
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 1

A Design Framework for Hardware-Efficient
Logarithmic Floating-Point Multipliers

Tingting Zhang, Graduate Student Member, IEEE, Zijing Niu, and Jie Han, Senior Member, IEEE

Abstract—The symbiotic use of logarithmic approximation in floating-point (FP) multiplication can significantly reduce the hardware
complexity of a multiplier. However, it is difficult for a limited number of logarithmic FP multipliers (LFPMs) to fit in a specific
error-tolerant application, such as neural networks (NNs) and digital signal processing, due to their unique error characteristics. This
paper proposes a design framework for generating LFPMs. We consider two FP representation formats with different ranges of
mantissas, the IEEE 754 Standard FP Format and the Nearest Power of Two FP Format. For both logarithm and anti-logarithm
computation, the applicable regions of inputs are first evenly divided into several intervals, and then approximation methods with
negative or positive errors are developed for each sub-region. By using piece-wise functions, different configurations of approximation
methods throughout applicable regions are created, leading to LFPMs with various trade-offs between accuracy and hardware cost.
The variety of error characteristics of LFPMs is discussed and the generic hardware implementation is illustrated. As case studies, two
LFPM designs are presented and evaluated in applications of JPEG compression and NNs. They do not only increase the classification
accuracy, but also achieve smaller PDPs compared to the exact FP multiplier, while being more accurate than a recent logarithmic FP
design.

Index Terms—Floating-point multiplier, logarithmic multiplier, neural networks, JPEG compression, error tolerance, approximate
computing, approximate multiplier.

✦

1 INTRODUCTION

DUE to the dynamic range and high accuracy in nu-
merical representation, floating-point (FP) arithmetic

is widely used in applications where the magnitude of a
value plays an important role [1]. For example, an FP repre-
sentation is usually adopted in the training process of neural
networks (NNs) for its more accurate encoding of weights
and activations [2]. In the image processing domain, it is
usually deployed in processing cinematic materials [3] and
representing pixel information in modern shading units in
graphics processing units [4]. However, FP arithmetic units
require a substantial amount of power and area. Moreover,
as the Dennard scaling is coming to an end, the increase in
power density has become a limitation to further improve
the performance.

As an emerging computing paradigm, approximate com-
puting improves the efficiency of circuits and systems at the
cost of limited precision for error-tolerant applications, such
as digital signal processing (DSP), data mining, and NNs
[5], [6]. As a basic operation, multiplication is interesting for
approximation due to its high cost incurred in circuit imple-
mentation [7]–[9]. Approximate FP multiplier designs have
been investigated by using approximate Booth encoding
[10], reconfiguration [7], [11], truncation techniques [12] and
approximate adders [8], [13]. However, these methods lead
to limited performance improvement since the hardware-
consuming multiplication can not be totally eliminated.

Logarithmic computation has been considered in train-
ing deep NNs [14] and DSP [15] for recent years. Moreover,

• T. Zhang, Z. Niu and J. Han are with the Department of Electrical and
Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9,
Canada.
E-mail: ttzhang@ualberta.ca, zijing2@ualberta.ca, jhan8@ualberta.ca.

the attempts to apply logarithmic multiplication in Lognet
lead to higher classification accuracy at low resolutions
[16]. Logarithmic computing provides an energy-efficient
alternative for multiplication, which converts conventional
multiplication to addition. Since its number representation
is naturally suited to FP numbers, efficient logarithmic FP
multipliers (LFPMs) have been pursued to reduce circuit
area and improve computational efficiency [17]–[21]. The
design in [20], which always underestimates the product,
significantly reduces circuit area and power. However, the
accumulated negative errors in the training process lead
to catastrophic results. An LFPM with double-sided errors
[21] was developed using the Nearest Power of Two FP
Format (FPNP2) to provide a more accurate result at a cost
of relatively large circuits.

Although a number of approximate fixed-point multipli-
ers can be found in the literature [22], [23], current approx-
imate FP multiplier designs are not sufficient. Due to the
unknown error characteristics in applications, it is difficult
to take advantage of a trade-off between the application-
level performance and hardware efficiency. Hence, addi-
tional approximate designs with a diverse range of accu-
racies and circuit characteristics are required to gain a better
understanding of their roles in different applications. In this
paper, we pursue the design of LFPMs for error-tolerant
applications that require dynamic numerical representation
for computation.

This paper presents a design framework to generate a
library of LFPMs. The proposed LFPMs are developed by
using two FP representation formats, the IEEE 754 Standard
FP Format (FP754) and FPNP2, in the logarithm and anti-
logarithm approximation. In both processes, the applicable
regions of inputs are first evenly divided into several sub-

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 2

regions. Then, rather than using a single approximation
method, two candidate designs that respectively introduce
negative and positive errors are considered for each sub-
region. Numerous LFPMs are generated by configuring dif-
ferent approximation methods throughout the regions based
on a piece-wise function. The error analysis and hardware
implementations are presented. The error sensitivities of ap-
plications for using approximate FP multipliers are analyzed
by replacing the FP multiplication with the generated LF-
PMs. An appropriate LFPM design can then be selected for
a good trade-off between accuracy and hardware efficiency.
Two example designs are synthesized and used in JPEG
compression and NN training applications as case studies
and for evaluation.

The remainder of this paper is organized as follows.
Section 2 presents the basics. Section 3 discusses the approx-
imation methods. The generic hardware implementation of
LFPMs are analyzed in Section 4. Case studies and applica-
tions in JPEG compression and NN training are discussed
in Section 5. Finally, Section 6 concludes this paper.

2 PRELIMINARIES

2.1 FP Representation

2.1.1 IEEE 754 Standard FP Format (FP754)

As defined in the IEEE 754 Standard, the FP number is
represented as a string that consists of a 1-bit sign S, a
w-bit exponent E and a q-bit mantissa M . An FP number
(denoted as N) is expressed to as [24]

N = (−1)S · 2E−bias · (1 + x), (1)

where S takes either 0 or 1 for a positive number or a
negative number, respectively. The exponent has a bias of
2w−1 − 1 to ensure E ≥ 0, thus the actual exponent is given
by E − bias. The actual mantissa includes a hidden ‘1’ (i.e.,
1.M , also referred as X(= 1 + x), where 0 ≤ x < 1).

2.1.2 Nearest Power of Two FP Format (FPNP2)

The FP754 provides the largest power of two smaller than
N in the exponent E. Based on it, another FP format, named
the Nearest Power of Two, was considered in an LFPM
design [21], [25]. It converts the exponent to obtain the
nearest power of two to N by comparing the mantissa x
with 0.5, as

N = (−1)S · 2E
′
−bias · (1 + x

′
), (2)

where

E
′
=

{
E, x < 0.5

E + 1, x ≥ 0.5
, (3)

X
′
= 1 + x

′
=

{
1 + x, x < 0.5

1+x
2 , x ≥ 0.5

, (4)

where −0.25 ≤ x
′
< 0.5 and 0.75 ≤ X

′
< 1.5.

2.2 Logarithmic FP Multiplication
Consider P = A × B, the FP multiplication consists of the
sign bit generation, the addition of the exponents, and the
multiplication of the mantissas. Let the sign bits, exponents,
and mantissas of A, B and P be respectively denoted with
the corresponding subscripts. Assume two input operands
be represented by using FP754 or FPNP2 and the final
multiplication result P be represented by using FP754. The
FP754 and FPNP2 are different with each other in mantissa
and exponent expressions. The exponents, and mantissas of
A, B are denoted by x̂ (can be x in FP754 or x

′
in FPNP2)

and Ê (can be E in FP754 or E
′

in FPNP2), respectively. The
logarithmic FP multiplication is given by [21]

Sp = SA ⊕ SB , (5)

XAB = X̂AX̂B = (1 + x̂A)× (1 + x̂B), (6)

EP =


ÊA + ÊB − bias− 1, XAB < 1

ÊA + ÊB − bias, 1 ≤ XAB < 2

ÊA + ÊB − bias+ 1, otherwise

, (7)

XP =

 2XAB , XAB < 1
XAB , 1 ≤ XAB < 2
XAB

2 , otherwise
, (8)

where the exponent and mantissa of the product P are
determined by the comparison of the obtained mantissa
XAB with 1 and 2.

