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THERE IS RENEWED INTEREST in using hardware

redundancy to mask faulty behavior in nanoelectronic

components. In this article, we go back to the early ideas

of von Neumann and review the key concepts behind N-

tuple modular redundancy (NMR), hardware multiplex-

ing, and interwoven redundant logic. We discuss several

important concepts for redundant nanoelectronic system

designs based on recent results. First, we use Markov chain

models to describe the error-correcting and stationary char-

acteristics of multiple-stage multiplexing systems. Second,

we show how to obtain the fundamental error bounds by

using bifurcation analysis based on probabilistic models

of unreliable gates. Third, we describe the notion of ran-

dom interwoven redundancy. Finally, we compare the reli-

abilities of quadded and random interwoven structures by

using a simulation-based approach. We observe that the

deeper a circuit’s logical depth, the more fault-tolerant the

circuit tends to be for a fixed number of faults. For a con-

stant gate failure rate, a circuit’s reliability tends to reach a

stationary state as its logical depth increases.

Two widely studied fault tolerance techniques that

use hardware redundancy to mask faults are NMR and

the multiplexed logic approach. The multiplexed logic

approach, motivated by the pioneering

work of John von Neumann, began as an

attempt to build early digital computers

out of unreliable components.1 This

approach and subsequent derivatives2-6

have provided insight on how to design

reliable nanoelectronic systems out of

components that might fundamentally

be less reliable than those of currently

available technologies.7,8 Quantum effects, increased

sensitivity to noise, and decreased fabrication toler-

ances inherent in nanoelectronics will all contribute to

reliability losses. Hence, questions arise as to what are

the error behaviors of a fault-tolerant system, and what

are the maximal error rates beyond which no reliable

designs are possible. With these understandings, new

questions arise: Are there new fault-tolerant designs that

are well-suited for nanoelectronics? If so, what are the

characteristics of these designs in contrast with theo-

retical models?

To address the first set of questions, we use a Markov

chain model to analyze a multiplexing system to infer

how system reliability depends on individual gate reli-

abilities. We then use bifurcation analysis of expressions

describing logic circuit behavior that account for the

probability of gate errors. To address the latter ques-

tions, we use interwoven redundant logic with ran-

domized connectivity to cope with, and even leverage,

the potential randomness of nanoscale interconnects

resulting from either failures or the random character-

istics of self-assembly. We then use simulations to exper-

imentally investigate the system behaviors of random
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interwoven redundancy and quadded structures with

multiple logical depths.

Conventional fault-tolerant techniques
based on hardware redundancy

To provide a background for our study, we briefly

review classical fault-tolerant techniques derived from

von Neumann’s multiplexing scheme.

Von Neumann’s multiplexing technique
In the 1950s, John von Neumann initiated the study of

techniques for the design of reliable systems using redun-

dant unreliable components.1 In his multiplexing struc-

ture, von Neumann considered two types of basic logic,

namely majority-voting and NAND logic. He duplicated

each logic gate N times and replaced each input with a

bundle of N lines; thus, each output bundle also had N

lines. For NAND logic, the inputs from the first bundle ran-

domly pair with those from the second bundle to form

the input pairs of the duplicated NANDs (as illustrated in

Figure 1). Instead of requiring all or none of the output

bundle’s lines to produce correct answers, von Neumann

set a certain critical (or threshold) level ∆ such that 0 <
∆ < 1/2. If the number of lines carrying the correct signal

was larger than (1 − ∆)N, he interpreted it as a positive

state of the bundle; if it was less than ∆N, he considered

it a negative state. By using a massive duplication of unre-

liable components, von Neumann concluded that the

construction can be reliable with a high probability if the

failure probability of the gates is sufficiently low (for

example, lower than approximately 10−2).1

In general, von Neumann’s construction requires a

large amount of redundancy (N > 103) and a low error

rate for individual gates. These features motivated exten-

sive research efforts in later decades to find the com-

plexity of redundancy required to cope with errors.

Pippenger offers a review of these efforts.5 Because

CMOS devices became dominant in industry and

showed an amazing performance in terms of reliability

and scalability, chip designers never used von

Neumann’s multiplexing technique in practice.

However, researchers have implemented many redun-

dancy techniques derived from von Neumann’s pro-

posal, such as triple modular redundancy (TMR) and

error-correcting codes (ECC), in high-reliability appli-

cations and in memory circuits.

