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Abstract—The importance of the reliability of majority-based
structures stems from their use in both conventional fault-tolerant
architectures and emerging nanoelectronic systems. In this paper,
analytical models are developed in order to gain a better under-
standing of the reliability of majority logic in these contexts. A
minimally biased input scenario for N -input majority gates (N
odd) occurs when only a minimal majority of the inputs are in con-
sensus. In a tree of gates with these inputs, this paper determines
1) that any nonzero error rate of the majority gates and/or of its
initial inputs will result in an unreliable output and 2) that the use
of majority gates with a larger number of inputs leads to a less
reliable structure. These results are extended to N -input minority
gates for odd N . Although these findings are based on tree struc-
tures, their implications to circuit design are explored by investi-
gating several fault-tolerant and nanoelectronic architectures. The
simulation results show that the increased probability of error in
nanoscale devices may impose serious constraints on the reliability
of emerging nanoelectronic circuits, as well as their fault-tolerant
counterparts. The worst case reliability must be accounted for in a
fault-tolerant design to ensure reliable operation.

Index Terms—Majority logic, nanoelectronics, quantum-dot
cellular automata (QCA), reliability, triple/N -tuple modular
redundancy (TMR/NMR).

I. INTRODUCTION

A s CMOS devices reach their fundamental physical lim-
its, they will increasingly suffer from short channel ef-

fects, doping fluctuations, and other phenomena, which will
negatively impact their reliability. In addition, their manufac-
ture will require difficult and expensive lithographic methods.
These future limitations of CMOS have led many to consider
novel nanometer-scale devices that are hoped to have faster
switching speeds, lower power consumption, and better scaling
characteristics [1].
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Such novel devices include quantum-dot cellular automata
(QCA) [2], [3], which utilize the electrostatic or magnetic in-
teractions between neighboring cells to perform logic, single-
electron tunneling (SET) devices [4], [5], which are based on
quantum tunneling and single-electron operations, and spin-
based devices [6], [7], which employ spins of electrons instead
of charges as information carriers. In demonstrating the feasi-
bility of any of these new technologies, it is important to show
that the device can implement one of the universal logic func-
tions and, thus, can perform any arbitrary function. For example,
QCA have been shown to be capable of performing both the ma-
jority and inverting logic functions, which together constitute
the universal minority function [2]. Magnetic QCA have been
experimentally demonstrated for the implementation of major-
ity gates at room temperature [3]. The minority function has
been shown using SET devices [5]. Spintronic implementations
of the majority function have recently been proposed as the
building blocks of low-power circuits and systems [6], [7]. As
new nanoelectronic devices emerge, many of which perform
computation based on majority or minority logic, there will be
an increased interest in the fundamental characteristics of these
logic functions.

Also important to the success of any device (including
scaled CMOS) is reliability. For devices at the nanometer scale,
however, reliability will be adversely affected by background
charges, dynamic variations in the operating environment, such
as temperature fluctuations, and manufacturing defects because
of the inability to precisely control the fabrication process. In the
fault-tolerant architectures proposed for nanoelectronics, many
are based on the use of majority logic. It is, therefore, perti-
nent to understand the fault-tolerant characteristics of a system
built upon the majority logic function, as well as its universal
derivative, the inverting majority or minority function.

The use of majority logic in reliable system design can be
traced back to J. von Neumann’s study on using unreliable com-
ponents to synthesize reliable systems [8]. In his research, von
Neumann proposed to study the probabilistic characteristics of
a system in which each component can fail independently with
probability ε (ε ≤ 1/2). He concluded that a system built from
unreliable components can compute reliably when ε is suffi-
ciently small. In general, a reliable system is defined as one
that performs computation with a probability of output error
less than 1/2. As von Neumann stated, when the probability of
output error reaches 1/2, the results from computation become
irrelevant to the inputs and restoration of the outputs to their
correct signal values is not possible.

In von Neumann’s original work [8] and in subsequent re-
search [9], [10], the issues of reliable computation were first
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addressed as a problem of “remembering” a binary variable in
a noisy circuit. The capability of remembering a bit is consid-
ered a prerequisite for reliably computing nontrivial functions
of more variables. In the special (and favorable) case where in-
puts have identical nominal values, von Neumann showed that,
if the error rate of each gate is equal or larger than 1/6, a bit
of information cannot be remembered in a long computation
using three-input majority gates. Hajek and Weller proved later
that 1/6 is the error threshold for reliable computation using
general three-input gates that include majority gates [9]. Evans
and Schulman extended this result to general N -input gates for
odd N and showed that the threshold increases as the number
of inputs increases [10].

In these studies, the authors considered formulas built from
gates, where a formula, in this context, is an interconnection of
gates such that the output of each gate is an input to at most one
other gate, and there are no loops or fanouts in the sequence of
interconnections. Although it has not yet been shown that these
results obtained for formulas also apply to networks, which are
acyclic interconnections of gates that allow for fanouts and are,
therefore, more representative of real circuits; it is believed that
this is the case [11], [12].

Roy and Beiu [13] contributed to the study on majority-based
architectures by analyzing a model of von Neumann’s multi-
plexing scheme. They note that the worst case input scenario
for majority gates intuitively occurs when the inputs are not in
consensus. The error characteristics of several types of logic
gates, including majority, are studied in [14] using bifurcation
analysis. The reliability issues in a number of majority-based
full-adder designs are discussed in [15] and [16], which have
been recently extended to consider the effects of device failures
and input vectors [17], [18]. Full adders are the basis of most
logic processing units and have been proposed for implementa-
tions in several nanotechnology devices [2], [5], [7].

Two fault-tolerant system designs, triple modular redundancy
(TMR) and N -tuple modular redundancy (NMR) have been
serving as benchmark techniques and have been successfully
implemented in many critical applications [19]. Recently, a
study exploring the optimal design tradeoffs of reliability and
redundancy was performed on a large-scale system consisting of
highly unreliable nanoscale devices [20]. It was concluded that
the use of TMR/NMR in such a system will incur a high cost
in redundancy and thus in power and area as well. The TMR
techniques are applied to QCA architectures in [21] with the
aim of improving system reliability. However, it is found that
TMR is not very effective, and that cascaded TMR may only
be beneficial when the device error rate is very low. It is also
shown that the reliability of QCA circuits is influenced by the
physical implementations of wires and crossovers [22], [23], as
well as that of the majority function [24].

In this paper, the limitations of TMR/NMR, as well as other
computational structures using majority/minority logic, are in-
vestigated through a logic-level analysis. Particularly, the prob-
lem of remembering the information carried in the majority of
bits is studied in the general case when the nominal inputs to
majority/minority gates can have different values. When the
inputs to three-input majority gates are not in consensus, it is

shown that the information will be lost in a large tree structure
when the gate or input error rate is not zero. It means that in this
particular case, any nonzero error rate in the gates or of initial
inputs will not be tolerated in a long computation. It is further
shown that the use of majority gates with a larger number of
inputs results in a less reliable structure in this case. These re-
sults are complementary to those in most previous studies and,
thus, lead to a better understanding of the reliability of majority
gates. The implications of these results are explored by evalu-
ating several computational architectures that closely resemble
this tree structure of majority/minority gates. While beyond the
scope of this paper, the simulation results obtained in this paper
can further be enhanced by incorporating noise in wires and
devices in the analysis.