To ease the complexity of computing XAB , logarithmic
multiplication in base-2 scientific notation converts the mul-
tiplication in (6) to addition as

log2XAB = log2(1 + x̂A) + log2(1 + x̂B). (9)

Then, the logarithmic result (log2XAB) is interpolated
back into the original result (XAB) using anti-logarithm
methods. Finally, the EP and XP are obtained by using (7)
and (8).

Mitchell’s logarithm approximation (LA) and anti-
logarithm approximation (ALA) are commonly used as [26]

log2(1 + k) ∼= k, (10)

where 0 ≤ k < 1.
2l ∼= l + 1, (11)

where 0 ≤ l < 1.

2.3 Error Metrics
In this paper, four error metrics are considered to eval-
uate the approximate designs, i,e., the mean error dis-
tance (MED), the mean absolute error distance (MAED),
the mean relative error distance (MRED) and the mean
absolute relative error distance (MARED) [27] [28]. The
MED and the MAED are the averages of the signed
difference and the absolute difference between the approx-
imate and the exact results, respectively. The MRED and
the MARED are defined as the averages of the signed
difference and absolute difference divided by the exact
result, respectively. The MAED and MARED computed
by absolute errors indicate the magnitude difference in the
multiplication result. The MAED measures the absolute
discrepancy between the approximate multiplier and the

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 3

accurate multiplier, whereas the MARED assesses their
absolute relative discrepancy, which is scale-independent.
The MED and MRED consider the offset effect of un-
derestimation and overestimation errors that occur in the
accumulation. Therefore, these four error metrics can show
the general error behavior of a multiplier design.

3 APPROXIMATION DESIGN FRAMEWORK

3.1 Logarithm Approximation (LA)

3.1.1 Proposed Method
The input operands for the logarithm approximation use
either the FP754 (given by xA and xB) or the FPNP2 (given
by x′

A and x′
B) formats. When using the FP754, the LA for

log2(1 + k) is considered for 0 ≤ k < 1; when using the
FPNP2 as in (2), the LA is considered for −0.25 ≤ k < 0.5.

Mitchell’s LA by (10) always underestimates the loga-
rithm when 0 ≤ k < 1, which introduces negative errors.
However, beyond the applicable region, (10) overestimates
the logarithm. Hence, by applying Mitchell’s LA method
out of the original applicable region, positive errors are
introduced.

Firstly, we extend Mitchell’s LA in (10) into the region
out of 0 ≤ k < 1. Considering that the multiplication or
division of powers of two can be easily performed by shifts,
we assume a number, to be n, is a power of two. Let −∞ <
k < +∞, the LA methods can be obtained from (10) with
different applicable regions, as

log2(1 + k) = log2(n× 1+k
n)

= log2(n) + log2(1 +
1+k
n − 1)

∼= log2(n) +
1+k
n − 1, (12)

where 0 ≤ 1+k
n − 1 < 1, thus n− 1 ≤ k < 2n− 1.

Consider both FP754 (where 0 ≤ k < 1) and FPNP2
(where −0.25 ≤ k < 0.5). The LA methods in which
applicable regions are close to the range of [−0.25, 1) are
considered. Let n = 1

2 , 1, and 2, then

log2(1 + k) ∼=

 2k, −0.5 ≤ k < 0
k, 0 ≤ k < 1

k+1
2 , 1 ≤ k < 3

. (13)

-0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

1.5

2

Fig. 1: LA in (13).

TABLE 1: Piece-wise Logarithm Approximation using IEEE
754 Standard FP format

k [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1)

log2(1 + k)
positive 2k k+1

2
k+1
2

k+1
2

negative k k k k

TABLE 2: Piece-wise Logarithm Approximation using Near-
est Power of Two FP Format

k [−0.25, 0) [0, 0.25) [0.25, 0.5)

log2(1 + k)
positive k 2k k+1

2
negative 2k k k

Fig. 1 indicates that these LA methods introduce nega-
tive errors within their respective applicable regions; other-
wise, they overestimate the logarithm results. The proposed
LA method is developed by considering three candidates
(i.e., k, k+1

2 and 2k) for −0.25 ≤ k < 1 to introduce
double-sided errors. When using FP754, i.e., 0 ≤ k < 1, 2k
and k+1

2 overestimate the results, whereas k underestimates
the results. When using FPNP2, i.e., −0.25 ≤ k < 0.5,
k, 2k and k+1

2 overestimate the results in the regions of
[−0.25, 0), [0, 0.5) and [0, 0.5), respectively. Moreover, 2k
and k underestimate the results in the regions of [−0.25, 0)
and [0, 0.5), respectively.

The LAs for log2(1+ k) when 0 ≤ k < 1 based on FP754
and −0.25 ≤ k < 0.5 based on FPNP2 are both developed
by using a piece-wise function with different configurations
in these sub-regions, respectively. First, the region is di-
vided into several sub-regions with a fixed width. Then, in
each sub-region, two candidates with a higher accuracy are
considered, one overestimating the logarithmic result with
positive errors and another underestimating the logarithmic
result with negative errors. An LA method can be indepen-
dently selected in each single sub-region.

A trade-off is assessed when deciding an appropriate
length of each sub-region. An excessively small length leads
to an increase of hardware complexity, whereas an exces-
sively large length reduces the variety of the accuracy for
those generated designs. If 0.25 is taken as the length of
each sub-region, the piece-wise logarithm approximation
(PWLA) based on FP754 and FPNP2 are presented in Tables
1 and 2, respectively.

3.1.2 Theoretical Analysis
Assume the approximate logarithm result be αi(k), where
−0.25 ≤ k < 1 and i (∈ {1, 2, 3}) indicates a label to
distinguish different LA methods. The error in the logarithm
approximation, εi(k), is given by

εi(k) = αi(k)− log2(1 + k), (14)

where α1(k) = 2k, α2(k) = k, and α3(k) =
k+1
2 .

To compare the accuracy of two candidate LA methods
which overestimates or underestimates the logarithmic re-
sults in each sub-region, the difference between the |εi(k)|
of two LA methods, denoted by D1, is computed by

D1 =

 |ε2(k)| − |ε1(k)| = 3k − 2log2(1 + k),−0.25 ≤ k < 0
|ε1(k)| − |ε2(k)| = 3k − 2log2(1 + k), 0 ≤ k < 0.25

|ε3(k)| − |ε2(k)| = 3k+1
2 − 2log2(1 + k), 0.25 ≤ k < 1

(15)

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 4

Fig. 2 plots two candidate LA methods in each sub-
region based on FP754 or FPNP2 in Table 1. The errors for
different LA methods in four sub-regions are analyzed as
follows.

−0.25 ≤ k < 0: The errors decrease with k when using
α2(k) and α1(k) for LA. Thus, ε2(k) and ε1(k) are in the
range of [0, 0.1650) and [−0.0849, 0), respectively. D1 is
always larger than or equal to 0, thus α2(k) = k is less
accurate than α1(k) = 2k.

0 ≤ k < 0.25: The errors for the use of α2(k) and α1(k)
increase with k. Thus, ε2(k) and ε1(k) are in the range
of (−0.0719, 0] and [0, 0.1780), respectively. D1 is always
larger than or equal to 0, indicating that α2(k) = k is more
accurate than α1(k) = 2k.

0.25 ≤ k < 0.5: The use of α2(k) first increases errors
and then decreases errors with k, whereas the use of α3(k)
decreases the errors with k. For α2(k), the maximum abso-
lute error of 0.0863 can be found at k = 0.4426 by differen-
tiating ε2(k) and setting it equal to zero, as dε2(k)

dk = 0 [26].
ε2(k) and ε3(k) are in the range of [−0.0863,−0.0719] and
(0.1650, 0.3030], respectively. α2(k) = k is obviously more
accurate than α3(k) =

k+1
2 for LA.

0.5 ≤ k < 0.75: The errors due to the use of LA methods
of α2(k) and α3(k) decrease with k. ε2(k) and ε3(k) are
in the range of [−0.0849,−0.0573) and (0.0676, 0.1650],
respectively. D1 is always larger than or equal to 0, thus
α2(k) = k is the more accurate LA method.

