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Abstract—Stochastic Computing has proven to be an ex-

tremely suitable hardware design approach for Morphological

Neural Networks (MNNs) due to its ease of implementing

maxima, minima, and products using simple logic gates that

perform bitwise operations. This study enhances the design of

MNNs by incorporating stochastic and approximate computing

techniques. This approach results in a significant reduction

in the required hardware resources for adders, which are

the most area-consuming components of MNNs. Experimental

results demonstrate a minimal decrease in accuracy, along

with reductions in hardware resources, and improvements in

speed and energy efficiency compared to previous studies. The

proposed methodology is validated through implementation on

a field-programmable gate array.

I. INTRODUCTION

A
RTIFICIAL Neural Networks (ANNs) are widely re-
garded as one of the primary methodologies in mod-

ern machine learning due to their remarkable adaptability
across various problem domains [1]. However, their extensive
adoption is hindered by significant computational demands,
making them less feasible for deployment in systems con-
strained by power consumption and hardware resources [2],
[3]. This limitation is particularly pertinent in edge devices,
such as those within the Internet of Things (IoT) framework,
which often face restrictions in both power and hardware
resources [4].

The efficiency of ANNs relies on optimizing specialized
building blocks designed for complex multiplicative accumu-
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lation operations, commonly known as MAC operations [5],
[6]. However, these operations incur substantial energy con-
sumption and introduce noticeable latency, posing challenges
in real-time applications.

To address these limitations and meet the demand for
intelligent autonomous systems, researchers have explored
alternative computing techniques diverging from conven-
tional ANN paradigms. These techniques include stochastic
computing [7], photonic information processing [8], and the
use of memresistive and/or superconductive devices [9], [10],
as well as new ANN paradigms such as Morphological
Neural Networks (MNNs) [11].

MNNs have gained attention for their departure from using
MAC blocks, opting for simpler building blocks perform-
ing the addition (accumulation) of maximum and minimum
operations (through ACC&MAX-MIN blocks). This results
in a significant reduction in computational cost, without the
need for nonlinear functions when combining MAC and
ACC&MAX-MIN blocks [12].

Recent advancements in software frameworks, network
architectures, and training methodologies have led to progress
in hardware implementations of these alternative ANN ar-
chitectures. Traditional binary logic is primarily used for
implementing accumulator blocks, while stochastic logic is
prevalent for implementing maximum, minimum, and MAC
functions [12].

This study proposes integrating stochastic computing and
approximate adders into non-stochastic circuitry for MNN
hardware implementation. This synergistic approach en-
hances normalized operation speed relative to the clock
frequency and significantly improves energy efficiency com-
pared to existing literature, representing a notable advance-
ment in MNN hardware design.

The paper is structured as follows: Section II introduces
the basic principles for MNN implementation, Section III
describes the experimental suite and results, and Section IV
presents the main conclusions and future work.

II. METHODS

In this section, we first review the basic principles for the
MNN implementation proposed in [12], and then we expose
the stochastic and approximate computing techniques applied
to the circuitry in order to maximize energy efficiency.



A. The single-layer morphological neural network
A single-layer MNN consists of two stacked layers: a

hidden layer comprising M morphological units and an
output layer with K linear neurons. Within the hidden layer,
the neurons are divided into two groups: the upper M/2
neurons compute the maximum of the inputs, while the
lower M/2 neurons compute the minimum. The inputs are
represented by a single vector x of dimension Q, denoted
as a column vector. The hidden layer is described using a
vector h, which accounts for the intermediate results of each
hidden layer neuron and comprises M components, such that
h = {hj}M⇥1.

For the initialization of the layer, the MNN adopts an
architecture similar to that described in [13], employing two
processes: dilation and erosion. These processes are imple-
mented using coefficients defined within a matrix ⌦M⇥Q.
Each component of the intermediate vector hM⇥1 is therefore
generated using the expression:

hj =

⇢
maxk (!jk + xk) j  M/2
mink (!jk + xk) j > M/2

(1)

In the provided context, the index j spans all integer values
from 1 to M , representing the neurons in the hidden layer,
while the index k covers all possible input components,
denoted by values from 1 to Q. Parameters !jk are the
components of the weight matrix ⌦.

The output vector y, is composed of K components and
is representing the desired output of the neural network. A
single component of this vector can be expressed as follows:

yi =
MX

j=1

uijhj , (2)

In this context, uij represents the corresponding weight, with
the index i ranging from 1 to K.

To facilitate effective training of the MNN, backpropa-
gation algorithms can be utilized to derive the appropriate
weights uij and !jk.