This paper is a significant extension of [25] and is organized
as follows. In Section II, the error characteristics of three-input
majority gates are described. In Section III, a tree structure of
three-input majority gates is constructed for the analysis of its
reliability. This analysis is extended to N -input majority and
minority gates in Sections IV and V. Several case studies are
presented in Section VI, and Section VII concludes the paper.

II. ERROR CHARACTERISTICS OF THREE-INPUT MAJORITY

GATES

In this section, the error characteristics of three-input majority
gates are investigated in the general case when their inputs
are allowed to have different nominal values. To analyze the
reliability of a gate, we use probabilistic gate models (PGMs),
which relate the probabilistic value of a gate’s output to its
probabilistic inputs and error rate ε [26]. For the von Neumann
fault model, which assumes that a gate flips its correct output
with probability ε, the PGM for a three-input majority gate with
output probability z and input probabilities x, y, and w is given
by

z = ε + (1 − 2ε)(xy + xw + yw − 2xyw). (1)

Here, the variables x, y, w, and z denote the probability of a
signal being logical 1 (all results and reasoning would be similar,
if instead using logical 0, due to the symmetry of the majority
function). For convenience, the simple term “probability” is
used to mean “probability of being logical 1” throughout the
paper, unless it is otherwise noted.

In what von Neumann considered a “special case,” the prob-
abilities of errors in inputs are statistically independent and all
inputs are expected to be in the same state of either logical 1 or
logical 0. Let p and p′ be the error probabilities of inputs and
output, respectively; we obtain

p′ = ε + (1 − 2ε)(3p2 − 2p3). (2)

It has been shown that an improvement in reliability cannot be
made through the use of majority gates when ε ≥ 1/6 [8]. This
is illustrated in Fig. 1. For ε = 0.2, as shown, the output of the
majority gate becomes less reliable than its inputs, and therefore,
the output probability slips into an indistinguishable state of 1/2
in a long computation. For ε = 0.05, however, the output error
probability can be smaller than the input error probability. It
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Fig. 1. Output error probability versus input error probability of three-input
majority gates with gate error probability ε; inputs are expected to have identical
nominal values.

converges into a stable point at the intersection of the output
curve with the diagonal p′ = p. For ε = 0, particularly, the
output is more reliable than the inputs and in a long computation,
it asymptotically approaches a perfectly reliable state for any
imperfect inputs. This is the ideal case for many fault-tolerant
applications, such as those using TMR/NMR techniques with
highly reliable majority voters.

In the case of ε < 1/6, the output curve intersects with the
diagonal p′ = p. Whether an output is more reliable depends
on whether the input error is larger than that indicated by the
intersection. This intersection thus gives the minimum input
error rate that can be improved by a majority gate. This minimum
improvable input error rate is determined by the value of ε and
can be found by solving (2) and p′ = p. This leads to a solution
of

pmin =
(

1
2

) (
1 −

√
1 − 6ε

1 − 2ε

)
(3)

as plotted in Fig. 2.
According to the values of ε and pmin , Fig. 2 can be divided

into three regions: 1) 0 ≤ ε ≤ 0.02, where pmin is approxi-
mately equal to ε; 2) 0.02 < ε ≤ 0.1, where pmin is noticeably
larger than ε; and 3) 0.1 < ε < 1/6, where pmin is significantly
larger than ε. This indicates that, for a majority gate with noise ε,
its input error probability has to be larger than the corresponding
pmin in order to have a more reliable output.

We then consider the case when the inputs are expected to
have different logic values. Assume two of the three inputs have
a different nominal value than the third. If each input has the
same error probability p, the output error probability p′ is given
by

p′ = ε + (1 − 2ε)(2p − 3p2 + 2p3). (4)

For any p ∈ (0, 1/2), as shown in Fig. 3, p′ is larger than p,
regardless of the value of ε. In fact, the curve of p′ only intersects

Fig. 2. Minimum input error probability that could be improved by a three-
input majority gate is a function of the gate error rate ε. The figure is divided
into three regions according to the relationships between pm in and ε.

Fig. 3. Output error probability versus input error probability of the three-
input majority gates with gate error probability ε; inputs are expected to have
different nominal values.

with the diagonal p′ = p at (1/2, 1/2) for ε > 0, or at (1/2, 1/2)
and (0, 0) for ε = 0. This can be seen as follows.

Since we have p′ = p at each intersection and (1/2, 1/2) is
clearly an intersection point for any ε, taking p′ = p into (4)
gives us(

p − 1
2

)
((4ε − 2)p2 + (2 − 4ε)p + 2ε) = 0. (5)

The intersections other than the one at (1/2, 1/2) are given by
the roots of

(4ε − 2)p2 + (2 − 4ε)p + 2ε = 0 (6)

as

p =
1
2

(
1 ±

√
1 + 2ε

1 − 2ε

)
. (7)
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From (7), we obtain p = 0 and p = 1 for ε = 0, while for any
ε ∈ (0, 1/2), no valid solution exists for p in the interval [0, 1].
This indicates that when the nominal inputs to the majority gate
are expected to be different, its output is less reliable than its
inputs for any ε∈ (0, 1/2). It is interesting to note that even when
the gates are fault free, i.e., when ε = 0, any uncertainty in the
inputs to the majority gate results in a less reliable output, which
in a long computation asymptotically reaches 1/2 and becomes
irrelevant to the inputs.

III. TREE STRUCTURE OF THREE-INPUT MAJORITY GATES

WITH MINIMALLY BIASED INPUTS

A. Construction

In this section, the case illustrated in Fig. 3 is considered and a
computational structure is constructed. In contrast to the special
case where a tree structure is used to remember a single bit of
information, a similar tree structure is used here to remember
a minimal majority of binary values. A minimal majority is
defined as K + 1 for a majority gate with 2K + 1 inputs (K ≥
1). In order to develop a model for analysis, we start with one
three-input majority gate, and build up to an arbitrarily large
network.

For a single gate, its inputs are assumed to be either (0,0,1) or
(1,1,0), i.e., exactly two of the inputs are equal, and the third is
their complement. Since the order of the inputs does not matter
for a majority gate, this is equivalent to (0,1,0) and (1,0,0) or
(1,0,1) and (0,1,1), respectively. Then, we add a second com-
putation layer to the formula by inserting gates whose outputs
serve as the inputs to the initial layer. At this second layer, there
can be a maximum of nine (32) initial inputs, each of which
are fed into one of the three majority gates. By continuing this
process, the final result is a ternary tree of L layers (L ≥ 1) with
3L initial inputs and 3L−1 gates in the widest layer. The final
structure is illustrated in Fig. 4.