N-tuple modular redundancy
As implied in von Neumann’s theory, N-tuple modu-

lar redundancy (NMR) designs—of which TMR is the

most-used particular case—have been used as bench-

marks for evaluating fault-tolerant approaches and have

been implemented in VLSI for high-reliability applica-

tions. NMR techniques, generally implemented at the

modular rather than gate level, use redundant compo-

nents to mask fault effects. In TMR, three identical mod-

ules perform the same operation, and a voter accepts

outputs from all three modules, producing a majority vote

at its output. In TMR, however, the reliability of a module

imposes a demanding requirement on a module’s size—

the modules involved in TMR should be modest in size

in relation to the error rate of an individual component

in the circuit; in other words, a module with many com-

ponents will present a serious limit on the upper bound of

the device error rate that TMR can tolerate.

A TMR circuit can be further triplicated. The obtained

circuit thus has nine copies of the original module and

requires two layers of majority gates to collect informa-

tion at outputs. This process can be repeated if neces-

sary, resulting in a technique called cascaded triple

modular redundancy (CTMR). Spagocci and Fountain

have shown that using CTMR in a nanochip with many

(for example, 1011or 1012) nanoscale devices would

require an extremely low device error rate.6 However,

the method might be effective in modest or small circuit

modules. Another disadvantage of the CTMR scheme is

that it introduces an exponential growth in redundancy

as the cascaded layers increase.

Interwoven redundant logic and quadded logic
Pierce generalized von Neumann’s and his contem-

poraries’ ideas on fault-tolerant logic to a theory termed

interwoven redundant logic.2 This theory interprets the

faults it considers as 0 → 1 and 1 → 0 faults. The error cor-

rection mechanism in interwoven redundant logic

depends on asymmetries in the effects of these two types

of binary errors. The effect of a fault depends on the value

of the erroneous input and the type of gate. Consider a

NAND gate, for instance. If the binary value of one of its

inputs is 0 while it should be 1, possibly because of a
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faulty gate or interconnection, the NAND’s output value

will remain a 1 regardless of the values of other inputs. If

an input value is 1 while it should be 0, the output will not

be stuck but will depend on other inputs. Thus, there are

two types of faults for a NAND gate. One is critical in the

sense that its occurrence on one of the inputs leads to a

stuck output; the other is subcritical in the sense that its

occurrence alone does not cause an output error. Hence,

alternating layers of NAND (or NOR) gates can correct

errors by switching them from critical to subcritical.

Quadded logic is an ad hoc configuration of the

interwoven redundant logic. It requires four times as

many circuits, interconnected in a systematic way, and

it corrects errors and performs the desired computation

at the same time. Researchers have studied quadded

logic for use with AND, OR, and NOT logic,3 and for use

with NOR logic.4 To illustrate quadded logic, we show

the schematic of a complementary half adder (com-

puting the complements of carry and sum, denoted as

cc and cs) in Figure 2 and its quadded form in Figure 3,

both implemented with NAND gates (including invert-

ers, which we consider a special form of NAND gate).

The quadded implementation in Figure 3 replaces

each NAND gate from Figure 2 with a group of four

NAND gates, each of which has twice as many inputs as

the one it replaces. The four outputs of each group are

divided into two sets of two outputs, each providing

inputs to two gates in a succeeding stage. The inter-

connections in a quadded circuit are hence eight times

as many as those used in the nonredundant form.

In this pattern of interconnection, any single error

introduced in the network is correctable by the network

itself, provided that the network is large enough. To

show this in Figure 3, assume that output B1 in stage B is

wrongly in the 0 state when it should be in the 1 state (a

critical 1 → 0 error for the NAND gate). Because of this

error, outputs D1 and D3 of stage D must

be 1; this can be erroneous, but it would

be a subcritical 0 → 1 error. Since out-

puts D2 and D4 of stage D are not in error

(thus in the correct 0 state), the subcriti-

cal errors at outputs D1 and D3 are

masked at stage E, producing the expect-

ed (correct) 1 state at all the outputs of

stage E. We observed that a subcritical 0

→ 1 error is even more promptly cor-

rected in the NAND network. In general,

a single critical error in a quadded circuit

will be eliminated after passing through

two stages, and a single subcritical error

will be corrected in the next stage after its occurrence.