0.75 ≤ k < 1: The errors of using α2(k) and α3(k)
decrease with k. ε2(k) and ε3(k) are in the range of
[−0.0573, 0) and (0, 0.0676], respectively. Let D1 be less than
or equal to 0, then 0.8491 ≤ k < 1. Therefore, α2(k) = k and
α3(k) = k+1

2 are more accurate when 0.75 ≤ k < 0.8491
and 0.8491 ≤ k < 1, respectively.

-0.25 0 0.25 0.5 0.75 1
-0.5

0

0.5

1

Fig. 2: Piece-wise logarithm approximation functions.

3.2 Anti-logarithm Approximation (ALA)

3.2.1 Proposed Method
Consider that two logarithm results in the LA process can
be obtained from the approximation based on either FP754
or FPNP2, as in Tables 1 and 2. Then, the sum of two
logarithm results, denoted by l, ranges from −1 to 2, so
the ALA method is considered for −1 ≤ l < 2. The ALA
method as per (11) always introduces positive errors in the
applicable region. Similar as the methods in Section 3.1, the
ALA methods can be derived from (11), as

2l = n× 2l−log2n ∼= n× (l + 1− log2n), (16)

TABLE 3: Piece-wise Anti-logarithm Approximation

l [−1,−0.5) [−0.5, 0) [0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2)

2l
positive l+2

2
l+2
2

l + 1 l + 1 2l 2l

negative l+3
4

l + 1 l+2
2

2l l + 1 4l − 4

where 0 ≤ l − log2n < 1, thus log2n ≤ l < log2n+ 1.
We consider the ALA methods in which applicable re-

gions are close to the range of [−1, 2). Let n = 1
4 , 1

2 , 1, 2,
and 4, ALA methods can be obtained as

2l ∼=


l+3
4 , −2 ≤ l < −1

l+2
2 , −1 ≤ l < 0

l + 1, 0 ≤ l < 1
2l, 1 ≤ l < 2

4l − 4, 2 ≤ l < 3

. (17)

As shown in Fig. 3, these ALA methods always overesti-
mate the results, whereas negative errors are introduced out
of the applicable regions.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

7

8

Fig. 3: ALA in (17).

The proposed ALA method is developed based on five
candidate ALA methods (using l+3

4 , l+2
2 , l+1, 2l and 4l−4)

for −1 ≤ l < 2 to introduce double-sided errors. Similar
to the PWLA method, two approximation methods are
considered in each sub-region, one with positive errors and
another with negative errors. The piece-wise anti-logarithm
approximation (PWALA) method takes 0.5 as the width of
each sub-region, as per Table 3.

3.2.2 Theoretical Analysis

Let the approximate anti-logarithm result be βj(l), where
−1 ≤ l < 2 and j (∈ {1, 2, 3, 4, 5}) indicates a label to
distinguish different ALA methods. The error denoted by
εj(l) is given by

εj(l) = βj(l)− 2l, (18)

where β1(l) = l+3
4 , β2(l) = l+2

2 , β3(l) = l + 1, β4(l) = 2l,
and β5(l) = 4l − 4.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 5

-1 -0.5 0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

3

3.5

4

Fig. 4: Piece-wise anti-logarithm approximation functions.

Similarly, the difference between |εj(l)| of two candidate
ALA methods in each sub-region, denoted by D2, is given
by

D2 =



|ε2(l)| − |ε1(l)| = 3l+7
4 − 2l+1, −1 ≤ l < −0.5

|ε2(l)| − |ε3(l)| = 3l+4
2 − 2l+1, −0.5 ≤ l < 0

|ε3(l)| − |ε2(l)| = 3l+4
2 − 2l+1, 0 ≤ l < 0.5

|ε3(l)| − |ε4(l)| = 3l + 1− 2l+1, 0.5 ≤ l < 1
|ε4(l)| − |ε3(l)| = 3l + 1− 2l+1 1 ≤ l < 1.5
|ε4(l)| − |ε5(l)|| = 6l + 4− 2l+1 1.5 ≤ l < 2

.

(19)
The PWALA methods in Table 3 are presented in Fig. 4.

Similarly, the errors of using different ALA methods in each
sub-region are discussed as follows.

−1 ≤ l < −0.5: The errors for using β1(l) and β2(l)
increase with l. Thus, ε1(l) and ε2(l) are in the range of
(−0.0821, 0] and [0, 0.0428), respectively. D2 is always less
than or equal to 0. Therefore, β2(l) =

l+2
2 is more accurate.

−0.5 ≤ l < 0: The error introduced by the use of β3(l)
decreases with l, whereas that for using β2(l) first increases
and then decreases with l. The maximum error of 0.0430 for
using β2(l) can be achieved when l =

ln 1
2ln2

ln2 ≈ −0.471.
Thus, ε2(l) and ε3(l) are in the range of (0, 0.0430] and
(−0.2071, 0], respectively. D2 is always less than or equal
to 0, indicating β2(l) =

l+2
2 is more accurate.

0 ≤ l < 0.5: The errors introduced by the use of β2(l)
and β3(l) increase with l. Thus, ε2(l) and ε3(l) are in the
range of (−0.1642, 0] and [0, 0.0857), respectively. D2 is
always less than or equal to 0 when 0.2245 ≤ l < 0.5.
Therefore, β2(l) =

l+2
2 and β3(l) = l + 1 are more accurate

when 0 ≤ l < 0.2245 and 0.2245 ≤ l < 0.5, respectively.
0.5 ≤ l < 1: The error for using β4(l) decreases with

l, whereas the error for using β3(l) first increases and then
decreases with l. The maximum error of 0.0860 for using
β3(l) can be achieved when l =

ln 1
ln2

ln2 ≈ 0.5287. ε4(l)
and ε3(l) are in the ranges of [−0.4142, 0) and (0, 0.0860],
respectively. D2 is always smaller than 0, thus β3(l) = l + 1
is more accurate.

1 ≤ l < 1.5: The errors for the use of β4(l) and β3(l)
increase with l. ε4(l) and ε3(l) are in the range of [0, 0.1715)
and (−0.3284, 0], respectively. D2 is less than or equal to 0
when 1.2245 ≤ l < 1.5. Thus, β4(l) = 2l and β3(l) = l + 1
are more accurate when 1.2245 ≤ l < 1.5 and 1 ≤ l <
1.2245, respectively.

1.5 ≤ l < 2: The error for using β5(l) decreases with l,
whereas the error for using β4(l) first increases and then
decreases with l. The maximum error for using β4(l) is

obtained by dε4(l)
dl = 0, where l =

ln 2
ln2

ln2 ≈ 1.5287, thus
ε4 = 0.1721. ε5(l) and ε4(l) are in the range of [−0.8284, 0)
and (0, 0.1721], respectively. D2 is always smaller than or
equal to 0, thus β4(l) = 2l is the more accurate ALA method.

3.3 Logarithmic FP Multiplication
The logarithmic FP multiplication based on piece-wise ap-
proximation is developed from approximation in logarithm
and anti-logarithm processes, as shown in Fig. 5.

Consider the LA process. F indicates the use of FP754
or FPNP2. The CxA (or CxB) contains four elements, each
taking either ‘p’ or ‘n’ to indicate using the approximation
method with positive or negative errors in each interval.
The use of FPNP2 converts xA in the domain of [0.5, 1) to
[−0.25, 0), resulting in the same configuration for CxA

(2)
and CxA

(3) (or as CxB
(2) and CxB

(3)). When xA (or xB)
locates within [0, 0.5), no matter which FP format is used,
different LA methods are the same. When xA (or xB) is in
the range of [0.5, 1), FPNP2 modifies EA (or EB) to EA +
1 (or EB + 1) and perform the LA using either xA−1

2 or
xA−1. Consider the ALA process. The Cal has six elements,
each with either ‘p’ or ‘n’ . Firstly,XAB is determined by the
configuration for PWALA methods. Then, EP and XP are
obtained to satisfy the requirements of the FP754 format
depending on XAB , as in (7)-(8).