B. Natural pruning of MNNs
A natural pruning strategy stems from the unique min-max

dependency of MNNs. Each morphological neuron selects
only one input !jl + xl from the Q possible inputs as
the output. This means that, apart from the selected lth
component (!jl + xl), the remaining Q � 1 inputs do not
contribute to the output of the jth neuron. Furthermore, after
the network has been trained on the entire training set, there
will be some weights !jk that never contribute to any output.
As a result, these weights can be safely discarded or pruned.
The significant aspect of eliminating redundant weights !jk

is that their removal does not affect the performance or test
accuracy of the network in any way. Pruning stands out as
one of the most potent and appealing features of MNNs.

C. Stochastic computing
Stochastic computing (SC) is an unconventional approach

renowned for its potential as an energy-efficient solution
in image processing and the hardware implementation of

different machine-learning methods [7], [14]. Among the
various feasible stochastic encodings, bipolar coding stands
out as a prominently utilized methodology. A bipolar signal,
denoted as x, is derived from a binary sequence consisting
of N0 zeroes with a weight of �1/(N0 +N1) and N1 ones
with a weight of +1/(N0 + N1). This formulation yields
x = N1�N0

N1+N0
. As a consequence, an SC bipolar signal is

confined within the interval [�1, 1].
Operating on individual bit streams enables the imple-

mentation of product, maximum, or minimum operations
using a single logic gate [15]. For example, in Fig. 1a, the
stochastic product of two uncorrelated bipolar bit streams
x and y is computed using an XNOR gate. Specifically,
this subfigure illustrates an example where input bitstreams
x have an activation probability of 3/4 and y have an
activation probability of 1/3, corresponding to the values
1/2 and �1/3 in bipolar coding, respectively. Thus, the
activation probability of the output is 5/12, corresponding
to a bipolar quantity equal to the product of the input values
(�1/6). On the other hand, in scenarios where both x and
y signals are generated by the same source of randomness
(i.e., correlated signals), the max and min functions can be
achieved using an OR gate for maximum and an AND gate
for minimum, respectively. These operations are depicted in
Fig. 1b. In the example, the activation rates for x and y are
3/4 and 5/12, respectively. Thus, the collision ratio between
both (correlated) signals is the minimum (5/12), and the
disjunction is the maximum (3/4).

Therefore, SC emerges as a promising choice for im-
plementing the product and max-min functions, which are
extensively used in MNNs. This study demonstrates the
effectiveness of a hybrid architecture where activation func-
tions are absent, additions are performed in 2’s complement
codification, while max-min and multiplications are executed
through SC. The incorporation of SC circuitry contributes
to minimizing power consumption and optimizing hardware
resources, making it a compelling approach for efficient
MNN implementations.

(a) XNOR with uncorrelated bit streams.

(b) AND and OR with correlated bit streams.

Figure 1. Examples of stochastic bit stream operations. (a) Bipolar stochastic
computing product using uncorrelated inputs of an XNOR gate. (b) Stochas-
tic computing minimum and maximum using correlated input bit streams for
AND and OR gates, respectively.



Figure 2. Example of an SC-MNN with a single output (yi) and a single
morphological layer with M nodes. We utilize adders, binary comparators
and Accumulative Parallel Counters (APCs) employing classical 2’s comple-
ment computations (shaded area), whereas single logic gates operate using
bipolar stochastic codification (hatched area).

D. Hardware implementation of MNNs using stochastic com-
puting

To attain an efficient hardware implementation of MNNs,
a digital circuitry approach was adopted, combining classic
2’s complement (C2) and stochastic bipolar (SCB) codifica-
tions. The conversion between C2 and SCB signals involves
utilizing two random number generators that provide two
random numbers, R1 for the data path and R2 for the weights
(uij). In this design, C2 adders handle the necessary additions
for MNN implementation, while the maximum, minimum,
and product functions are executed using simple gates in the
SCB codification. The final overall addition at the conclusion
of MNN operations is carried out through an Accumulated
Parallel Adder (APC), as illustrated in Fig. 2. Notably, a high
degree of compactness is achieved by employing correlated
maximum and minimum functions with OR and AND gates,
along with XNOR gates for the multiplication of processed
data with the uncorrelated uij weight parameters.

E. Hardware optimization using approximate adders

Approximate computing has garnered significant attention
in recent years for its capability to decrease power, area, and
timing overheads while maintaining acceptable accuracy in
very-large-scale integration (VLSI) designs, particularly for
arithmetic computing units [16]. Neural networks are com-
monly perceived as error-resilient, rendering them suitable

for the deployment of approximate computing designs. In
the SC-MNN structure, each morphological layer necessitates
parallel addition operations in C2, which often dominate the
circuit’s area and power consumption. Therefore, it becomes
advantageous to substitute conventional adders with approx-
imate designs in order to mitigate these challenges.