Note that, for the ease of reference in later analysis, the widest
layer of the tree is referred to as the first layer and the original
single majority gate is considered to be the last layer L. A layer
here denotes a group of gates that have the same distance to the
last majority gate at the end of the tree. In the same layer, all
gates’ outputs have to go through the same number of majority
gates to reach this last gate.

Let us assume that a majority gate at the ith layer has the
nominal inputs (1,1,0). Then, at the i − 1 layer, two of the three
gates connected to this gate must produce an output value of
“1,” while the third produces the value “0.” If each gate in the
tree is constrained to the inputs (1,1,0) and (0,0,1), the nominal
inputs to the two gates producing “1” are (1,1,0), and the inputs
to the gate producing “0” are (0,0,1). The inputs of the gates
in any arbitrary layer can thus be determined by the inputs of
the subsequent layer. Starting with the output of the gate at the
last layer and traversing the tree with the input deduction rule
explained earlier, we obtain a set of initial inputs indicated in
Fig. 4. These initial values will be the only ideal values in the
formula, since each gate has a probability ε of producing an
incorrect output. In Fig. 4, therefore, X0 and X1 are used to

Fig. 4. Ternary tree of majority gates with the minimally biased inputs. It is
shown that a majority of the input values are “1;” therefore, the final output of
layer L, in the error-free case, is also “1.”

represent probabilistic signals that, in the error-free case, would
be “0” and “1,” respectively.

At the inputs of an n-layer tree of the three-input majority
gates, the minimum number of 1’s (or 0’s) needed to produce
a “1” (or “0”) is 2n , which is actually in the minority of the
total number of inputs, 3n , for any n > 1 (these numbers are
(k + 1)n and (2k + 1)n for majority gates with 2k + 1 inputs).
Since the signal that is carried in the minimal majority of the
inputs is of our interest, the minimal-majority inputs, i.e., the
nominal inputs that have a minimal majority to produce an
expected output, are considered in this paper. If the inputs at
each layer, as well as the inputs to each majority gate at this
layer, are minimal-majority inputs, the inputs are referred to as
the “minimally biased inputs.” Any other inputs that are not
minimally biased are not considered, unless otherwise noted.

B. Mathematical Model and Its Analysis

To analyze the output of a majority gate with inputs (X1 , X1 ,
and X0), we first define the following function given by (1) for
a majority gate with input probabilities (a, a, and b) when ε =
0:

f(a, b) = a2 + 2ab − 2a2b. (8)

We further define p1 = Prob(X1 = 1) and p0 = Prob(X0 =
1). By appropriately substituting the values p1 and p0 for a and
b, we obtain for a majority gate with inputs (X1 , X1 , and X0)
and nonzero ε

p1(1) = ε + (1 − 2ε)f(p1 , p0) (9)

where p1(1) is the output probability of the majority gate with
input (X1 , X1 , and X0).
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Similarly, the equation for the input combination (X0 , X0 ,
and X1) is given by

p0(1) = ε + (1 − 2ε)f(p0 , p1). (10)

Note that when the input combination is (X1(i) , X1(i) , and
X0(i)) or (X0(i) , X0(i) , X1(i)), the output will be X1(i+1) or
X0(i+1) , respectively, where the subscript in parenthesis denotes
the layer from which the value originates. Thus, a majority gate
in the ith layer of the ternary tree can be modeled using one of
the following equations:

p1(i+1) = ε + (1 − 2ε)f(p1(i) , p0(i)) (11)

p0(i+1) = ε + (1 − 2ε)f(p0(i) , p1(i)). (12)

Given independent and identical initial inputs, i.e., each initial
input independently has the same probability to be “1” or “0,” it
is easy to see that the ternary tree of majority gates as described
earlier and shown in Fig. 4 can be modeled by simultaneously
iterating (11) and (12), and that at the ith layer, all the values of
p1(i) are equal, as are all the values of p0(i) .

In the case depicted in Fig. 4, one is the dominant value in the
tree, since a majority of the gates have input (X1 , X1 , and X0),
including the majority gate at the last level. Because majority
gates perform a symmetric function, the opposite case when
zero is dominant can be modeled in a similar way.

Fig. 5 shows a plot of the final output of the tree versus
ε, given perfectly reliable initial inputs. It was generated by
iterating (11) and (12) for the 1-dominant tree and then plotting
the output after 2, 5, and 15 iterations for various values of
ε. This is repeated for the 0-dominant tree and the output is
plotted on the same graph. An iteration here corresponds to the
signal propagation through a layer of gates, or, in other words,
an iteration of (11) or (12) produces an output of a layer from
its inputs.

It can be seen that the plots for both trees converge asymp-
totically at X = 1/2, where X denotes the output. At this point,
both the 1- and 0-dominant trees produce the identical output
value, which means that the input value that was in the majority
at the first layer of the tree was lost during computation. This
is what von Neumann termed a state of irrelevance, since the
output no longer holds any relevance to the initial inputs and
there is no way to determine whether the computation began
with a majority of 1’s or 0’s.

It is important to note that because the outputs of the two
different trees converge asymptotically, they will reach the in-
distinguishable 1/2 in the limit as the number of iterations goes
to infinity. However, the ability to distinguish between these
two output values becomes impossible once they get reasonably
close to one another. If 0.4 and 0.6 are the thresholds for decid-
ing whether a signal is reliable, for instance, a perfectly reliable
input becomes unreliable after five layers for ε = 0.05 and only
after two layers for ε = 0.25, as shown in Fig. 5. Thus, in prac-
tical applications, only a few iterations can be used before the
output becomes unreliable.

Fig. 5. Output X of the ternary tree of majority gates with minimally biased
inputs after 2, 5, and 15 or more iterations versus the gate error rate ε. The
arrows indicate the asymptotic convergence of X into the indistinguishable 1/2
for any ε > 0.

C. Simplified Model and the Convergence Rate

Given independent and identical inputs, i.e., each input inde-
pendently has the same probability to be “1” or “0,” the analysis
can be simplified by condensing the model into a single equa-
tion. By using the values p(i) and 1 − p(i) to represent the input
probabilities of X1(i) and X0(i) , respectively, in (11), we pro-
pose the following equation to describe the majority gate when
its inputs are (X1 , X1 , and X0) as well as when its inputs are
(X0 , X0 , and X1):

p(i+1) = ε + (1 − 2ε)f(p(i) , 1 − p(i)). (13)

Theorem I : Given independent and identical initial inputs that
are minimally biased, iteration of (13) correctly models the
ternary tree of majority gates described by the simultaneous
iterations of (11) and (12).

Proof: We first consider the output of a single iteration of
equation (13) for the following two cases:

1) when inputs are initially (X1 , X1 , and X0) with proba-
bility p1 and p0 for X1 and X0 ;

2) when inputs are initially (X0 , X0 , and X1) with proba-
bility p0 and p1 for X0 and X1 .