There are 5744 piece-wise based LFPM (PWLM) de-
signs generated using the proposed approximation method
in total. The PWLM approximately computes logarithm
and antilogarithm using linear equations. The regions of
0 ≤ xA, xB < 1 are divided into γ sub-regions. Then, for the
ith sub-region (1 ≤ i ≤ γ), it essentially approximates XAB

in (6) by X̃AB using a linear equation f(xA, xB) related to
xA and xB , as

XAB
∼= X̃AB = fi(xA, xB) = ui · xA + vi · xB + ci (20)

where values of coefficients ui, vi and ci depend on the
configurations of approximation methods in the dedicated
PWLM.

Different configurations of PWLA methods for xA and
xB , and PWALA methods can lead to possible error com-
pensation. Therefore, the respective accuracy of LA and
ALA methods can not predict the overall error character-
istics of PWLMs. For single-precision LFPMs, samples of
107 random cases with a standard normal distribution (for
floating numbers) and with uniform distribution (for the
mantissa) were generated to obtain the error results. The
PWLMs using two-piece ALA are more likely to introduce
large errors. Three- and four-piece LA provides a diverse
accuracy, whereas one- and two-piece LA leads to moderate
accuracy.

Table 4 evenly divides the ranges of error results into
five parts. Thus, the accuracy levels in four error metrics,
i.e., |MED|, |MRED|, MAED, MARED, can be distin-
guished for each PWLM. The error results in |MED| and
|MRED| obtained by uniformly (or normally) distributed
random numbers range from 2.44 × 10−5 to 0.48 (or from
3 × 10−6 to 1.31 × 10−4) and from 7.36 × 10−5 to 0.22 (or
from 1.7 × 10−5 to 0.232) , respectively. Moreover, MAED
and MARED are diverse in the range of [0.06, 0.6] (or
[1.82× 10−2, 0.19]) and [0.02, 0.29] (or [2.88× 10−2, 0.31]) ,

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 6

Logarithm

Approximation
LA for xA

xA xB

LA for xBLA for xB xB<0.25

xB

CxB(0)=p xB<0.5

Y N

Y N

logxB=2xB, MEB=EBlogxB=2xB, MEB=EB

Y

Y
CxB(1)=pCxB(1)=p F=FPNP2F=FPNP2

N

N Y

CxB(2)=pCxB(2)=p
Y N

xB<0.75xB<0.75

CxB(2)=pCxB(2)=p CxB(3)=pCxB(3)=p

N

Y N

NN YY

logxA logxBMEA MEB

logS=logxA+logxB

MES=MEA+MEB

XAB MES

logS< 0.5

logS

Cal(0)=p logS<0

Y N

N Y

Y
Cal(1)=pCal(1)=p logS<0.5logS<0.5

N

N Y

Cal(2)=pCal(2)=p
Y N

logS<1logS<1

CxB(3)=pCxB(3)=p logS<1.5logS<1.5

N

Y N

NN YY

Logarithm

Multiplication

Anti-logarithm

Approximation

2.12.1 2.22.2

2.12.1 2.32.3

2.32.3 2.12.1

2.32.3

CxB(4)=pCxB(4)=p

2.42.4
Y

2.42.4 2.32.3

CxB(5)=pCxB(5)=p
Y

2.42.4 2.52.5

NN

1.11.1 1.21.2

XAB<1

XAB

XAB<2

Y N

Y N3.13.1

3.23.2 3.33.3

A

B

C

Approximate FP

Multiplication

Result P in FP754

(SP, EP, XP)

D

1.11.1

logxB=xB, MEB=EBlogxB=xB, MEB=EB1.21.2

logxB=(xB+1)/2, MEB=EBlogxB=(xB+1)/2, MEB=EB1.31.3

logxB=(xB 1)/2, MEB=EB+1logxB=(xB 1)/2, MEB=EB+11.41.4

logxB=xB 1, MEB=EB+1logxB=xB 1, MEB=EB+11.51.5

3.13.1

3.23.2

3.33.3

EP=MES 1, XP=2XABEP=MES 1, XP=2XAB

SP=SA SB

Y

1.31.3 1.21.2

1.41.4 1.51.5

1.31.3 1.21.2 1.31.3 1.21.2

EP=MES, XP=XAB

EP=MES+1, XP=XAB/2

XAB=(logS+2)/2XAB=(logS+2)/22.12.1

XAB=(logS+3)/4XAB=(logS+3)/42.22.2

XAB=logS+1XAB=logS+12.32.3

XAB=2logSXAB=2logS2.42.4

XAB=4logS 4XAB=4logS 42.52.5

Logarithm

Approximation
LA for xA

xA xB

LA for xB xB<0.25

xB

CxB(0)=p xB<0.5

Y N

Y N

logxB=2xB, MEB=EB

Y

Y
CxB(1)=p F=FPNP2

N

N Y

CxB(2)=p
Y N

xB<0.75

CxB(2)=p CxB(3)=p

N

Y N

NN YY

logxA logxBMEA MEB

logS=logxA+logxB

MES=MEA+MEB

XAB MES

logS< 0.5

logS

Cal(0)=p logS<0

Y N

N Y

Y
Cal(1)=p logS<0.5

N

N Y

Cal(2)=p
Y N

logS<1

CxB(3)=p logS<1.5

N

Y N

NN YY

Logarithm

Multiplication

Anti-logarithm

Approximation

2.1 2.2

2.1 2.3

2.3 2.1

2.3

CxB(4)=p

2.4
Y

2.4 2.3

CxB(5)=p
Y

2.4 2.5

NN

1.1 1.2

XAB<1

XAB

XAB<2

Y N

Y N3.1

3.2 3.3

A

B

C

Approximate FP

Multiplication

Result P in FP754

(SP, EP, XP)

D

1.1

logxB=xB, MEB=EB1.2

logxB=(xB+1)/2, MEB=EB1.3

logxB=(xB 1)/2, MEB=EB+11.4

logxB=xB 1, MEB=EB+11.5

3.1

3.2

3.3

EP=MES 1, XP=2XAB

SP=SA SB

Y

1.3 1.2

1.4 1.5

1.3 1.2 1.3 1.2

EP=MES, XP=XAB

EP=MES+1, XP=XAB/2

XAB=(logS+2)/22.1

XAB=(logS+3)/42.2

XAB=logS+12.3

XAB=2logS2.4

XAB=4logS 42.5

Fig. 5: Logarithmic FP multiplication based on piece-wise approximation. Inputs: FP format (F); Sign bits (SA and SB),
exponents (EA and EB), and mantissas (xA and xB) in FP754; Configuration for logarithm approximation (CxA and CxB);
Configuration for anti-logarithm approximation (Cal). Output: an approximate FP multiplication result P in FP754 (Sp, Ep,
and Xp). MEA and MEB denote the modified exponents for A and B, respectively; logxA

and logxB
denote the logarithm

mantissas for xA and xB , respectively; MEs is the sum of MEA and MEB ; logs is the sum of logxA
and logxB

; XAB is the
anti-logarithm result of logs.

TABLE 4: The Number of Single-precision PWLMs in Different Accuracy Levels of Four Error Metrics

Uniform Distribution Normal Distribution
|MED| |MED| (×10−4)

[2.44× 10−5, 0.09)[0.09, 0.19)[0.19, 0.29)[0.29, 0.38)[0.38, 0.48] [0.03, 0.29) [0.29, 0.54)[0.54, 0.80)[0.80, 1.05)[1.05, 1.31]
2798 1813 810 268 55 2475 2881 299 75 14

MAED MAED
[0.06, 0.17) [0.17, 0.27)[0.27, 0.38)[0.38, 0.49)[0.49, 0.60] [0.02, 0.05) [0.05, 0.09)[0.09, 0.12)[0.12, 0.16)[0.16, 0.20]

45 2204 2924 514 56 79 3183 2123 318 41
|MRED| |MRED|

[7.36× 10−5, 0.04)[0.04, 0.09)[0.09, 0.13)[0.13, 0.18)[0.18, 0.22][1.7× 10−5, 0.04)[0.04, 0.09)[0.09, 0.14)[0.14, 0.19)[0.19, 0.23]
2860 1803 779 255 47 2788 1847 812 250 47

MARED MARED
[0.02, 0.08) [0.08, 0.13)[0.13, 0.18)[0.18, 0.23)[0.23, 0.29] [0.02, 0.08) [0.08, 0.14)[0.14, 0.20)[0.20, 0.25)[0.25, 0.31]

54 2794 2480 373 42 79 3200 2106 318 41

respectively. For the uniform distribution, the mean values
of |MED|, |MRED|, MAED and MARED for these
PWLMs are 0.1201, 0.0546, 0.2391 and 0.1097, respectively;
and their variances are 0.0083, 0.0017, 0.0043 and 0.0009,
respectively. For the standard normal distribution, the mean
values of these four metrics are 0.1123, 0.0494, 0.2489 and
0.1151, respectively; and the variance are 0.0063, 0.0012,
0.0034 and 0.0006, respectively. There are around 80% of
PWLMs with high accuracy levels (Levels 1 & 2), evaluated
by |MED| and |MRED| and almost 90% of PWLMs locate
in moderate accuracy levels (Levels 2 & 3), in terms of
MAED and MARED.