Approximate adders can be categorized into four main
types: speculative adders, segmented adders, carry select
adders, and those employing approximate full adders [17].
For designs with relatively small bit widths, approximate
adders constructed with approximate full adders are typically
preferred due to their simplicity in implementation and
moderate accuracy loss. In the design of the lower-part-OR
adder (LOA), the input operands are divided into two parts:
the least significant bits (LSBs) and the most significant bits
(MSBs) [18]. Figure 3 illustrates an LOA that adds two n-bit
C2 numbers, A(n� 1 : 0) and B(n� 1 : 0), to produce the
sum, S(n�1 : 0), and a carry out bit, Cout. The LSBs of the
addition, S(l � 1 : 0) (l  n), are computed using multiple
OR gates and one AND gate. The AND gate, with A(l) and
B(l) as inputs, generates the carry Cin, which is then fed
into the accurate adder on the left to calculate the MSBs in
the sum, namely S(n� 1 : l), and a carry out bit, Cout.

(n-l)-bit 
Accurate Adder

. . .

S(l-1:0)S(n-1:l)

B(n-1:l) A(n-1:l) B(l-1:0) A(l-1:0)

B(l-1)A(l-1) B(l-1)A(l-1) B(0)A(0)

S(l-1) S(0)

Cin

Cout

Figure 3. Design of the lower-part-OR adder (LOA) with l approximate
bits [18].

In conventional adders for the LSBs, multiple gates are
typically required for implementation, leading to higher
hardware complexity. However, in the lower-part-OR adder
(LOA), this complexity is significantly reduced to just one
gate. This reduction in complexity is beneficial as it simplifies
the overall circuit design. Additionally, the critical path of a
multiple-bit LOA is shortened since the carry no longer needs
to propagate through the LSBs. This relaxation of timing
constraints contributes to improved circuit performance. It’s
important to note that using OR gates to generate the LSBs
in the sum may introduce errors, resulting in a higher chance
of erroneous results. However, the impact of approximation
in the LOA on relative accuracy is less pronounced when the
inputs are large. Therefore, while there may be some loss of
accuracy, it may be acceptable depending on the application,
especially when dealing with large input values.

III. EXPERIMENTS AND RESULTS

Two distinct experiments were conducted to validate
the significance of our contributions: one using the IRIS
dataset [19] and the other employing the MNIST dataset [20].



Table I
ACCURACY RESULTS WHEN VARYING THE NUMBER OF APPROXIMATE

BITS (l) IN THE LOA.

Dataset Approximate bits (l) Accuracy (%)

IRIS 0 96.00
1 96.00
2 93.33
3 93.33
4 85.33
5 69.33

MNIST 0 97.25
1 97.21
2 97.20
3 97.17
4 97.29
5 96.81
6 95.94

Table II
FPGA IMPLEMENTATION FOR THE IRIS DATASET (75 TRAIN/75 TEST).

Metric [21] [12] This work
ML Method SOM MNN MNN
Test Accuracy (%) 100 96 93.3
Throughput (KIPS) 48.8 1563 1563

Power (mW) 21.5 7.81 3.26

Energy Efficiency (Inf/µJ) 2.2 200 479

Both experiments involved validation on field-programmable
gate arrays (FPGAs).

For the IRIS dataset experiment, we utilized the Cyclone
V 5CSEBA6U23I7S FPGA, while for the MNIST dataset
experiment, we employed the Arria10 10AX115H1F34I1SG
FPGA. The selection of FPGAs was made to validate the out-
comes through physical hardware validation, thus enhancing
the credibility of the results beyond mere simulation-based
validation.

A. IRIS dataset
To start, the IRIS dataset was divided into two halves: 75

samples for training and 75 for testing. The MNN architec-
ture comprises a single hidden layer with four intermediate
neurons, each with a precision of 5 bits (n = 5). Then, we
conducted experiments to approximate various numbers of
parameter l in the LOA circuit (see Fig. 3). Table I presents
the accuracy results for the different scenarios.

Subsequently, we selected the 3-bit approximate design
from Table I given that it is the higher precision before accu-
racy plummets. Our 5-bit (2+3) approach was compared with
other existing works in the literature that address the IRIS
dataset in hardware. In Table II, we present the performance
results for the FPGA implementation of the proposed model.

As observed, the proposed method achieves the best
performance and energy efficiency compared to previous
implementations [12], [21].

All of these benefits are attributed to the optimization of
hardware adders using approximate computing techniques.

B. MNIST dataset
The proposed unconventional approach was validated us-

ing the MNIST dataset, which primarily consists of images.
A total of 60,000 images from the dataset were used for

Table III
COMPARISON BETWEEN MNNS WITH APPROXIMATE OR EXACT ADDERS

Metric (Exact) (Approximate) Difference (%)

Accuracy (%) 97.25 96.81 0.45
ALMs 170, 464 76, 322 55.22
Comb. ALUT 267, 348 116, 314 56.5
Registers 5, 498 5, 468 0.54
Power (mW) 2, 596 1, 986 23.5

training, while the remaining 10,000 images were reserved
for testing.