The interconnect patterns in a quadded network are

important to the network’s capability of error correc-

tion, yet the rules are simple. The outputs of four gates,

numbered 1 to 4 in Figure 3, are divided into two sets.

Each set forms a pair of inputs and each pair feeds the

two gates with the same numbers as the set in succeed-

ing stages. If the four outputs are divided into two sets

of (1,3) and (2,4), for instance, set (1,3) will provide

inputs to gates 1 and 3 in the next stage and set (2,4) will

provide inputs to gates 2 and 4. There are three possi-

ble ways to break four inputs into two sets to form an

interconnect pattern: (1,2) and (3,4); (1,3) and (2,4);

and (1,4) and (2,3). The rule to arrange these patterns

is that the interconnect pattern at the outputs of a stage

must differ from the interconnect patterns of any of its

input variables.

The error correction property of a quadded NAND

network is in fact a result of its logical characteristics.

Let us take a look at the outputs of stage B in Figure 3:

B1, B2, B3, and B4. After passing through two NAND

stages, the outputs of stage B can be represented at

stage E by the following Boolean function:

B1B3 + B2B4

All Bs in this function should be the same in the

absence of errors, but any single error in the Bs will not

affect the function’s correct value.

In a quadded circuit, a single error is correctable in

at most two logic layers. Errors occurring on the circult’s

edge, however, might not be eliminated at outputs

(more specifically, a critical error within the last two lay-

ers or a subcritical error in the last layer is not cor-

rectable at outputs). Therefore, the gates on the edge

are critical in the sense that the failure of any critical
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gate will cause a high probability of failure for the whole

circuit. Because a single error is corrected within a

rather short logical path, many multiple errors do not

interact. Hence, multiple errors are also correctable in

many cases. This is a particular merit of quadded logic.

Markov chain models, error bounds,
and random interwoven redundancy

To build reliable systems out of unreliable compo-

nents, it is critical to consider the interplay of noise in

the individual gates, the degree of redundancy, and sys-

tem reliability. We integrate these aspects to present a

coherent picture, using Markov chain models and bifur-

cation analysis. We also present random interwoven

redundancy, which sprouted from the multiplexing

technique, as a generalization of N-tuple modular

redundancy with random interconnections.

Markov chain models of multiplexing systems
As CMOS technology enters the deep-submicron

realm and novel electronic devices that target

nanoscale applications emerge, reliability has become

a crucial issue for nanoelectronics. Nikolić, Sadek, and

Forshaw recently proposed von Neumann’s multiplex-

ing technique for implementing highly redundant, fault-

tolerant nanoelectronic systems.9 Han and Jonker

extended the study of NAND multiplexing to consider

a fairly low degree of redundancy and first used Markov
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chain models to study multiple-stage multiplexing sys-

tems.10 In von Neumann’s original proposal, he dupli-

cated the multiplexing unit to form a restorative unit,

which he used to annul the possible degradation

caused by the so-called executive unit. For large bun-

dle size N, von Neumann concluded that the output

error rate is a stochastic variable with an approximately

normal distribution. For modest N, Han and Jonker used

binomial distributions with the Markov chain models to

explore the error behaviors in multiplexing systems.10

Given imperfect inputs (with 90% of the input lines stim-

ulated), we show the output error distributions of a

three-stage multiplexing system by using a Markov chain

model for N = 100 and ε = 0.01, where ε is the gate error

rate. As Figure 4 illustrates, the error level becomes

amplified after the first stage of multiplexing and then,

by the second stage, shifts to the other side of the dia-

gram (performing an imperfect AND function). After the

third stage, the output error distribution shifts back and

decreases to a lower level. This behavior shows the

error-correcting mechanism of the multiplexing struc-

ture. The “Probabilistic models of multiplexing systems”

sidebar briefly surveys recent work on the modeling of

multiplexing systems.