The error-tolerant applications differ from their error
sensitivities of different error metrics. Various accuracies of
our PWLM designs support a comprehensive error analysis
when applying approximate FP multipliers to those appli-
cations.

4 HARDWARE IMPLEMENTATION

In this section, the generic circuit block diagram is intro-
duced and the simplifications for each circuit block are in-
vestigated. Since the computation process can be simplified
in different manners, the hardware implementation can be
specially designed for each PWLM.

4.1 The Generic Circuit Block

Fig. 6 presents the generic circuit blocks for implementing
these PWLMs. The sign S, the exponent E, and the mantissa
M , of the FP number can be obtained directly. 1.M denotes
the actual mantissa and is given as M [q].M [q − 1]M [q −
2] · · ·M [1]M [0], where M [q] denotes the hidden one.

The computation for the sign bit of the product, SP , is
implemented by an XOR gate with two input signs, SA and
SB . To obtain the mantissa of the product, the approximate
logarithmic values of 1.MA and 1.MB , denoted as M ′

A and
M ′

B respectively, are computed in the logarithm approxi-
mation block. The two obtained values are then summed

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 7

special cases

exception

result

 ! "

#$
%

q+1

q

Logarithm

Approximation

Adjustment

 ! "

 # $# %#

1.%! 1.%"

w w

w q

q+1 q+1 !
" #

"

q+1

w+1

w

q+1 q+1

 !"
#

$%
#

 %$%

Logarithm

Approximation

pack/exception result

AdderAdderAdderAdder

Anti-logarithm Approximation

Fig. 6: The circuit block diagram for the generic implemen-
tation of PWLMs.

together since the multiplication is replaced by the addition
in the logarithm domain. The sum of M ′

A and M ′
B , denoted

by M ′
AB , is propagated to the anti-logarithm approximation

block to compute its approximate anti-logarithm, denoted
by M ′

P . The exponent of the product is firstly computed
by the addition of EA and EB , denoted by E′

P . When
the value of M ′

P exceeds the range of the mantissa of the
product, given by [1, 2), M ′

P and E′
P will be adjusted in

the adjustment block. Finally, EP and MP are obtained.
EP is added with the bias to comply with FP754 format
and the exception (such as overflow, underflow, and “not
a number”) is reported by detecting the preceding result.
Note that the two operands are checked for exception at
the beginning of the computation. Some circuit blocks in
Fig. 6 can be combined into a single module and certain
computational components can be implemented with less
hardware complexity.

4.2 Logarithm Approximation Block
According to Table 1 and Table 2, the logarithm approx-
imation block includes implementations for five different
candidate LA methods and a multiplexer, as shown in Fig.
7, where M indicates MA or MB , and M ′ indicates M ′

A or
M ′

B .
A multiplexer is used to implement the PWLA as shown

in Fig. 7 (a). Particularly, when using one-piece LA (i.e.,
log2(1 + k) ∼= k), the multiplexer is not required. A 2-to-
1 multiplexer is used for two-piece LA. The select signal is
M [q−2] OR M [q−1], M [q−1], or M [q−1] AND M [q−2],
respectively when 0.25, 0.5 or 0.75 is the boundary value
separating two sub-regions. Similarly, a 4-to-1 multiplexer is
required for three-piece or four-piece LAs and the boundary
value is determined by M [q − 1]M [q − 2]. For example,
M [q − 1]M [q − 2] = 11 represents 0.75. The inputs of
the multiplexer are selected from different LA methods in
Table 1 and Table 2.

The five candidate LA methods using k, 2k, k+1
2 , k−1

2 ,
and k − 1 are implemented to serve as the inputs of the
multiplexer as shown in Fig. 7 (b). Instead of directly
implementing the equations, which would require adders

and shifters, simple operations can be adopted for less
hardware complexity. Since 1+k is implemented by 1.M [q−
1]M [q − 2] · · ·M [1]M [0], k is obtained as 0.M [q − 1]M [q −
2] · · ·M [1]M [0]. The left/right shifter for implementing ×2
and /2 operations is replaced by wire routing. Thus, k+1

2
and 2k are obtained as 0.M [q]M [q − 1]M [q − 2] · · ·M [1]
and M [q − 1].M [q − 2] · · ·M [1]0, respectively. Note that 2k
is used when 0 ≤ k < 0.25, and thus M [q] is 0 and can be
ignored after being shifted left. k−1

2 and k − 1 are obtained
as a negative number in 2’s complement, respectively, i.e.,
1.1M [q − 1] · · ·M [1] and 1.M [q − 1] · · ·M [0]. Note that
when PWLA based on FP754 (in Table 1) and FPNP2 (in
Table 2) are both used for the two input operands, M ′ is
implemented in q + 2 bits instead of q + 1 bits, where the
sign bit of candidate LA methods in Fig. 7 (b) is extended
by 1 bit.

q+

(a) For PWLA methods.

1 [! " 1] [! " 2]# [1] [0]

$ " 1

11 [! " 1] [! " 2]# [1]

($ " 1)/2

0 [! " 1] [! " 2]# [1] [0]

$

 [! " 1] [! " 2]# [1] [0]0

2$

01 [! " 1] [! " 2]# [1]

($ + 1)/2

(b) For candidate LA methods.

Fig. 7: Circuit designs for the logarithm approximation
block.

4.3 Anti-logarithm Approximation Block

According to Table 3, a multiplexer and implementations
of five candidate methods are required for computing the
approximate anti-logarithm, M ′

P , as shown in Fig. 8.
The PWALA is implemented by using a multiplexer,

as shown in Fig. 8 (a). For the two-piece ALA, the select
signal is M ′

AB [q − 1] OR M ′
AB [q], M

′
AB [q], or M ′

AB [q] AND
M ′

AB [q−1], respectively when 0.5, (1 or 0), or (1.5 or −0.5) is
the boundary value separating two sub-regions. When using
three-piece to five-piece ALAs, the boundary values are de-
termined by M ′

AB [q]M
′
AB [q−1], which is therefore the select

signal for a 4-to-1 multiplexer. Particularly, when PWLAs
based on FP754 (in Table 1) and FPNP2 (in Table 2) are both
used for the two input operands, the PWALA method is
applied to −0.5 ≤ l < 1.75. M ′

AB is implemented in q + 2
bits with an extended sign bit, denoted by M ′

AB [q + 1], to
be distinguishable for the ranges of [−0.5, 0) and [1.5, 1.75).
In this case, for using three-piece, four-piece and five-piece
ALAs, M ′

AB [q + 1]M ′
AB [q]M

′
AB [q − 1] is used to determine

the boundary values.
The four candidate ALA methods using l+1, l+2

2 , 2l and
4l − 4, are implemented to obtain M ′

P using wire routing.
To simplify the circuit, the adjustment block is merged
into the implementation of these ALA methods, where the

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 8

adjusted value of M ′
P , i.e., MP , is used as the output for the

multiplexer. The circuit to generate MP is introduced in the
next subsection.