By definition, we have p0 = 1 − p1 . In case 1), (13) and (11)
simplify to the same expression; therefore, (13) is equivalent to
(11) for the first iteration. In case 2), (13) and (12) simplify to
the same expression; therefore, (13) is also equivalent to (12)
for the first iteration.

To simplify this discussion, p∗X (n) will be used to denote
the output of (13) after n iterations with the expected output
X where X ∈ {0, 1}. From the aforementioned discussion, we
see that p∗0(1) = p0(1) and p∗1(1) = p1(1) , which mean (13) can be
used to find the output of gates at the first layer. Further, it can be
shown that p0(1) = 1 − p1(1) , which gives us p∗0(1) = 1 − p∗1(1) .

Now, we use induction to complete the proof. This is
equivalent to showing that p∗0(n+1) = 1 − p∗1(n+1) given that
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p∗0(n) = p0(n) , p
∗
1(n) = p1(n) and, p∗0(n) = 1 − p∗1(n) . First, we

apply 1 − p∗1(n) and p∗1(n) to the inputs of (13) and obtain the
following:

p∗0(n+1) = ε + (1 − 2ε)f(1 − p∗1(n) , p
∗
1(n)) (14)

p∗1(n+1) = ε + (1 − 2ε)f(p∗1(n) , 1 − p∗1(n)). (15)

Simplifying the equations, we see that p∗0(n+1) = 1 −
p∗1(n+1) , which completes the proof. �

With this simplified model, it is shown next that in an in-
finitely large ternary tree, the output probability of the tree in-
deed reaches 1/2 when either the gate error rate or the initial
input error rate is not zero.

Theorem II: For a ternary tree described by (13), ∀δ > 0,
there exists i, which denotes the number of layers, such that
|p(i) − 1/2| < δ, under one of the two following conditions:

1) 0 < ε <1/2;
2) ε = 0 and 0 < |p(0) − 1/2| < 1/2, where p(0) is the initial

input probability at the first layer.
Proof: By (13), we have∣∣∣∣p(i) −

1
2

∣∣∣∣
=

∣∣∣∣ε + (1 − 2ε)(2p(i−1) − 3p2
(i−1) + 2p3

(i−1)) −
1
2

∣∣∣∣
=

(
1
2
− ε

)
· |1 − 4p(i−1) + 6p2

(i−1) − 4p3
(i−1) |

= (1 − 2ε)|p(i−1) −
1
2
|(2p2

(i−1) − 2p(i−1) + 1). (16)

Let c(i) = 2p2
(i) − 2p(i) + 1. It can be shown that 1/2 ≤

c(i) ≤ 1 for any p(i) ∈ [0, 1], where c(i) = 1 when p(i) = 0 or
1.

Hence, ∣∣∣∣p(i) −
1
2

∣∣∣∣ ≤ (1 − 2ε)
∣∣∣∣p(i−1) −

1
2

∣∣∣∣ . (17)

By the recursive nature of (17), we obtain∣∣∣∣p(i) −
1
2

∣∣∣∣ ≤ (1 − 2ε)i

∣∣∣∣p(0) −
1
2

∣∣∣∣ . (18)

To prove |p(i) − 1/2| < δ, it is sufficient to have

(1 − 2ε)i

∣∣∣∣p(0) −
1
2

∣∣∣∣ < δ. (19)

For 0 < ε < 1/2, (19) holds when i > log(1−2ε)(
δ/(|p(0) − 1/2|)

)
, which proves the theorem under condition

1).
When ε = 0, (16) becomes∣∣∣∣p(i) −

1
2

∣∣∣∣ =
∣∣∣∣p(i−1) −

1
2

∣∣∣∣ c(i−1) . (20)

For 0 < |p(0) − 1/2|< 1/2, we have 1/2 < c(0) < 1. It can then
be obtained from (20) that 0 < |p(i) − 1/2|< 1/2 for any i ≥ 1.
Therefore, we obtain 1/2< c(i) < 1, for any i ≥ 1.

Further, let cmax = maxj (c(j )), where j = 0, 1, 2, . . . , i −
1. It can be shown that cmax = 2p2

(0) − 2p(0) + 1.1 (20) leads to
∣∣∣∣p(i) −

1
2

∣∣∣∣ ≤ ci
max ·

∣∣∣∣p(0) −
1
2

∣∣∣∣ . (21)

Similarly, to prove |p(i) − 1/2| < δ, it is sufficient to have

ci
max · |p(0) −

1
2
| < δ. (22)

When i > logcm a x
(δ/(|p(0) − 1/2|)), (22) holds, which proves

the theorem under condition 2). �
Theorem II states that in a ternary tree with the minimally

biased inputs as described earlier, any nonzero error rate will
not be tolerated in a long computation. Even with the constituent
majority gates being perfectly reliable, any disturbance to the
initial inputs will result in an unreliable output in a large tree.

From the proof of Theorem II, the convergence rate of the
signal probability to the indistinguishable 1/2 can be derived as
follows. From (16), we obtain

|p(i) − 1/2|
|p(i−1) − 1/2| = (1 − 2ε)c(i−1) , (23)

which is bounded by (1 − 2ε), i.e.,

|p(i) − 1/2|
|p(i−1) − 1/2| ≤ (1 − 2ε) (24)

or

|p(i) − 1/2|
|p(0) − 1/2| ≤ (1 − 2ε)i . (25)

For 0 < ε < 1/2, the convergence rate is the largest at 1 − 2ε
when p(i−1) = 1 or 0, i.e., when the inputs are perfectly reliable.
It approaches 1/2− ε when p(i−1) is close to 1/2.

For ε = 0, the convergence rate is given by

|p(i) − 1/2|
|p(i−1) − 1/2| = c(i−1) (26)

where c(i−1) is dependent on p(i−1) , the input probability, and
1/2 < c(i−1) < 1, for any p(i−1) ∈ (0, 1). When p(i−1) is close
to 1 or 0, the convergence rate is nearly 1, and when p(i−1)
moves toward 1/2, it approaches 1/2.

To summarize, the convergence rate is highly dependent on
the gate error rate ε when ε is not trivial, while it is dominated
by the input error rate when ε is small or negligible.

D. Correlated Inputs

Theorem II applies when the inputs to a tree are independently
distributed. However, correlations in inputs can be accounted
for when the inputs are minimally biased. When correlated, the
inputs share joint distributions. In an infinitely large ternary tree,
it is shown in the following corollary that the output probability
of the tree reaches 1/2 when either the gate error rate or the
initial input error rate is not zero.

1This is due to an anonymous reviewer.
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Corollary I: In a ternary tree with the minimally biased inputs,
which may be correlated, the signal probability converges to 1/2,
under one of the two conditions specified in Theorem II.