Error bounds for logic gates
Noisy NAND gates are the building blocks of von

Neumann’s multiplexing scheme. For the basic gate

error, the simple von Neumann model assumes that the

gate flips the output with a probability of ε ≤ 1/2, while

the input and output lines function reliably. For a single

NAND gate (as in Figure 1), let X, Y, and Z denote the

probabilities of the two inputs and output being a 1. The

two inputs can be treated as independent in circuits with-

out closed loops or fan-out. Thus, by assuming first that

the NAND gate is fault free, the probability Z of the out-

put being a 1 (by at least one of the inputs being a 0) is 

1 − XY. If the gate has a probability ε of making a von

Neumann error, the probability of its output being a 1 is10

Z = (1 − ε)(1 − XY) + εXY = (1 − ε) + (2ε − 1)XY (1)

We can see that X = Y constitutes the worst-case sce-

nario, so we consider X = Y next.

Let us consider a network of NAND gates and label

a sequence of the gates by index i, such that i = 1 to n,

where the output of gate i becomes an input to gate i +
1. If the two inputs of any gate are equally probable to

be a 1, Equation 1 reduces to a simple nonlinear map:

Xn+1 = (1 − ε) + (2ε − 1)Xn
2 (2)

In such a map, ε is called a bifurcation (or controlling)

parameter. Equation 2 corresponds to a circuit with a

binary tree structure where each node is a NAND gate.

We can examine the dynamic behavior of the map

through bifurcation analysis. Computationally, this

involves the iterative execution of Equation 2. For any

fixed ε (0 < ε < 1/2), we arbitrarily choose an initial

value for X0 and then iteratively calculate Equation 2.

After a sufficiently large number of iterations such that

the map’s solution has converged to some attractors, we

retain, say, the last 100 iterations, and plot those 100

points against each ε. Figure 5 shows this diagram 

(p. 334). Such a bifurcation analysis of Equation 2

reveals that a period-doubling bifurcation occurs at11

ε∗ = 0.08856

When n is large, the system has a stable fixed-point solu-

tion x0 for any ε when ε∗ < ε < 1/2. When 0 ≤ ε < ε∗, x0

loses stability, and the motion is periodic with a period

of 2 (corresponding to the odd and even layers of

NAND gates). We label these two periodic points as x+

and x− in Figure 5. For a NAND gate to function reliably,

two identical inputs of 1 or 0 should output a 0 or 1,

respectively. Thus, we see that 0 ≤ ε < ε∗ is the parame-

ter interval at which the NAND gate can function. When

ε > ε∗, we interpret output x0 as neither 1 nor 0, hence,

it is what von Neumann called a state of irrelevance.
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We can readily extend bifurcation analysis for find-

ing error threshold values to arbitrary K-input NAND

gates, majority gates, and any combinations of logic

gates.11 The error threshold value for a noisy three-input

NAND gate is 0.1186 and reaches 0.1330 for a five-input

NAND gate, which is nearly 50% larger than that for K =

2. Because of the inclusion of inverters, however, the

error threshold value for a combination of NAND gates

and inverters decreases to 0.0107. As we discuss later,

NAND gates and inverters are the basic building blocks

of our new design of random interwoven redundant

logic.
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Recently, Qi, Gao, and Fortes analyzed Markov-chain-
based multiplexing systems1 using bifurcation analysis, a
method widely used for studying state transitions of dynam-
ical systems that have multiple stationary states or oscilla-
tory behavior. The analysis showed that the stationary
distribution of a Markov chain characterizes a system’s
behavior. In a long run, the stationary distribution can
degenerate into one peak (unimodal) or two peaks
(bimodal), depending on whether the error probability of
NAND gates is larger or smaller than a threshold value.
Based on these understandings, Qi, Gao, and Fortes used
a new scheme involving gate error rate ε to obtain adaptive
threshold ∆ for output bundles; they showed that the system
reliability improves rapidly with increasing redundancy.1

However, the numerical analysis employing Markov
chain models only gives an approximate evaluation of the
output reliability of a multiplexing system. The larger the
bundle size N, the better the approximation. When N
becomes small, however, neither the binomial nor the nor-
mal distribution model used in Markov chains presents a
good approximation because of the correlations among
input errors. So the analytical approach using the multi-
plexing theory does not apply to systems with low redun-
dancy (N < 10, for example). Norman et al. identified this
limitation as an incorrect modeling of the random permu-
tation of inputs using a “random choice with replacement.”2