4.4 Adjustment Block

As shown in Fig. 8 (b), by merging the value adjustment into
the ALA computation, the final mantissa, MP , is directly
implemented by M ′

AB with a multiplexer in some cases.
According to Table 3, when l ≥ 1, the values of l + 1,

2l and 4l − 4 range from 2 to 4; when l < 0, the values
of l + 1, l+2

2 and l+3
4 range from 0.5 to 1. These values

are divided by or multiplied by 2 to fit in the range of
[1, 2). Therefore, the value adjustment is determined by
checking M ′

AB [q]M
′
AB [q − 1] for l + 1 and M ′

AB [q] for
other candidate ALA methods. The implementations for the
adjusted ALA methods are shown as grey boxes in Fig.
8 (b). Particularly, l + 1 is implemented for the range of
[−0.5, 0) when M ′

AB [q]M
′
AB [q − 1] = 11 and for the range

of [1, 1.5) when M ′
AB [q]M

′
AB [q−1] = 10. l+3

4 and 4l−4 are
implemented without a multiplexer since they are used in
one sub-region.

For the exponent, when ALA values are divided by
or multiplied by 2, E′

P is added with or subtracted with
one, respectively, to ensure correctness. When using PWLAs
based on FP754 for the two inputs, to reduce the hardware
complexity, a carry-in bit, implemented by M ′

AB [q], is used
for the value adjustment of E′

P in the addition of EA

and EB . When using PWLAs based on FPNP2, the final
exponent is determined by both the FPNP2 conversion as
per (3) and the value adjustment for the ALA values.

qq

(a) For PWALA methods.

0 !"
[$ % 1] !"

[$ % 2]& !"
[1]0 !"

[$ % 1] !"
[$ % 2]& !"

[1]

 !"
[$ % 1] !"

[$ % 2]& !"
[0] !"

[$ % 1] !"
[$ % 2]& !"

[0]

 !"
[$ % 2] !"

[$ % 3]& !"
[0]0 !"

[$ % 2] !"
[$ % 3]& !"

[0]0

0 !"
[$ % 1] !"

[$ % 2]& !"
[1]0 !"

[$ % 1] !"
[$ % 2]& !"

[1]

 !"
[$ % 2] !"

[$ % 3]& !"
[0]0 !"

[$ % 2] !"
[$ % 3]& !"

[0]0

MUXMUX

00

MUXMUX

0

1

MUX

0

1

 !"
[$]

 !"
[$ % 1] !"

[$ % 2]& !"
[0] !"

[$ % 1] !"
[$ % 2]& !"

[0]
' + 1' + 1

2'2'

' + 2

2

' + 2

2

4' % 44' % 4

01

10

11 !"
[$ % 2] !"

[$ % 3]& !"
[0]0 !"

[$ % 2] !"
[$ % 3]& !"

[0]0

 !"
[$] !"

[$ % 1]

MUXMUX

0

1

MUX

0

1

 !"
[$]

 !"
[$ % 1] !"

[$ % 2]& !"
[0] !"

[$ % 1] !"
[$ % 2]& !"

[0]

0 !"
[$ % 1] !"

[$ % 2]& !"
[1]0 !"

[$ % 1] !"
[$ % 2]& !"

[1]
' + 3

4

(b) For candidate ALA methods.

Fig. 8: Circuit designs for the anti-logarithm approximation
block and the adjustment block.

5 CASE STUDIES AND APPLICATIONS

The proposed PWLMs provide various accuracies and hard-
ware performance, which can be used for error-tolerant
applications with different requirements. To show the basic
circuit design flow of the proposed PWLMs and assess their
effectiveness, two example designs (PWLM1 and PWLM2)
are studied in this section.

q+1

q+1

AdderAdder

 !
"

#$%%& q

 ! "

 #

AdderAdder

 ! "

w

w

 !
"

pack/exception result

 ! "!

w q

q

w

 !"
!"

[$]

 !"
[$ % 1]& !"

[0] !"
[$ % 1]& !"

[0]

0 ![$ % 1] ''' ![0]0 ![$ % 1] ''' ![0]

 "
#

MUX

0

1

MUX

0

1
q+1

 ![" # 1]

 ![" # 2]

1. $ 1. !

01 ![" # 1] %%% ![1]01 ![" # 1] %%% ![1]

0 ![" # 1] %%% ![0]0 ![" # 1] %%% ![0]

q+1 q+1

q+1

q+1

Adder

 !
"

#$%%& q

 ! "

 #

Adder

 ! "

w

w

 !
"

pack/exception result

 ! "!

w q

q

w

 !"
!"

[$]

 !"
[$ % 1]& !"

[0]

0 ![$ % 1] ''' ![0]

 "
#

MUX

0

1
q+1

 ![" # 1]

 ![" # 2]

1. $ 1. !

01 ![" # 1] %%% ![1]

0 ![" # 1] %%% ![0]

q+1 q+1

(a) For PWLM1.

q+1

AdderAdder

 !
"

#$%%&
q

 ! "

 #

AdderAdder

 ! "

w

w

 !
"

pack/exception result

 ! "!

w q

q

w

q+1 q+1

 !"
!"

[$]

 !"
[$ % 1]& !"

[0] !"
[$ % 1]& !"

[0]

 "
#

MUX

0

1

MUX

0

1

q+1

 ![" # 1]

 ![" # 2]

1. $ 1. !

01 ![" # 1] %%% ![1]01 ![" # 1] %%% ![1]

0 ![" # 1] %%% ![0]0 ![" # 1] %%% ![0]
MUX

1

0

MUX

1

00 ![" # 1] $$$![0]0 ![" # 1] $$$![0]

1 ![" # 1] $$$![0]1 ![" # 1] $$$![0]

 ![" # 1]

 !%
& [" # 1]

 ![" # 1]

 %[" # 1] AND %[" # 2]

 !%
& ["]

 !%
& [" # 1]

'())*

q+1

Adder

 !
"

#$%%&
q

 ! "

 #

Adder

 ! "

w

w

 !
"

pack/exception result

 ! "!

w q

q

w

q+1 q+1

 !"
!"

[$]

 !"
[$ % 1]& !"

[0]

 "
#

MUX

0

1

q+1

 ![" # 1]

 ![" # 2]

1. $ 1. !

01 ![" # 1] %%% ![1]

0 ![" # 1] %%% ![0]
MUX

1

00 ![" # 1] $$$![0]

1 ![" # 1] $$$![0]

 ![" # 1]

 !%
& [" # 1]

 ![" # 1]

 %[" # 1] AND %[" # 2]

 !%
& ["]

 !%
& [" # 1]

'())*

(b) For PWLM2.

Fig. 9: The circuit designs for two example PWLMs.

5.1 Example PWLM Designs

For LA, PWLM1 approximates log2(1 + xA) by using xA,
and approximates log2(1 + xB) by using xB when xB <
0.75 and using xB+1

2 otherwise. In PWLM2, log2(1 + xA)
is approximated by using xA when xA < 0.75 and xA+1

2
otherwise. The input operand B is represented by FPNP2
and then log2(1 + x

′

B) is approximated by using x
′

B when
xB < 0.5 and 2x

′

B otherwise. For ALA, let l be the sum of
the approximate results log2(1 + xA) and log2(1 + xB). For
PWLM1, 0 ≤ l < 2, thus it approximates 2l by using l + 1
when l < 1 and using 2l otherwise. For PWLM2, −0.5 ≤
l < 1.5, thus it approximates 2l by using l+2

2 when l < 0,
l + 1 when 0 ≤ l < 1, and 2l otherwise.