Proof: In a tree with correlated inputs, its output probability pc

is given by the marginalization of the conditional signal prob-
abilities over all input distributions, i.e., pc =

∑
k∈W pkpin,k,

where pin,k = prob(inputs = k), the probability that the input
vector has the kth value, pk is the conditional probability of
the output signal for the input vector k, and W is the set of
all input vectors in the minimally biased case. As per Theorem
II, we have limi→∞ pk = 1/2, where i denotes the number of
layers, under one of the two specified conditions. Then, we ob-
tain limi→∞ pc = 1/2 · (

∑
k∈W pin,k ) = 1/2, which proves the

corollary. �
The implication of Corollary I extends that of Theorem II to

majority circuits where inputs are correlated, as will be shown
by the QCA-adder example in Section VI.

IV. TREE STRUCTURES OF N -INPUT MAJORITY GATES WITH

MINIMALLY BIASED INPUTS

In general, minimally biased inputs occur when the majority
gate has a minimal number of input values in consensus to
produce the expected output. For an N -input majority gate (N
= 2K + 1), this minimum is K + 1; therefore, the minimal
bias occurs when K + 1 inputs are equal to the expected output
and K inputs equal the complement of the expected output. An
N -array tree of gates similar to that shown in Fig. 4 can be
constructed for this case. By using combinatorial arguments,
iterative expressions are derived for an N -input majority gate,
as

p1(i+1) = ε + (1 − 2ε)fN (p1(i) , p0(i)) (27)

p0(i+1) = ε + (1 − 2ε)fN (p0(i) , p1(i)) (28)

where

fN (a, b) =
K∑

i=0

(
K
i

)
bi(1 − b)K−i

·

⎛
⎝ K +1∑

j=K +1−i

(
K + 1

j

)
aj (1 − a)K +1−j

⎞
⎠. (29)

Applications of (27) and (28) on five- and seven-input majority
gates produce similar diagrams to that in Fig. 5, as shown in
Fig. 6. Fig. 6 shows the outputs of three-, five-, and seven-input
majority gates after two and six iterations of (27) and (28) for
perfectly reliable initial inputs. It can be seen that after two
iterations, the three-input majority gate has the best reliability,
while the seven-input majority gate has the worst. After six
iterations, the seven-input majority gate has nearly reached 1/2,
while the three- and five-input majority gates have not. Clearly,
the three-input majority gate converges to the indistinguishable
1/2 at a slower rate than either the five- or seven-input majority
gate, and the five-input gate converges more slowly than the
seven-input gate. In fact, as the number of inputs to a majority
gate increases, its convergence rate also increases. This is stated
in the following theorem.

Fig. 6. Outputs of three-, five-, and seven-input majority trees after two and
six iterations of (27) and (28).

Theorem III: In the tree structure as defined earlier, given
independent and identical inputs that are minimally biased, the
signal probability converges faster to an indistinguishable state
for majority gates with a larger number of inputs, under one of
the two following conditions:

1) 0 < ε < 1/2;
2) ε = 0 and 0 < |p(0) − 1/2| < 1/2, where p(0) is the initial

input probability at the first layer.
To prove Theorem III, we introduce the following two

Lemmas.
Lemma I states that the output of a majority gate is bounded

by 1/2 and whether it is above or below 1/2 depends on the
initial probability of the inputs that are in the minimal majority.

Lemma I: Assume that a fault-free majority gate has 2K + 1
independent and identical inputs (K ≥ 1), of which a mini-
mum majority, K + 1, are the same as the expected output with
probability p and the remaining K inputs are the same as the
complement of the expected output with the same probability
p. Let p

(2K +1)
m,1 be the expected output probability of the major-

ity gate, it holds that for any K ≥ 1, 1/2 < p
(2K +1)
m,1 ≤ 1 when

1/2 < p ≤ 1 and 0 ≤ p
(2K +1)
m,1 < 1/2, when 0 ≤ p < 1/2.

Proof of Lemma I is given in Appendix A.
Lemma II states that given independent, identical, and im-

perfect inputs, which have a minimal majority to produce an
expected output, the output of a majority gate with 2K + 1 in-
puts is more reliable than that of a majority gate with 2K + 3
inputs.

Lemma II: For two majority gates with 2K + 1 and 2K + 3
inputs (K ≥ 1), respectively, given independent and identical
inputs that are minimally biased, the output probabilities of
the majority gates, p

(2K +1)
m and p

(2K +3)
m , satisfy |p(2K +1)

m −
1/2| > |p(2K +3)

m − 1/2| for any 0 ≤ ε < 1/2 and 0 < |p −
1/2| < 1/2, where p is the input probability.

Proof of Lemma II is given in Appendix B.
Note that Lemma II does not hold when p = 0 or p = 1,

where an equality sign would be needed to validate the Lemma.
Now the proof of Theorem III is given.
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Fig. 7. Output reliability of a two-layer three-input majority tree and a nine-
input majority gate with an error rate of ε and ε∗ = 4ε.

Proof of Theorem III: As shown in Theorem II and its
proof, for a ternary tree of three-input majority gates, its out-
put monotonically converges to the indistinguishable 1/2 in
a long computation, under one of the two given conditions.
Assuming that this holds for majority gates with 2K + 1 in-
puts (K ≥ 1), we show that it also holds for majority gates
with 2K + 3 inputs. Since the signal probability in a tree struc-
ture is given by the output probability of the majority gates
in the tree, the trees of gates with 2K + 1 and 2K + 3 in-
puts can be modeled by p

(2k+1)
m and p

(2K +3)
m , respectively. As

per Lemma II, we have |p(2K +3)
m − 1/2| < |p(2K +1)

m − 1/2|,
for 0 ≤ ε < 1/2 and 0 < |p(0) − 1/2| < 1/2. For the spe-
cial case when 0 < ε < 1/2 and p(0) = 0 or 1, we have
0 < |p(1) − 1/2| < 1/2 at the next layer, where p(1) is the
output probability at the first layer and thus the input probability
for the next layer. Applying Lemma II on the gates of the sec-
ond layer gives us |p(2K +3)

m − 1/2| < |p(2K +1)
m − 1/2|. Thus,

as per Theorem II, the signal probability in the 2K + 3 majority
tree converges faster to 1/2 than that in the 2K + 1 majority
tree. By induction, the signal probability converges faster to an
indistinguishable state for majority gates with a larger number
of inputs, under any one of the given conditions. �

Albeit with larger convergence rates, majority gates with more
inputs can be useful because of their increased functionality.
For example, a single nine-input majority gate can be used for
a two-layer ternary tree of four three-input gates. This raises
the question of whether a nine-input gate or a three-input tree
is more reliable than the other. In an actual implementation, a
nine-input gate can be (almost) as simple as a single three-input
gate or as complex as four three-input gates. We consider both
cases, i.e., when the nine-input gate is subject to the same error
rate as a single three-input gate ε or to the same error rate as four
three-input gates, approximately 4ε. The comparison results are
shown in Fig. 7 for an input reliability of 0.95.