To address this problem, Norman et al. and Bhaduri and
Shukla proposed a CAD method based on probabilistic
model checking, and used the idea of folding space into
time to mitigate the state space explosion problem in mod-
eling multiplexing systems.2,3 Sadek, Nikolić, and Forshaw
extended the Markov chain approach to consider the sto-
chasticity of gate error probability, performing Monte Carlo
simulations to study the error behavior in a multiplexing
nanosystem.4 Roy, Beiu, and Sulieman used an exact
analysis using combinatorial arguments to model majori-
ty-based multiplexing systems that have small redundancy
factors.5 Han and Jonker equipped a Markov-chain-based
multiplexing system with hierarchical reconfigurability for
protection against both permanent and transient errors.6

Bahar, Chen, and Mundy proposed fault-tolerant designs
employing Markov random fields that relate thermal ener-
gy and entropy,7 and Bhaduri and Shukla extended the
study to consider interconnect noise.3 Krishnaswamy et al.
used an approach based on probabilistic transfer matri-
ces of joint and conditional probabilities of signals to eval-
uate circuit reliability.8
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Random interwoven redundancy
To make a statistical analysis, Markov chain models

adopted a highly abstract circuit structure consisting of

chains of identical multiplexing stages. While in the

process of searching for error bounds, we actually used

an ad hoc network to construct the bifurcation nonlin-

ear map. Obviously, neither of the two structures repre-

sents a practical implementation. To improve upon this,

we present a new design of interwoven redundant logic,

called random interwoven redundancy, which can

serve as the basis for building any realistic circuit.12 We

investigate the fault tolerance of random interwoven

redundant circuits through a simulation-based experi-

mental approach, which we present in the next section.

To explain the notion of random interwoven redun-

dancy, we start with its simplest form, triplicated interwo-

ven redundancy (TIR). Figure 6 shows the schematic of a

TIR implementation for the complementary half adder in

Figure 2. The TIR circuit triplicates each NAND gate in the

nonredundant circuit, as well as all the interconnections.

A TIR circuit thus has three times as many gates and inter-

connections as the corresponding nonredundant circuit.

The interconnections in a TIR circuit are, in principle,

arranged randomly. In a practical implementation, it’s

possible to substitute the random inter-

connections with arbitrarily selected stat-

ic ones that have specific routes. In a TIR

circuit comprising two-input NAND gates,

for instance, there are six possible pair

connections: {(1,1), (2,2), (3,3)}, {(1,1),

(2,3), (3,2)}, {(1,2), (2,3), (3,1)}, {(1,2),

(2,1), (3,3)}, {(1,3), (2,1), (3,2)}, and {(1,3),

(2,2), (3,1)}. Our notation (i,j) means that

the output of gate i in a triplet of gates,

pairs with the output of gate j in another

triplet to form the inputs of a gate in the

next stage. The total interconnect pattern

becomes 36 (or 6 × 6) if we distinguish

among the gate orders of a triplication in

the next stage. One method of arranging

the interconnections is to randomly adopt

one of the 36 connection patterns for all

connecting pairs in adjacent layers. As

shown in Figure 6, the interconnect pat-

terns used in the three layers from inputs

to outputs of the circuit are {(1,1), (2,2),

(3,3)}, {(1,2), (2,3), (3,1)}, and {(1,3), (2,1),

(3,2)}, although the circuit can use any

other interconnect pattern.

Notice that, if we use pattern {(1,1),

(2,2), (3,3)} in all layers for all interconnections, the cir-

cuit in Figure 6 will perform a computation as three inde-

pendent modules—it will actually work as a TMR circuit,

as depicted in Figure 7. TIR is hence a generalization of

TMR to allow for random interconnections. In our previ-
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ous work, we showed that the reliability of a TIR circuit

with random interconnections is in general comparable

with that of its TMR equivalent, although for certain inter-

connect patterns the TIR structure can present an inferior

performance to TMR because of its interwoven nature in

gate interconnections (by which a single error’s effect in

a circuit is not confined to only one set of outputs).12 The

randomness in the TIR interconnections is particularly

interesting in the physical implementation of molecular

electronics, for which stochastic chemical assembly will

most likely be the manufacturing method.

The principle of TIR is applicable to arbitrary logic

circuits. A general procedure for constructing a TIR cir-

cuit is as follows:

1. Start with a nonredundant form of the circuit.

2. Triplicate each gate.

3. Following the interconnect pattern of the nonre-

dundant circuit, randomly select a gate from a triplet

to use as an input for a gate that has no other inputs

from the same triplet.