In this experiment, we employed an architecture compris-
ing a single hidden layer with 200 intermediate neurons
with 8-bit precision. Following a similar procedure to the
IRIS dataset experiment, we carried out experiments aimed
at determining the optimum number of bits l of the LOA
circuit before accuracy sharply declines, as shown in Table I.

In Table III, we show the differences between an MNN
that uses exact adders and the proposed MNN. As can be
seen, significant benefits are obtained in terms of hardware
resource reduction (over 50%) as well as power reduction
(by 23.5%). The hardware reduction is in terms of Adap-
tive Logic Modules (ALMs) and Adaptive Look-Up Tables
(ALUTs). At the same time, the overall accuracy of the
network remains at very similar values (losing less than half a
percentage point in accuracy). In addition to this comparison,
which demonstrates the advantages of using approximate
adders, we perform a comparison of the MNN design in
relation to other similar works present in the literature. In
this way, we compare the proposed design with other un-
conventional implementations such as Binary Convolutional
Neural Networks (BCNNs) [22] and Stochastic Computing-
based Convolutional Neural Networks (SCCNN) [23], [24].
All of these approaches were implemented using high-end
FPGAs.

Table IV illustrates the comparison results. The Perfor-
mance parameter, usually expressed in inferences per second
in Neural Networks, has been normalized to the operation
frequency to facilitate comparison among methodologies
operating at different clock frequencies. The SCMNN im-
plementation demonstrates a twofold increase in speed and
performance compared to the other best non-conventional
hardware implementation [24], while achieving a 21x im-
provement in energy efficiency.

In comparison to another SCMNN implementation [12],
the proposed design performs the same task with 76% of the
power and 44% of the required area, while also exhibiting
higher energy efficiency (68K more inferences per Joule).
These significant advantages are obtained with only a slight
decrease in accuracy, amounting to a 0.44% penalty.

Figure 4 visually illustrates the comparison of normalized
throughput and energy efficiency against other works using
the data shown in Table IV. We also compared with reference
[12], that is a similar MNN hardware implementation but
without the use of approximate adders.

It is evident that the proposed design (red triangle) stands
out as the most efficient one.



Table IV
COMPARISON WITH OTHER FPGA IMPLEMENTATIONS USING NON-CONVENTIONAL COMPUTING FOR MNIST.

Metric [22] [23] [24] This work
Year 2019 2020 2022 2024
Architecture BCNN SCCNN SCCNN SCMNN
Activation/Weight Precision (bits) 1/1 9/9 8/8 8/8
Test Accuracy (%) 98.91 98.13 97.58 96.81
FPGA Platform Zynq ZC706 Zynq XC7Z020 Arria10 GX1150 Arria10 GX1150
Frequency (MHz) 120 60 150 150
Throughput (KIPS) 23 0.166 294 590

Performance (Inf/s/MHz) 191.7 2.77 1961 3933

Power (W) 0.63 0.1 21 1.99
Energy Efficiency (Inf/J) 36508 1666 14006 296482

Logic used (LUT or ALM) (⇥103) 29 28 343 76
DSP (blocks) - 0 0 0
Memory (Mbits) 1.06 1.73 0.00 0.00
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Figure 4. FPGA comparison for the normalized throughput and energy
efficiency when addressing the MNIST benchmark.

IV. CONCLUSIONS AND FUTURE WORK

Stochastic Computing is particularly well-suited for MNNs
due to its inherent simplicity in implementing operations
such as maxima, minima, and products - key morphological
operations - through basic logic gates like AND, OR, or
XNOR gates, which perform bitwise operations on stochastic
bitstreams. This work enhances a hybrid MNN design that
combines conventional 2’s complement logic with stochastic
computing by replacing traditional adders with approximate
ones.

Compared to the design in reference [12], the use of
approximate adders instead of traditional adders in the initial
stage has led to significant improvements in performance,
energy efficiency, area reduction, power consumption, and
hardware resource utilization, with only minimal accuracy
penalty. This enhancement has been validated for both the

IRIS and MNIST datasets in FPGA implementations, through
comparisons with six previously published works. Conse-
quently, the proposed design emerges as the top choice in
terms of energy efficiency while maintaining its superiority
in normalized throughput.

Looking ahead, the research team plans to develop a
straightforward MNN Very Large-Scale Integration (VLSI)
design using TSMC 180nm CMOS technology. The circuit
will feature a total of 25,408 synapses, specifically optimized
for handwritten number recognition. This initiative serves as
an initial proof of concept for the proposed technology, en-
abling precise measurements of processing speed and energy
efficiency.
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