When the gates are highly reliable (with ε < 0.02 for an
input of 0.95 in this case), as revealed in Fig. 7, the nine-input

majority gate provides a less reliable output, while it offers
a better result than the three-input tree as ε goes up. This is
consistent with our earlier discussions that the convergence rate
is more dependent on ε when ε increases. The most unreliable
output results from a complex nine-input majority gate for any
ε, as also shown in Fig. 7. This suggests that the use of majority
gates with the minimum number of inputs placed serially may
be a better solution than using their larger counterparts when
they have similar complexities.

Note that the inputs here are considered minimally biased.
While dominant inputs are more often seen in a fault-tolerant
design (such as in TMR/NMR), a minimally biased or simi-
lar input scenario could arise in a real (hierarchical) voting or
election system.

V. TREE STRUCTURES OF MINORITY GATES WITH MINIMALLY

BIASED INPUTS

The analysis of the majority gates can be readily extended
to minority gates. Since the minority gate performs the inverse
majority function, the output probability of a fault-free minority
gate is simply the complement of the output probability of a
fault-free majority gate. This gives us the following iterative
equations for minority gates:

p′1(i+1) = (1 − ε) − (1 − 2ε) · fN (p′0(i) , p
′
1(i)) (30)

p′0(i+1) = (1 − ε) − (1 − 2ε) · fN (p′1(i) , p
′
0(i)). (31)

A similar tree model ensures that Theorem I also applies to
the case of minority gates, but using the following modified
equation:

p′(i+1) = (1 − ε) − (1 − 2ε) · fN (1 − p′(i) , p
′
(i)). (32)

Iteration of (32) yields a diagram similar to that in Fig. 5.
When the inputs to a minority gate are not in consensus, there-
fore, any nonzero error rate will not be tolerated and any distur-
bance to the initial inputs will result in an unreliable output in a
long computation, even when the constituent minority gates are
perfectly reliable.

The conclusions on converging rate of majority gates equally
apply to minority gates: as the number of inputs to a minor-
ity gate increases, the rate of convergence to an indistinguish-
able value of 1/2 also increases. This is stated in the following
corollary.

Corollary II: In the tree structure as defined earlier, given
independent and identical inputs that are minimally biased, the
signal probability converges faster to an indistinguishable state
for minority gates with a larger number of inputs, under one of
the two conditions specified in Theorem III.

The proof follows that of Theorem III, except that Lemma I
does not hold any more because the signal probability oscillates
between layers as per the function of minority gates (inverted
majority).
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Fig. 8. (a) TMR with triplicated voters (TMR-TV). (b) Two-layer CTMR
(2-CTMR). (c) Ninefold NMR (9MR).

VI. IMPLICATIONS IN RELIABILITY OF COMPUTATIONAL

ARCHITECTURES

A. Fault-Tolerant Architectures

The majority logic provides an essential function in many
fault-tolerant techniques, including TMR/NMR, cascaded TMR
(CTMR), and majority multiplexing [8], [13], [20], [27], [28].
With the emergence of nanoelectronic devices, however, such
fault-tolerant techniques have taken on an even greater level of
significance due to the increased probability of error in these
devices. In basic TMR, a single computational module is repli-

Fig. 9. Output reliability of the TMR with triplicated voters (TMR-TV), two-
layer CTMR (2-CTMR), and ninefold NMR (9MR) with an error rate of ε and
ε∗ = 4ε for the majority voters.

cated three times and the output from each of the three mod-
ules is voted on by a majority gate. In practice, the majority
voter is often triplicated for providing triple outputs, as shown
in Fig. 8(a) (an additional voter is needed at the last layer).
CTMR, as shown in Fig. 8(b), is created by combining three of
the TMR units with another majority gate to form a second-order
TMR unit with even higher reliability. TMR can be extended to
general NMR for odd N—a ninefold NMR (9MR) is shown in
Fig. 8(c).

The TMR with triplicated voters (TMR-TVs) is also the sim-
plest implementation of the so-called distributed R-fold modular
redundancy [29]; it has similar signal routings as the CTMR,
except that the signals are from three modules and are thus corre-
lated, whereas the signals in CTMR are from nine independent
modules. Also, the two-layer CTMR (2-CTMR) uses similar
resources as the 9MR. Given the similarities among the three
different architectures, an interesting question arises as to which
one of the three has the best reliability in the presence of noisy
voters. This question is answered by evaluating the reliability
of each architecture. The accurate PGM approach [26] is used
to account for the signal correlations in the TMR-TV. For the
nine-input majority voter, two cases are considered, i.e., when it
is subject to the same error rate as 1) that of a three-input voter
and 2) that of four three-input voters. The results are shown in
Fig. 9 for an input error rate of 0.2.

In general, the TMR-TV results in the least reliability im-
provement as it uses the least resources, and the 9MR using a
simple voter provides the best reliability. For the complex voter
design, as shown, the 9MR offers better reliability than the two-
layer CTMR when the voters are highly reliable (with ε < 0.004
and thus ε∗ < 0.016 for an input of 0.8 in this case), while it
produces a worse result as ε∗ goes up. It could become even
worse than the TMR-TV for a large ε∗. (This is in contrast to
the case with minimally biased inputs, where the complex nine-
input majority gate always provides an inferior result, while a
simple implementation could also result in a worse output than
the two-layer three-input majority tree.) This suggests that it
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Fig. 10. Schematic circuit diagram and physical layout of a QCA full-adder
[2].

TABLE I
TRUTH TABLE OF THE ADDER, INCLUDING THE MAPPINGS OF THE INPUTS TO

THE OUTPUTS OF THE THREE INTERMEDIATE MAJORITY GATES

may be advantageous to use NMR than its equivalent CTMR
when the voters have similar complexities, but not when the
NMR voter is significantly more complex and thus subject to a
much higher error rate.

Note that the reliability is improved by all the three architec-
tures for a relatively small voter error rate ε < 0.04, as illustrated
in Fig. 9. In the following, however, it is shown that the reliability
can actually decline in a TMR structure.

B. Nanoscale Logic and Its TMR

In addition to utilizing fault-tolerant techniques based on ma-
jority gates to improve reliability, many emerging nanoelec-
tronic devices, such as QCA, also depend on the majority or
minority logic function to perform computation. A common full
adder, shown in Fig. 10, requires two layers of majority gates
to compute the Sum [2], [30]. This design closely resembles
the two-layer ternary tree of majority gates used in the CTMR
structure.

