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Abstract—The base-2 logarithmic arithmetic converts multipli-
cation to hardware-efficient shift and addition. Aimed for a good
trade-off between circuit complexity and accuracy, a logarithmic
multiplier inherently introduces inevitable approximation into the
computation. This paper briefly reviews logarithmic multiplier
designs from different perspectives on improving performance
and accuracy, followed by a summary of their applications in
error-tolerant systems.

Index Terms—Approximate computing, logarithmic multiplier,
neural network

I. INTRODUCTION

The logarithmic number system (LNS) is an alternative to
conventional fixed-point (FxP) and floating-point (FP) number
representations in a digital system. It benefits from a wider
numerical range than FxP [1], a lower round-off noise than FP
[2] and a milder switching activity [3]. Recent researches show
that the LNS with a reduced bit-width of numbers achieves
a high output quality when implementing impulse response
filters [4], [5] and training neural networks (NNs) [6]–[8].

Approximate computing has emerged as a low power tech-
nique by exploiting the inherent error resiliency in applications
such as digital signal processing and NNs [9], [10]. As a fun-
damental arithmetic operation, multiplication often dominates
the performance of circuits and systems. Therefore, designs
of approximate multipliers have extensively been investigated,
including logarithmic multipliers (LMs) [11].

Without using a complex procedure, the base-2 logarithmic
arithmetic converts multiplication to simple additions and
bit-shifting, therefore achieving a significant improvement in
hardware efficiency [12], [13]. In this paper, we review both
FxP and FP LMs from different design perspectives, as well
as their error tolerant applications.

The remainder of this paper is organized as follows. Section
II presents the related work. LMs are reviewed in Section III.
Sections IV summarizes the applications. Section V concludes
this paper and discusses future prospects.
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II. RELATED WORK

Approximate multipliers have extensively been studied to
achieve a good trade-off between accuracy and hardware
efficiency for error tolerant applications [11]. The accuracy
is evaluated by using a number of error metrics [14], such
as the error rate, the error distance, and the root-mean-square
error.

Approximate non-logarithmic multiplier designs mainly fo-
cus on the simplification in partial product (PP) generation
and accumulation for signed and unsigned multiplications.
Approximation in the PP generation, for example, includes
the use of an approximate 2 × 2 multiplier to construct
larger unsigned multipliers [15], [16], approximate encoding to
reduce the delay of calculating the triple multiplicands for the
radix-8 Booth encoding algorithm [17], [18], and approximate
encoders for the radix-4 Booth encoding algorithm [19]–
[21]. Approximation in the PP accumulation includes the
use of truncation [22], approximate PP trees [23], [24], and
approximate compression using approximate adders [25], [26]
or compressors [27]–[30].

LMs deliver a mathematically elegant solution by replacing
multiplication with addition and shifting. Mitchell first pro-
posed a simple approximation method for binary logarithmic
conversion [31]. However, its error characteristic of always
underestimating the product leads to a dramatic error accu-
mulation in circuits and systems [11]. Thus, more hardware-
efficient LM designs have recently been pursued for a higher
accuracy in intensive computations [32]–[34].

III. LOGARITHMIC MULTIPLIER DESIGNS

A. Preliminaries

Let N be an m-bit number in the binary representation,
N =

∑m−1
i=0 2ini, where ni denotes the bit value at the ith

position. Let k denotes the position of the leading ‘1’ bit, we
obtain N = 2k +

∑k−1
i=0 2ini. The binary (base-2) logarithm

of N is given by:

log2 N = log2(2
k(1 + x)) = k + log2(1 + x), (1)

where x (=
∑k−1

i=0 2i−kni and 0 ≤ x < 1)) represents the
fractional part and k indicates the exponent. If P = AB,
log2 P is computed as:

log2 P = kA + log2(1 + xA) + kB + log2(1 + xB), (2)978-1-6654-5707-1/22/$31.00 ©2022 IEEE



where the exponents and fractional parts of A and B
are respectively denoted with the corresponding subscripts.
Mitchell’s method approximates log2(1 + x) by x, leading
to [31]:

log2 P
∼= kA + kB + xA + xB . (3)

The final product P is obtained by using an antilogarithm
function to compute 2log2 P . In Mitchell’s method, P is
approximately given by [31]:

P ∼=

{
2kA+kB (1 + xA + xB), xA + xB < 1,

2kA+kB+1(xA + xB), xA + xB ≥ 1.
(4)