The circuit designs for PWLM1 and PWLM2 are shown
in Fig. 9. By combining the value adjustment with the
ALA computation block, the mantissas of final products
after using a two-piece ALA in PWLM1 and a three-
piece ALA in PWLM2 can both be simply implemented as
M ′

AB [q − 1]M ′
AB [q − 2] · · ·M ′

AB [0], according to Fig. 8. For
the exponent, due to the use of FPNP2-based LA, the carry-
in bit for computing E′

P of PWLM2 is determined by the
select signals of LAs, i.e., M ′

A[q−1] and M ′
B [q−1]M ′

B [q−2],
M ′

AB [q], and M ′
AB [q − 1]. The carry-in bit for PWLM1

is determined by the value adjustment for ALA and is

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 9

TABLE 5: Performance of FP Multipliers (Measured by
Hardware and Error Metrics) and Applications in JPEG
Compression (Measured by PSNR) and NN Training (Mea-
sured by Classification Accuracy)

EFM FPLM [21] LAM [20] PWLM1 PWLM2
AppM - N2-N2-2 I1-I1-2 I1-I2-2 I2-N2-3

Single-Precision
Power (µW) 599.6 30.3 17.1 20.6 21.3
Area (µm2) 2537.7 234.1 143.1 168.7 182.2
Delay (ns) 3.70 2.36 1.98 2.10 2.21
PDP (fJ) 2218.5 71.5 33.9 43.4 47.1

|MED| (×10−5) 0 0.83 1.24 0.96 1.18
|MRED| (×10−2) 0 0.14 3.82 2.95 2.95
MAED (×10−2) 0 1.82 2.42 2.39 2.39
MARED (×10−2) 0 2.88 3.82 3.78 3.78

PSNR (dB) 32.27 30.10 24.91 25.69 25.28
NN Accuracy (%) 97.99 98.03 97.99 98.01 98.05

Half-Precision
Power (µW) 157.5 15.1 9.9 11.6 12.1
Area (µm2) 868.8 119.9 81.2 97.5 101.3
Delay (ns) 3.03 1.25 0.97 1.10 1.21
PDP (fJ) 477.2 18.9 9.6 12.7 14.6

|MED| (×10−5) 0.018 0.83 1.26 1.20 1.21
|MRED| (×10−2) 0.13 0.15 3.67 2.80 2.80
MAED (×10−2) 0.067 1.83 2.46 2.42 2.42
MARED (×10−2) 0.33 3.11 4.10 4.03 4.03

PSNR (dB) 32.26 30.08 24.86 25.62 25.23
NN Accuracy (%) 96.46 96.15 96.03 96.24 95.84

Bfloat16
Power (µW) 107.8 15.0 11.6 12.3 13.1
Area (µm2) 724.6 123.3 96.4 101.4 106.6
Delay (ns) 2.90 1.23 0.97 0.99 1.20
PDP (fJ) 312.6 18.5 11.2 12.2 15.7

|MED| (×10−5) 0.16 0.82 1.32 1.23 1.24
|MRED| (×10−2) 0.82 0.50 4.33 3.47 3.47
MAED (×10−2) 0.52 1.85 2.75 2.61 2.61
MARED (×10−2) 0.82 2.93 4.33 4.12 4.12

PSNR (dB) 32.05 29.67 24.32 24.91 24.69
NN Accuracy (%) 97.68 97.66 97.62 97.64 97.65

Notes: AppM indicates the use of FP754 or FPNP2 formats and pieces
of piece-wise functions used for LA and ALA.
FPLM [21]: LA uses two-piece approximation based on FPNP2 for both
two inputs (denoted by N2-N2); ALA uses two-piece approximation
(denoted by 2).
LAM [20]: LA uses one-piece approximation based on FP754 for both
two inputs (denoted by I1-I1); ALA uses two-piece approximation
(denoted by 2).
PWLM1: LA considers FP754 format, but with one input using
one-piece approximation and another using two-piece approximation
(denoted by I1-I2); ALA uses two-piece approximation (denoted by 2).
PWLM2: LA uses two-piece approximation, but with one input
approximated using FP754 and another approximated using FPNP2
(denoted by N1-N2); ALA uses three-piece approximation (denoted by
3).

implemented as M ′
AB [q]. Therefore, the implementation of

the exponent computation mainly depends on the use of
FP754 or FPNP2. Typically, the use of FPNP2 leads to a
larger circuit.

As shown in Table 5, the example designs are compared
with two recent LFPMs, LAM [20] and FPLM [21], with
respect to the error metrics and hardware performance.
They are evaluated from three FP precision levels: 32-bit
single-precision, 16-bit half-precision and Bfloat16 format
[29] respectively in the form of (1, 8, 23), (1, 5, 10) and (1,
8, 7) bits for the sign, exponent and mantissa, respectively.
The Exact FP multiplier (EFM) is considered as the baseline.
Note that LAM [20] and FPLM [21] can be generated using
the proposed approximation methodology. The four LFPMs

were implemented in Verilog and an EFM was obtained
using the Synopsys DesignWare IP library (DW fp mult).
All of the designs were synthesized using the Synopsys
Design Compiler (DC) for STM’s CMOS 28-nm process and
were evaluated with 250-MHz clock frequency. Moreover,
to simulate data in DSP and NNs, error results are ob-
tained by considering random FP numbers with standard
normal distribution [25]. In the single-precision format,
PWLM1 requires a 51× smaller PDP and a 15× smaller
area compared to EFM. PWLM1 and PWLM2 are more
accurate than LAM with up to 23.7% smaller MRED, but
with larger hardware costs. PWLM1 and PWLM2 show up
to 39% and 34% smaller PDPs, respectively, than FPLM with
lower accuracies as the trade-off. In the half-precision and
Bfloat16, PWLM1 and PWLM2 consume at least 1.4× and
1.2× smaller PDPs, respectively, than FPLM. Note that the
error metrics for PWLM1 that are shown as identical to
PWLM2 are smaller by less than 0.01.

5.2 Applications

This section assesses the capabilities of PWLMs in two error
tolerant applications of JPEG compression and NN training.

5.2.1 JPEG Compression

As a widely used lossy compression algorithm, JPEG com-
presses digital images using the discrete cosine transform
(DCT). In this experiment, we perform the JPEG compres-
sion of two standard test images including “Lena” and
“cameraman”. The 256×256 image pixels in the spatial
domain are first converted into the frequency domain. The
quality level for the compression is set to 50 in the exper-
iment. Then, the high-frequency information is then dis-
carded by using the standard quantization matrix. The com-
pressed image is reconstructed based on de-quantization
and the inverse DCT (IDCT).

The multiplications in the DCT and IDCT were imple-
mented by using the EFM and LFPMs. The qualities of the
decompressed images using different multipliers compared
with the original uncompressed images are assessed by the
metric of the peak signal noise ratio (PSNR), as shown in
Table 5. A higher precision leads to a higher quality of
the decompressed image and the half-precision suits better
for JPEG compression compared with Bfloat16 format. The
experiment results also suggest that the quality deteriora-
tion of images processed by LFPMs measured by the PSNR
can be estimated by accuracies of LFPMs indicated by error
metrics for all 32-bit and 16-bit precisions. The PSNR values
obtained by using PWLM1, PWLM2, and LAM are similar
to each other due to their similar MAED and MARED
results. Therefore, MAED and MARED are more accurate
to predict the PSNR result for JPEG compression compared
with the other two error metrics.

5.2.2 Neural Networks

The conventional FP multiplier is replaced with approxi-
mate designs in both the training and the inference phases
of an MLP by using the Pytorch framework [30]. The same
multiplier is used for both the training phase and inference.
The MNIST [31] and an MLP network of (784, 128, 10) model

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 10

were considered for comparison. For a fair evaluation, all
the results are obtained under the same experimental setup.

As shown in Table 5, both PWLM1 and PWLM2 increase
the classification accuracy compared to the NN with EFM
in single-precision and PWLM1 achieves a higher accuracy
in half-precision compared to the FPLM and LAM. The
Bfloat16 is advantageous over half-precision; moreover, the
use of FPLM achieves the highest classification accuracy
among all the LFPMs. The classification accuracy in NNs
is not strictly consistent with the results in error metrics. A
more accurate multiplication result does not always lead to
a higher classification accuracy. Therefore, it is necessary to
utilize the proposed library of PWLMs to explore the rela-
tionship between different error metrics and classification
accuracy for better use of approximate FP multipliers in NN
training.

An artificial neuron in the Bfloat16 format was imple-
mented to assess the overall hardware cost of NNs since
the FP multiplier designs perform well for classification
with low energy in this format. The FP adder used in the
neuron was obtained using the Synopsys DesignWare IP
library (DW fp add). The simulation results in Table 6 were
obtained at a clock frequency of 125 MHz. It is shown that
a neuron using the proposed PWLM1 and PWLM2 show
up to 3.9× and 3.7× smaller PDPs, respectively, than the
neuron using EFM.