While in CTMR, the modules are expected to produce iden-
tical outputs; the input signals to the majority gates in the adder
are provided by three independent inputs (A, B, and C). As a
result, a minimally biased input scenario is much more likely to
appear in the majority adder than in the CTMR. For the adder
of Fig. 10, for example, the initial inputs of (0,0,1) would yield
(1,0,1) at the output of the three intermediate majority gates. As

Fig. 11. Reliability of Sum versus gate error rate ε, for the adder of Fig. 10
and its TMR implementation. While the reliability of the TMR of the adder
with an unreliable voter is better than that of the single adder for most inputs, it
is worse than that of the single adder for the input (0,0,0) (and thus (1,1,1), by
symmetry). The error rate ε is shown up to the error threshold 1/6.

shown in Table I, six out of the eight input combinations (75%)
result in similar scenarios as the minimally biased inputs do in
a tree of majority gates.

Although the signals are correlated in the adder, they are
affected by the defects and faults in QCA devices [31]; therefore,
their reliability is expected to decrease, as implied by Corollary
I. The reliability of Sum is evaluated for two representative
inputs: (0,0,0) and (0,0,1). The PGM approach is used to capture
the signal correlations caused by reconvergent fanouts in the
circuits [26]. As shown in Fig. 11, the input (0,0,1) results
in a much lower reliability than that resulting from (0,0,0), in
accordance with the earlier discussion. Although not shown in
the figure, an imperfect input causes a drop in the reliability of
Sum, even when ε = 0. This is an important characteristic to
note as implied by Theorem II under condition 2). In contrast to
CTMR, a large majority of the inputs here (75%, for uniformly
distributed inputs) result in inferior reliability of the full adder.
When the underlying devices and/or their inputs are not very
reliable, therefore, the full adder design of Fig. 10 renders itself
as an unreliable structure. A similar result was also obtained in
a comparison study of several adder designs in [16].

Note that errors in wires, crossovers, and inverters are not
considered in this analysis. The probabilistic modeling in [24]
reveals that the reliability of QCA circuits is also influenced
by the physical implementation of the majority function and
by different input vectors. The simulation results obtained by
the logic analysis in this section can further be enhanced by
incorporating various factors, such as the noise in wires and the
physical implementations of gates into analysis.

To improve the reliability of the full adder, it is possible to
apply fault-tolerant techniques such as the TMR. Indeed, TMR
has been considered for applications in QCA architectures [21].
Due to the use of the same unreliable majority gates as voters,
however, TMR may not be effective for improving the reliability
of the full adder of Fig. 10. The simulation results, shown in
Fig. 11, indicate that the reliability of TMR using an unreliable
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Fig. 12. Array multiplier of 4×4 consisting of full adders (FA), half adders (HA), and AND gates.

voter is even worse than that of the single adder for the input
(0,0,0) (and thus (1,1,1), by symmetry). This is due to the fact
that the error rate of the majority voter is too large to improve
the relatively high reliability of the Sum of the single adder
(as implied in Fig. 2). In contrast, a perfectly reliable voter
would improve the reliability. Although TMR works for the
other inputs and, therefore, improves the overall reliability of
the adder, it is important to carefully evaluate the efficacy of
TMR for certain nanoscale applications, since high defect and
error rates are a prevalent feature of most nanodevices.

C. Complex Circuits

The full adder of Fig. 10 is a fundamental unit used in
many high-level designs of functional blocks such as multi-
pliers. Fig. 12 shows a 4 × 4 multiplier composed of an array
of adders and AND gates [32]. In QCA technology, the adders,
as well as the AND gates, will be implemented with majority
logic. The array multiplier is scalable to higher orders of 8 ×
8 and 16 × 16 multipliers, each of which, in fact, is a complex
tree of majority gates. Let us take the most significant bit Z7
in Fig. 12 as an example. The inputs to the adder resulting in
the carry bit Z7 are the Carry outputs of the neighboring adders
and the output of an AND gate. The inputs to the neighboring
adders can further be traced back to the Carry and/or Sum of
their own neighbors. Traversing from Z7 through the multiplier
array results in nonideal treelike signal paths.

Since the inputs of the multiplier can have arbitrary values,
certain inputs result in similar scenarios as those in a ternary
tree by the minimally biased inputs. To find out the worst case
reliability, we evaluate the reliability of the multiplier, in the
form of its most significant bit, for different inputs. The modu-
lar PGM approach is used as it is able to provide highly accurate
results while maintaining a moderate complexity for large cir-
cuits [26]. The results are shown in Fig. 13 for the three different
multipliers of sizes 4 × 4, 8 × 8, and 16 × 16 bits.

In the simulation, all inputs are considered for 4 × 4 and 8 ×
8 multipliers, while one million input vectors are used for the 16

Fig. 13. Worst case and best case reliability of the most significant bit versus
gate error rate ε, for the array multiplier of three different sizes. The best case
reliabilities are very similar as shown by their overlapping curves, while the
worst case reliabilities are very different for the three multipliers.

× 16 multiplier. It is interesting to note that the three multipliers
have very similar reliabilities in the best cases, as shown by the
overlapping curves in Fig. 13. Due to the error correction capa-
bility of the majority gate, the reliability of the most significant
bit stays high for the best case inputs—it is even better than 0.85
for a gate error rate of 0.1. In the worst cases, however, there
are significant differences and the reliability starts to decrease
drastically after a threshold. For the 4 × 4, 8 × 8, and 16 ×
16 bit multipliers, this threshold is approximately 10−4 , 10−5 ,
and 10−6 , respectively. To have a circuit reliability better than
0.95, for instance, the gate error rate will have to be smaller than
approximately 10−3 , 10−4 , and 10−5 , respectively, for the three
multipliers. In the best cases, however, the gate error rate only
needs to be on the order of 10−2 , which indicates a difference
of up to three orders of magnitudes in the requirement of gate
reliability. This effect of input vectors on the reliability of cir-
cuits has also been discussed in [33], [34] and large differences
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Fig. 14. C-element. (a) Schematic diagram. (b) Truth table.

in the resulting reliability have been observed. The result also
indicates that highly reliable nanodevices are required to ac-
commodate the worst case reliability scenario in a nanocircuit
design, or significant reliability constraints are imposed on the
correct functioning of the circuit.

D. Circuits With Feedbacks

Finally, we consider a majority-based circuit with feedbacks,
namely, the Muller C-element [35]. Fig. 14 shows a schematic
and the truth table of the Muller C-element. The output of the
C-element switches to its input value whenever the two inputs
agree; it remains at its previous value otherwise. As a common
logic gate used in asynchronous circuits, the Muller C-element
has been proposed for applications in fault-tolerant [36], [37],
as well as in biological synthetic [38] circuit design.

When the two inputs are not in consensus, the feedback loop
of the C-element provides a third input that is critical in de-
ciding the output. Since the circuit is asynchronous (with typi-
cally a small propagation delay), the temporal operation of the
C-element can be unfolded into a cascaded chain of majority
gates with unequal nominal inputs. As per our previous discus-
sion, the output reliability of the majority gate degrades in such
a chain due to the accumulation of errors in the third input. Al-
though the other two inputs can be reliable, it can be shown that
the output of the C-element will reach a steady and unreliable
state due to the Markov nature of the chain. This implies that
the majority-based C-element may not be a reliable design for
certain circuit applications. Note, however, that the error in the
feedback loop can be masked by the two primary inputs when
they are equal. Thus, this should be the primary application
domain of the C-element in fault-tolerant designs.

