multipliers shows the same accuracy since 
the proposed stochastic multiplier produces exactly the same 
4×4 computation result as a binary multiplier. In terms of 
energy, since the 4-bit stochastic multiplier is more efficient 
than its binary counterpart as shown in TABLE I, we can 
estimate that using the 4-bit proposed2-type multiplier, energy 
can be saved by around 2.6 μJ compared to the binary design 
because there are in total 710M 4×4 multiplications in the 
quantized NN at a clock frequency of 100 MHz. TABLE III 
provides the hardware measurements of an m-input MAC (m=2, 
4, 8, 16), which also shows the higher energy efficiency of the 
proposed multiplier. 

VI. CONCLUSION 
Research on accelerating stochastic computing (SC) based 

neural networks (NNs) has received extensive attention in 
recent years. In this paper, a hybrid bit split generator (HBSG) 
is proposed to reduce the delay in the generation of bitstreams 
by splitting binary numbers into several segments in advance 
and then encoding them through hardwired connections. The 
HBSG is then used for a binary-interfaced parallel stochastic 

multiplier (BipSMul) design. Synthesized results show that the 
proposed BipSMul outperforms its stochastic counterparts and 
conventional binary designs in overall hardware performance. 
Experimental results for an NN application indicate that with a 
limited loss of accuracy, the proposed BipSMul indeed reduces 
the required energy consumption, compared with conventional 
binary designs. 
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TABLE II 
RECOGNITION ACCURACY OF ALEXNET USING DIFFERENT MULTIPLIERS 

AlexNet 
models 

FP 
baseline 

4-bit quantized model 
using the conventional 

binary multipliers 

4-bit quantized model 
using the proposed 

stochastic multipliers 
Accuracy 83.5% 80.9% 80.9% 

 
TABLE III 

THE HARDWARE RESOURCES OF M-INPUT MACS USING 8-BIT MULTIPLIERS 
Designs 2 4 8 16 

Binary 

Area (um2) 882.71 1752.00 3486.37 7053.35 
Power (mW) 0.0633 0.1191 0.2298 0.4425 
Delay (ns) 1.87 1.87 1.8700 3.31 
PDP (pJ) 0.12 0.22 0.43 1.46 

ADP (um2∙ns) 1650.66 3276.25 6519.51 23346.60 
EDP (fJ∙ns) 224.4 411.4 804.1 4832.6 

Proposed 

Area (um2) 875.30 1740.01 3458.67 6894.24 
Power (mW) 0.0616 0.1161 0.2238 0.4378 
Delay (ns) 1.48 1.46 1.47 1.45 
PDP (pJ) 0.09 0.17 0.33 0.63 

ADP (um2∙ns) 1295.44 2540.41 5084.25 9996.65 
EDP (fJ∙ns) 133.2 248.2 485.1 913.5 
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