4. Repeat Step 3 until all the gates are connected in the

TIR circuit.

As in TMR, a TIR circuit requires a decision element

(a voter) as a restoring device. TIR can be extended to

higher orders, namely, N-tuple interwoven redundancy

(NIR), similar to the extension of TMR to NMR. Hence,

NIR is a generalization of NMR, but with random inter-

connections. We have previously shown that the design

and implementation of voters are important for the NIR

structure.12 In general, using a simpler voter design

allows for better reliability in an NIR circuit, whereas an

increased complexity of voters in a higher-order NIR

can possibly degrade system performance. Since NIR,

unlike NMR, does not require systematic interconnec-

tions, it presents minimum precision requirements for

manufacturing devices and interconnects. It is therefore

favorable for implementing defect- and fault-tolerant

nanoarchitectures.

Experimental studies
Traditionally, there have been two different method-

ologies in designing fault-tolerant systems.5 One aims at

constructing reliable systems based on unreliable com-

ponents. In this approach, all components are subject

to a certain error probability, and thus the number of

faults scales up as the size of a system increases. The

other approach focuses on building systems that can

tolerate a fixed number of faults. We shall now show,

by using fault injection simulation and our simulation-

based reliability model, that it is possible to examine

these two fault scenarios at the same time.

Simulation-based reliability model
Researchers have proposed various analytical meth-

ods for reliability evaluation, but most are either

extremely complex or present inaccurate predictions

for practical designs. In this study, we perform a fault

injection simulation and develop a simulation-based

reliability model to investigate the effects of multiple

component failures in quadded and TIR structures. The

simulation procedure is as follows:

1. Starting from an initially fault-free circuit, randomly

select m (initially equal to 1) faulty gates and emu-

late a von Neumann (inversion) fault as an erro-

neous gate output.

2. Apply a set of input patterns to the circuit, which

contains injected faults. If the circuit provides the

correct outputs, repeat this step until the com-

plete set of input patterns has been tested.

Otherwise, increase the number of failed simula-

tions, k, by 1.

3. Increase the number of simulations performed thus

far, i, by 1. If i is less than N, the total number of sim-

ulations to be performed (N = 1,000 here), go to
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Step 1. Otherwise, proceed to Step 4.

4. Compute the failure rate of the simulated circuit for

the m injected faults: Fm = k/N. Increase the number

of faults injected into the circuit, m, by 1. If m is no

larger than the maximum number of faults, go to

Step 1. Otherwise, end the simulation.

In this simulation, we assume that faults appear in

logic gates, thus producing possibly faulty signals at

the outputs of the erroneous gates. Interconnect

faults, though not considered in this study, can readi-

ly be modeled in the simulation by accounting for

possible errors at both inputs and outputs. This simu-

lation procedure is, in principle, applicable to any

fault-tolerant circuit.

Each simulation produces a failure rate, Fm, for the

number of faults injected into the circuit. If every logic

gate has the same error rate, and errors are randomly

and independently distributed, the probability of a num-

ber m of faulty gates in a circuit follows the binomial

distribution (given by the Poisson approximation)

where p is the error probability of a logic gate, and m

and n are, respectively, the number of faulty gates and

the total number of gates in the circuit.

If we assume the number of faults, m, to be a random

variable, we can use failure rate Fm as a failure distribu-

tion in m. We can then obtain reliability distribution Rm,

which gives the probability that a circuit will continue

to properly operate in the presence of m faults: Rm = 1 −
Fm. We therefore obtain the reliability of the fault-toler-

ant circuit by summing up all the conditional reliabili-

ties with the presence of faults; that is,

(3)

Hence, we can obtain the reliability of a (fault-tolerant)

circuit from the simulation-based formula (Equation 3).

Simulations and experimental results
We applied our simulation procedure to the nonre-

dundant, quadded, and TIR forms of the complementary

half adder. To investigate their long-term reliability, we

cascaded the half adders to form multiple-stage systems;

that is, we connected the two outputs of a half adder to

the inputs of the half adder in the next stage. We can also

describe this structure as a serial half adder working in a

temporal domain by feeding back its own outputs to its

inputs. Note that we assume errors to be transient in this

case; they only affect one stage of the circuit.