VII. CONCLUSION

Majority and minority logics have become increasingly im-
portant in circuit design for two reasons. First, many nanoelec-
tronic computing systems rely heavily on the majority or mi-
nority function to perform computation, and second, their low
device reliability will require fault-tolerant techniques, most of
which employ some form of majority voting. This paper ad-
dresses the reliability issues of majority-/minority-based com-
putational structures. In a tree structure with the so-called min-
imally biased inputs, any nonzero error rate of gates and/or of
its initial inputs will not be tolerated in a long computation. As
the number of inputs to a majority/minority gate increases, the
rate at which the gate output converges to an indistinguishable
value also increases.

Although these results are obtained for tree structures, their
implications to circuit design are explored by several case stud-
ies of fault-tolerant and nanoelectronic architectures, including
TMR/CTMR/NMR, QCA, and feedback circuits. It is shown
that inferior circuit reliability arises due to the existence of
certain inputs, which are, to many circuits, the equivalent of
what the minimally biased inputs are to a tree structure. When
building fault-tolerant and nanoscale architectures, therefore, it
is important to consider the possible reliability constraints im-
posed by the worst case reliability of a computational structure
using majority/minority logic. The implications of these results
to novel circuit design, such as those using threshold logic [39],
multiplexed logic [13], [28], [40], and averaging cells [41], await
further investigation.

APPENDIX A

Proof of Lemma I: Let p
(2K +1)
m,0 be the probability that the

output is the complement of the expected value; we have

p
(2K +1)
m,1 + p

(2K +1)
m,0 = 1. (A1)

Since there are K + 1 inputs with probability p and K inputs
with probability 1 − p being the same as the expected output,
by taking out one input with probability p, we have exactly K
inputs with both probabilities p and 1 − p in the remaining 2K
inputs, as well as the following:

p
(2K +1)
m,1 = p · p(2K )

m,1 (≥K) + (1 − p) · p(2K )
m,1 (≥K + 1) (A2)

p
(2K +1)
m,0 = (1 − p) · p(2K )

m,0 (≥K) + p · p(2K )
m,0 (≥K + 1) (A3)

where p
(2K )
m,1 (≥K) and p

(2K )
m,1 (≥K + 1) are, respectively, the

probabilities that no less than K and no less than K + 1 inputs
have the expected output value of a 2K input majority gate;
p

(2K )
m,0 (≥K) and p

(2K )
m,0 (≥K + 1) are, respectively, the proba-

bilities that no less than K and no less than K + 1 inputs have
the complement of the expected output value of a 2K input ma-
jority gate. Due to the symmetry in the probabilistic distribution
of the remaining 2K inputs, it is easy to see that p

(2K )
m,1 (≥K) =

p
(2K )
m,0 (≥K), and p

(2K )
m,1 (≥K + 1) = p

(2K )
m,0 (≥K + 1). Further

from (A2) and (A3), we obtain

p
(2K +1)
m,1 − p

(2K +1)
m,0 = (2p − 1)·(

p
(2K )
m,1 (≥K) − p

(2K )
m,1 (≥K + 1)

)
. (A4)

As p
(2K )
m,1 (≥K) > p

(2K )
m,1 (≥K + 1), we have (A4) > 0 for 1/2 <

p ≤ 1 and (A4) < 0 for 0 ≤ p < 1/2. Combining the above with
(A1) proves the lemma. �

APPENDIX B

Proof of Lemma II: According to (1), the output probabilities
of the two majority gates are given by

p(2K +1)
m = ε + (1 − 2ε)p(2K +1)

m,1 (B1)

p(2K +3)
m = ε + (1 − 2ε)p(2K +3)

m,1 (B2)
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where p
(2K +1)
m,1 and p

(2K +3)
m,1 are the fault-free output probabili-

ties of the majority gates. For the second majority gate, taking
two inputs, one with probability p and the other 1−p, out of the
2K + 3 inputs, gives us

p
(2K +3)
m,1

= p2 · p(2K +1)
m,1 (≥K + 1) + (1 − p)2 · p(2K +1)

m,1 (≥K + 1)

+ p(1 − p) · p(2K +1)
m,1 (≥K)

+ p(1 − p) · p(2K +1)
m,1 (≥K + 2)

= (1 − 2p + 2p2) · p(2K +1)
m,1 (≥K + 1)

+ p(1 − p) ·
(
p

(2K +1)
m,1 (≥K) + p

(2K +1)
m,1 (≥K + 2)

)
. (B3)

From (B3), we have

p
(2K +1)
m,1 − p

(2K +3)
m,1

= p(1 − p) · (p(2K +1)
m,1 (≥K + 1) − p

(2K +1)
m,1 (≥K)

+ p
(2K +1)
m,1 (≥K + 1) − p

(2K +1)
m,1 (≥K + 2))

= p(1 − p) · (p(2K +1)
m,1 (K + 1) − p

(2K +1)
m,1 (K)) (B4)

where p
(2K +1)
m,1 (K + 1) and p

(2K +1)
m,1 (K) are the probabilities

that exactly K + 1 and K inputs have the same value as the ex-
pected output for a majority gate with 2K + 1 inputs, of which
a minimum majority K + 1, are the same as the expected out-
put with probability p. It is easy to see that p

(2K +1)
m,1 (K + 1)

> p
(2K +1)
m,1 (K) when 1/2 < p ≤ 1 and p

(2K +1)
m,1 (K + 1) <

p
(2K +1)
m,1 (K) when 0 ≤ p < 1/2. Further from (B4), (B1), and

(B2), we obtain that p
(2K +1)
m ≥ p

(2K +3)
m when 1/2 < p ≤

1 and p
(2K +1)
m ≤ p

(2K +3)
m when 0 ≤ p < 1/2.

By Lemma I and (B1), we obtain that 1/2 < p
(2K +1)
m ≤ 1

when 1/2 < p ≤ 1, and 0 ≤ p
(2K +1)
m < 1/2 when 0 ≤ p <

1/2. The same holds for p
(2K +3)
m given by (B2). Combining

the above proves the lemma. �
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José A. B. Fortes (S’80–M’83–SM’92–F’99) re-
ceived the Ph.D. degree in electrical engineering from
the University of Southern California, Los Angeles,
in 1984.

From 1984 to 2001, he was on the Faculty of
the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN. In 2001, he
joined both the Department of Electrical and Com-
puter Engineering and the Department of Computer
and Information Science and Engineering, University
of Florida, Gainesville, as a Professor and BellSouth

Eminent Scholar. His research interests include distributed computing, fault-
tolerant systems and nanocomputing.

Dr. Fortes is a Fellow of the IEEE and was a Distinguished Visitor of the
IEEE Computer Society from 1991 to 1995.