The basic architecture of an FxP/FP LM is presented in
Fig. 1. It is implemented in three stages: (1) the logarithmic
conversion of the input operands, (2) the addition of the loga-
rithms, and (3) computing the antilogarithm and converting it
to the standard number representation. Consider signed FxP
multiplication in two’s complement; a signed to unsigned
(S2U) converter is particularly used to convert the inputs at
Stage 1. Different from an FP LM, an FxP LM requires
a leading one detector (LOD) and a priority encoder (PE)
to obtain the mantissa and the exponent for the logarithm
conversion. The LOD finds the most significant ‘1’ in each
input operand, whose bit position is then obtained by the
PE. The log converter implements a logarithm approximation.
At Stage 2, the multiplication is performed in the logarithm
domain by using two adders. At Stage 3, the sum of two
logarithms is approximately converted to its antilogarithmic
value. The results are then decoded to obtain the final product.
Lastly, the signs of the inputs, sA and sB , are XOR-ed to
obtain the sign of the product P .
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Fig. 1: A Logarithmic Multiplier Architecture.

B. A Review

In this section, LMs are reviewed from different perspectives
in the design process.

1) Computing Architecture: The iterative LM (ILM) im-
proves the accuracy of Mitchell’s LM by compensating errors
through an iterative procedure [32]. The general architecture
for an ILM is shown in Fig. 2. The basic block computes the
approximate product of two inputs using the LM, followed by
an error term calculator (ETC) to generate two errors. Then,
the LM serves as the error compensation block (ECB) by
multiplying these two errors to obtain the error compensation
term, which is then added to the approximate product as the
final product. The use of additional ECBs leads to a higher
accuracy at a cost of a larger circuit.

To reduce the critical path delay in the basic block, pipelin-
ing is used to implement the ILM in [32] for a higher level
of parallelism. However, for a higher performance, the ILM
neglects the comparison between xA+xB and 1 in (4), thus at
a cost of accuracy. The truncated ILM in [35] compensates this
error by considering the comparison prior to the completion of
the current iteration and utilizes truncation to reduce hardware.
A low-cost two-stage ILM further compensates errors in the
addition and uses a truncated LM [36].
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Fig. 2: An Iterative Logarithmic Multiplier Architecture.

2) Input Preprocessing: Some LM designs first preprocess
the input operands to simplify the circuit or to improve the
accuracy of Mitchell’s logarithmic approximation.

a) Hardware-oriented: As a common technique, trunca-
tion has been considered in iterative and noniterative LMs
to generate smaller bit-width operands for processing [35]–
[39]. Especially, Yin et al. proposed a dynamic range LM for
signed and unsigned multiplication by dynamically truncating
input bits and setting the least significant bit of the truncated
operand to ‘1’ to compensate for the negative errors introduced
by Mitchell’s approximation [38]. Pilipović et al. split the
input operands into less and more significant sections, and
trimmed the less significant bits when the more significant
section contains at least one non-zero bit; otherwise, the more
significant section is trimmed [40]. Instead of using the S2U
units, Kim et al. approximated two’s complement with one’s
complement for signed multiplication to reduce computation
complexity [39].

b) Accuracy-oriented: Mahalingam and Ranganathan de-
composed the two input operands to four for decreasing the



probability that a bit ‘1’ occurs in the decomposed inputs,
thus reducing the switching power [41]. The hybrid-encoding
LMs developed in [42] and [43] first decompose the input
operands into two sections, and then apply the logarithm-based
and radix-4 Booth multiplication, respectively, to generate less
and more significant bits in the product.

3) LOD Designs: In FxP LMs, the LOD unit at Stage 1
accounts for about 49% and 54% of the area and energy,
respectively [44]. It detects the left-most ‘1’ and generates
a one-hot encoded output. For hardware efficiency, the LM
in [45] achieves a 3× speed up by first grouping the input
bits to sets of four, and then using OR gates and 4-bit LODs
to detect the leading ‘1’. Approximate 32-bit LOD designs
are constructed by 4-bit LOD units in [44] by using two
approaches. The first approach is to approximate 4-bit LODs
with a single fixed bias or dynamic biases determined by
a PE-controlled multiplexer. The second is to approximately
simplify a 32-bit LOD design by using an exact 16-bit LOD. It
partitions the 32-bit inputs into two parts. The more significant
half is processed by using an exact 16-bit LOD if it contains at
least one ‘1’; otherwise, the less significant half is processed.
To reduce large errors for small inputs, a scaling scheme is
further adopted by using bit-shift operations [44].