In Figure 8, we show the failure rates we obtained for

the nonredundant, quadded, and TIR circuits consist-

ing of 2, 8, and 32 stages of half adders for a fixed num-
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ber of up to 8 faults. TIR requires insert-

ing triple voters for each stage as inter-

mediate restoring devices, unlike the

quadded structure, which does not

require restoring. The voters are assumed

to be realized using single-majority gates

and thus have the same error rate as the

NAND gates. Although other voter

designs are possible, we use the single-

gate structure here because of its imple-

mentability using several nanoscale

devices and the relatively small size of

the half adder. As a result of the voter

inclusion, the gate redundancies

involved in the TIR and quadded half

adders become similar.

In general, as shown in Figure 8, the

quadded structure presents an improved

performance over the nonredundant form

except for a few cases of multiple faults in

the two-stage circuits (Figure 8a). In a

small-scale circuit, the quadded structure

is more vulnerable to errors because a rel-

atively large percentage of its gates are critical ones. The

TIR structure has the best overall performance for all cir-

cuits of different lengths. This is partly because of a high

requirement we impose on the quadded structure—we

consider a quadded circuit reliable only when all of its

final outputs are correct, whereas a TIR circuit is reliable

as long as a majority of its final outputs are correct.

Comparing the same types of circuits with different

lengths shows that a lower failure rate results in a larger

circuit. In the presence of a single fault, for example, the

nonredundant structure’s failure rate falls from 100% for

a two-stage circuit down to approximately 4% for a 32-

stage circuit. We can draw similar conclusions for both

the quadded and TIR structures. This indicates that, for a

fixed number of faults, circuits with larger logical depth

tend to have better fault tolerance. This characteristic is

particularly interesting for a fault-tolerant design against

transient errors, for which single-event upsets are the most

common cause.

We present the results we obtained by using the sim-

ulation-based reliability model (which assumes a con-

stant gate failure rate) to account for increases in the

numbers of faults with increasing circuit size (that is,

number of stages). In Figure 9, we plot the reliabilities for

the nonredundant, quadded, and TIR circuits of different

lengths against the gate error rate. For all three structures,

as Figure 9 shows, the one-stage half adders perform the

best. This is actually because of their specific structures:

In a multiple-stage circuit, the fan-out appears to have a

great impact on error propagation. The circuit’s reliabili-

ty improves as the number of stages increases—because

of the compensating effects of multiple errors—until it

reaches a stationary state. This is consistent with the ana-

lytical results from using the Markov-chain models.

The TIR structure indeed provides the best fault tol-

erance, as Figure 9 reveals, whereas the quadded struc-

ture actually shows a worse reliability than the

nonredundant form. Figure 9 also shows that the relia-

bilities of the nonredundant circuits start to descend

rapidly at a gate error rate of approximately a few multi-

ples of 10−3, which is bounded by the theoretical error

bound obtained for combinations of NAND gates and

inverters. However, using the TIR structure elevates this

threshold value to approximately 10−2. Though the TIR

structure has better performance than the nonredundant

one, this is true only when the gate error rate is strictly

no larger than a threshold. For the TIR circuits in our

study, this value is approximately 0.07 for an (infinitely)

large logical depth; it differs for a circuit of lesser depth.

Finally, we consider random interwoven structures

with different degrees of redundancy. Figure 10 shows the

reliabilities obtained in our simulations for 3-tuple (TIR),

5-tuple (5IR), and 7-tuple (7IR) interwoven redundancy

circuits. It is evident that the higher the redundancy
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degree, the better the reliability. Hence, higher threshold

values for descending reliability require NIR circuits with

higher degrees of redundancy. For NIR, we assume that

each voter implementation uses a single-majority gate—

the use of complex voter designs might degrade the sys-

tem reliability of NIR as its degree of redundancy

increases.12 This indicates the significance of voters in an

implementation of random interwoven redundancy.

WE HAVE SHOWN that the complexity and number of

critical gates (that is, marginal gates in quadded circuits

and voters in NIR) are important for the reliability of a

fault-tolerant circuit. Therefore, a general idea for fault-

tolerant design is to minimize the complexity and frac-

tion of critical gates in a circuit. In our study of TIR and

NIR, we inserted triple voters at each stage. This restoring

process can in principle be applied to multiple stages to

reduce redundancy. However, the issue of granularity in

redundancy, as well as reliability-redundancy trade-offs,

await further investigation. ■
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