TABLE 6: Circuit Assessment of the Artificial Neuron in the
Bfloat16 Format

EFM FPLM [21] LAM [20] PWLM1 PWLM2
AppM - N2-N2-2 I1-I1-2 I1-I2-2 I2-N2-3

Power (µW) 144.2 59.1 54.8 56.5 57.8
Area (µm2) 1075.1 537.1 486.1 505.2 514.5
Delay (ns) 6.5 4.4 4.2 4.2 4.3
PDP (fJ) 941.6 263.3 230.2 237.3 248.5

6 CONCLUSION

In this paper, an approximation design framework using the
piece-wise function is proposed for generating logarithmic
FP multipliers with various accuracies and hardware de-
signs. The proposed logarithmic FP multipliers are based
on two FP number representation formats, the IEEE 754
Standard FP Format and the Nearest Power of Two FP
Format. Consider both logarithm and anti-logarithm, the
applicable regions are divided into several intervals; two
approximation methods with positive or negative errors
are then respectively considered for each interval. Both the
LA and ALA can be simply implemented by shifting and
multiplexing operations. Various configurations of approxi-
mation lead to approximate FP multiplier designs with dif-
ferent error characteristics, which support an assessment of
error sensitivities of applications. The generic circuit design
for the proposed logarithmic FP multipliers is discussed
with some simplification methods. Two example designs
achieve up to a 51× smaller PDP and a 15× smaller area
compared to the exact FP multiplier, while being 23.7% more
accurate than Mitchell’s logarithmic FP design. Their appli-
cations in NN training show high classification accuracy.
The proposed library of logarithmic FP multipliers provides
potential solutions for efficient NN training through analyz-
ing its inherent error tolerances for different error metrics.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada (Project
Numbers: RES0048688, RES0051374 and RES0054326). T.
Zhang was supported by a Ph.D. scholarship from the China
Scholarship Council.

REFERENCES

[1] O. Gustafsson and N. Hellman, “Approximate floating-point op-
erations with integer units by processing in the logarithmic do-
main,” in ARITH, 2021, pp. 45–52.

[2] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point num-
bers,” NIPS, vol. 31, 2018.

[3] F. Kainz, R. Bogart, and D. Hess, “The openexr image file format,”
ACM SIGGRAPH Technical Sketches, 2003.

[4] M. Segal and K. Akeley, “The opengl® graphics system: A specifi-
cation (version 4.6 (core profile)-may 5, 2022).”

[5] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in ETS. IEEE, 2013, pp. 1–
6.

[6] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approx-
imate arithmetic circuits: A survey, characterization, and recent
applications,” Proc. IEEE, vol. 108, no. 12, pp. 2108–2135, 2020.

[7] D. Peroni, M. Imani, and T. S. Rosing, “Runtime efficiency-
accuracy tradeoff using configurable floating point multiplier,”
TCAD, vol. 39, no. 2, pp. 346–358, 2018.

[8] V. Camus, J. Schlachter, C. Enz, M. Gautschi, and F. K. Gurkaynak,
“Approximate 32-bit floating-point unit design with 53% power-
area product reduction,” in ESSCIRC. IEEE, 2016, pp. 465–468.

[9] M. Franceschi, A. Nannarelli, and M. Valle, “Tunable floating-
point for artificial neural networks,” in ICECS. IEEE, 2018, pp.
289–292.

[10] P. Yin, C. Wang, W. Liu, E. E. Swartzlander, and F. Lombardi,
“Designs of approximate floating-point multipliers with variable
accuracy for error-tolerant applications,” J. Signal Process. Syst.,
vol. 90, no. 4, pp. 641–654, 2018.

[11] M. Imani, D. Peroni, and T. Rosing, “CFPU: Configurable floating
point multiplier for energy-efficient computing,” in DAC. IEEE,
2017, pp. 1–6.

[12] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power
by optimizing the necessary precision/range of floating-point
arithmetic,” TVLSI, vol. 8, no. 3, pp. 273–286, 2000.

[13] C. Yan, X. Zhao, T. Zhang, J. Ge, C. Wang, and W. Liu, “Design of
high hardware efficiency approximate floating-point FFT proces-
sor,” IEEE TCASI, 2023.

[14] X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui,
S. Venkataramani, K. El Maghraoui, V. V. Srinivasan, and
K. Gopalakrishnan, “Ultra-low precision 4-bit training of deep
neural networks,” NeurIPS, vol. 33, pp. 1796–1807, 2020.

[15] P. Lee, “An evaluation of a hybrid-logarithmic number system
dct/idct algorithm [image compression applications],” in ISCAS.
IEEE, 2005, pp. 4863–4866.

[16] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong,
“Lognet: Energy-efficient neural networks using logarithmic com-
putation,” in ICASSP, 2017, pp. 5900–5904.

[17] T. Zhang, Z. Niu, and J. Han, “A brief review of logarithmic
multiplier designs,” in LATS. IEEE, 2022, pp. 1–4.

[18] B. Xiong, S. Fan, X. He, T. Xu, and Y. Chang, “Small logarithmic
floating-point multiplier based on FPGA and its application on
MobileNet,” TCAS II, 2022.

[19] C. Chen, W. Qian, M. Imani, X. Yin, and C. Zhuo, “Pam:
A piecewise-linearly-approximated floating-point multiplier with
unbiasedness and configurability,” TC, 2021.

[20] T. Cheng, Y. Masuda, J. Chen, J. Yu, and M. Hashimoto,
“Logarithm-approximate floating-point multiplier is applicable to
power-efficient neural network training,” Integration, vol. 74, pp.
19–31, 2020.

[21] Z. Niu, T. Zhang, H. Jiang, B. F. Cockburn, L. Liu, and
J. Han, “Hardware-efficient logarithmic floating-point multipliers
for error-tolerant applications,” IEEE TCASI, vol. 71, no. 1, pp.
209–222, 2024.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, FEBRUARY 2024 11

[22] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxLib: Library of
FPGA-based approximate multipliers,” in DAC. IEEE, 2018, pp.
1–6.

[23] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoap-
prox8b: Library of approximate adders and multipliers for circuit
design and benchmarking of approximation methods,” in DATE.
IEEE, 2017, pp. 258–261.

[24] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, 2019.

[25] M. S. Ansari, B. F. Cockburn, and J. Han, “An improved logarith-
mic multiplier for energy-efficient neural computing,” TC, vol. 70,
no. 4, pp. 614–625, 2020.

[26] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Trans. Electron. Comput., no. 4, pp. 512–517, 1962.

[27] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability
of approximate and probabilistic adders,” TC, vol. 62, no. 9, pp.
1760–1771, 2012.

[28] S. E. Ahmed and M. Srinivas, “An improved logarithmic multi-
plier for media processing,” J. Signal Process. Syst., vol. 91, no. 6,
pp. 561–574, 2019.

[29] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil et al., “A domain-
specific supercomputer for training deep neural networks,” Com-
mun. ACM, vol. 63, no. 7, pp. 67–78, 2020.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” NeurIPS,
vol. 32, 2019.

[31] Y. LeCun and C. Cortes, “The MNIST database of handwritten
digits,” http://yann.lecun.com/exdb/mnist/.

Tingting Zhang (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees in
the College of Electronic and Information Engi-
neering from the Nanjing University of Aeronau-
tics and Astronautics (NUAA), Nanjing, China,
in 2016 and 2019, respectively. She is working
toward the Ph.D. degree in the Department of
Electrical and Computer Engineering, University
of Alberta, Alberta, Canada, since Sep. 2019.
Her research interests include approximate com-
puting, Ising computing, combinatorial optimiza-

tion and nanoelectronic circuits and systems.

Zijing Niu received the B.Sc. in Microelectronic
Science and Engineering from Sichuan Univer-
sity, Chengdu, China, in 2018, and the M.Sc.
degree in the Department of Electrical and Com-
puter Engineering from the University of Alberta,
Edmonton, AB, Canada, in 2023. Her research
interests include approximate computing and
hardware designs for accelerating deep learning
applications.

Jie Han (Senior Member, IEEE) received the
B.Sc. degree in electronic engineering from Ts-
inghua University, Beijing, China, in 1999, and
the Ph.D. degree from the Delft University of
Technology, Delft, The Netherlands, in 2004. He
is currently a Professor with the Department of
Electrical and Computer Engineering, Univer-
sity of Alberta, Edmonton, AB, Canada. His re-
search interests include approximate computing,
stochastic computing, reliability and fault toler-
ance, nanoelectronic circuits and systems, and

novel computational models for nanoscale and biological applications.