4) Logarithm Conversion: Mitchell’s method generates a
single-sided error distribution that leads to error accumulation.
To produce a double-sided error distribution, a nearest-one
logarithmic approximation finds the nearest power of two
for N [33]. When N − 2k < 2k+1 − N , it uses the same
logarithm as Mitchell’s method; otherwise, N is represented
as N = 2k+1(1− y), where 0 ≤ y < 1, and the logarithm is
approximated by log2 N

∼= k + 1− y. In a circuit implemen-
tation, instead of using LODs, a nearest-one detector (NOD)
was designed to detect the nearest power of two. Inspired by
this method, the logarithmic design in [34] generates a double-
sided error distribution for FP LMs.

5) Addition Units: To further improve hardware efficiency,
approximate designs have been considered for the mantissa
addition, including three types of approximate adders utilized
in [46]: the lower-part-OR adder (LOA) [47], the approximate
mirror adder-A3 (MAA3) [48] and the set-one adder (SOA)
[46]. The LOA calculates less significant bits by using OR
gates. In the MAA3, one of the two inputs is approximately
considered as less significant bits in the sum for addition.
The SOA sets the less significant bits to ‘1’s. Ansari et al.
used a modified SOA, which sets the less significant bits as
alternating ‘1’s and ‘0’s [33], [44].

IV. APPLICATIONS

LMs have been considered to improve the hardware ef-
ficiency of error tolerant systems, such as those for image
processing and machine learning.

Applications in image processing include multiplication
[43], [46], sharpening [37], [42], compression [43], smoothing
[40], [43], [49], and matching [32]. Two main evaluation met-
rics for image processing are the peak signal-to-noise ratio and
the structural similarity. Compared with exact multiplication,

the 16-bit signed FxP LM in [43] produces a similar output
for image multiplication and smoothing, and results in a slight
quality loss for image compression.

For NN-based applications, inference is less sensitive to
precision loss, so FxP LMs are usually applied for inference
[33], [36], [38]–[40], [42], [44]. The use of a 16-bit LM for
convolutional NN-based classification on MNIST, CIFAR-10,
and ImageNet ILSVRC2012 datasets achieves nearly the same
accuracy as that by using the exact design [36]. Interestingly,
compared to using the exact FxP multiplier, the use of an
8-bit FxP LM increases the classification accuracy of the
AlexNet with a smaller PDP [33]. Due to a wider range of
representation, hardware-efficient FP multipliers have been
used for the training of NNs [34], [50]. The FP LM was
evaluated for classifying MNIST at four precision levels. It
slightly improves the classification accuracy and uses less
energy for implementing a neuron in the single-precision
representation [34].

K-means clustering is an unsupervised machine learning
algorithm, which is used to partition data points into groups.
LMs can be applied to calculate the squared deviation between
points belonging to different clusters [38], [46]. The F-measure
value is commonly used to evaluate the quality of clustering.
Compared to the exact FxP multiplier, a 16-bit FxP LM
provides better F-measure values for the selected University of
California Irvine (UCI) benchmark datasets [46]. A dynamic
range LM leads to similar clustering results [38].

V. CONCLUSIONS AND PROSPECTS

Logarithmic multipliers significantly improve the hardware
efficiency of error-tolerant applications by converting multi-
plication to addition and shifting operations. In this paper,
logarithmic multipliers are briefly reviewed from different
design perspectives.

Compared with non-logarithmic approximate multipliers,
Mitchell’s logarithmic multiplier benefits from its simple struc-
ture, but with a large accuracy loss due to the underestimated
product. Aimed for an optimized accuracy, the iterative loga-
rithmic algorithm suffers from a large circuit area and a long
delay required for error compensation. Hybrid logarithmic
multipliers that collaboratively use Mitchell’s approximation
and a more accurate computation method for respectively
encoding less and more significant input bits, worth further
investigation for a better trade-off between hardware and
accuracy. Moreover, dedicated approximate circuits can be
designed to compensate errors due to the logarithmic approx-
imation for improvements in both hardware and accuracy.

For emerging NN applications, a state-of-the-art 4-bit train-
ing strategy based on a logarithmic radix-4 format shows
a great potential of using the LNS with a small bit width
for a significant hardware improvement. There is also some
evidence that the use of logarithmic multipliers is likely to im-
prove accuracy for classification. However, it is a challenge to
generalize this result. An analysis on the relationship between
the error characteristics of LMs and the various features of



NN applications may help understand this important issue. The
verification and test of LMs remain open for future research.
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