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Abstract 

Network-on-Chip (NoC) is widely used as a communication scheme in modern many-core 
systems. To guarantee the reliability of communication, effective fault tolerant techniques are 
critical for an NoC. In this paper, a novel fault tolerant architecture employing redundant routers is 
proposed to maintain the functionality of a network in the presence of failures. This architecture 
consists of a mesh of 2×2 router blocks with a spare router placed in the center of each block. 
This spare router provides a viable alternative when a router fails in a block. The proposed 
fault-tolerant architecture is therefore referred to as a quad-spare mesh. The quad-spare mesh can 
be dynamically reconfigured by changing control signals without altering the underlying topology. 
This dynamic reconfiguration and its corresponding routing algorithm are demonstrated in detail. 
Since the topology after reconfiguration is consistent with the original error-free 2D mesh, the 
proposed design is transparent to operating systems and application software. Experimental results 
show that the proposed design achieves significant improvements on reliability compared with 
those reported in the literature. Comparing the error-free system with a single router failure case, 
the throughput only decreases by 5.19% and latency increases by 2.40%, with about 45.9% 
hardware redundancy. 
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I. Introduction 

The advance of microchip technologies has led to a rapid increase in the number of 
processing elements (PEs) on a single chip. A variety of interconnection schemes have been 
proposed, including crossbars, rings, buses, and NoC (Network-on-Chip) [1]. The traditional bus 
is built on well understood concepts and is easy to model. In a highly interconnected multi-core 
system, however, it suffers from the issue of scalability. As more PEs are added to it, the 
capacitive load grows rapidly, leading to a dramatic performance degradation. Thus they are not 
considered appropriate for systems with more than ten nodes [2]. A crossbar overcomes some of 
the limitations of buses, but it is not ultimately scalable and is only an intermediate solution [3]. 
The packet-based Network-on-Chip is scalable and has been widely used to decouple 
communication from computation, thus improving performance. It is considered a promising 
solution to the interconnection challenges of future SoC designs [4

The reliability of an NoC is critical to guarantee reliable communication. With increasing 
fault rates and chip densities, the reliability of an NoC has increasingly become a challenge. Many 
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solutions have been proposed to sustain the reliability of a system, including fault tolerant routing 
algorithms [5,6] and various topologies for implementing the communication infrastructure [7,8

 
Fig. 1. Healthy PEs are isolated by faulty routers and broken links. 

 

]. 
These methods, however, do not make use of the good PEs when there is an error in the network. 
Packets are transported through one or more routers. A faulty network component may prevent 
healthy PEs from gaining access to the rest of the system or, even worse, prevent the entire system 
from operating reliably. For example, Fig. 1 shows four healthy PEs isolated by faulty routers and 
broken links. They cannot communicate with the other part of the network even though they could 
work correctly, thus leading to a waste of hardware resources because of the higher cost of a PE 
than that of a router or link.  

In this paper, a novel router-level redundant scheme, referred to as a quad-spare mesh, is 
proposed to solve the problem of isolated PEs by maintaining the network connectivity and thus 
functionality in the presence of faulty routers. In the quad-spare mesh, an NoC is divided into 2×
2 blocks. One spare router is placed in the center of each block, providing connectivity between 
fault-free NoC routers and healthy PEs in the presence of a faulty router. Once a faulty router is 
detected, network reconfiguration is performed dynamically through control signals without 
altering the underlying topology. The rest of the system does not have to stop working during 
reconfiguration. Therefore, this process is transparent to the upper layer, e.g. operating system and 
application software, so it can be easily implemented in the current hierarchical hardware/software 
system designs. The design is then evaluated with fault tolerance metrics including system 
reliability and mean time to failure (MTTF). Simulation results show that this scheme has 
achieved significant improvements by these metrics compared with those reported in the literature. 
For a 10×10 NoC, the MTTF of the proposed scheme is 40.0% higher than that of the design in 
[20]. In an NoC with a single error, the maximum throughput only decreases by 5.19% and the 
average latency increases by 2.40%, compared with the error-free case. The quad-spare NoC is 
implemented with TSMC 65nm technology and the result shows that about 45.9% additional 
hardware resources are needed to implement the proposed fault-tolerant architecture. 

The rest of this paper is organized as follows: Section II reviews related prior work on fault 
tolerant NoC designs. Section III describes the proposed fault tolerant NoC architecture. In 
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Section IV, evaluation and experimental results are presented. Finally, Section V concludes this 
paper.  

II. Related Work 

Faults in semiconductor devices fall into three main categories: permanent, intermittent, and 
transient [9]. Permanent faults are usually caused by manufacturing defects, aging effects, and/or 
physical damages to the resources that generate or transport data. One approach to dealing with 
permanent faults is fault tolerant routing, which involves isolating the entire router [10,11] or a 
few ports of a router [12

20
]. Another method for permanent fault tolerance is to use spare 

components to replace defective elements [ ]. Intermittent faults usually occur repeatedly at the 
same location and tend to occur in burst. They are more difficult to handle since subsequent errors 
can interrupt recovery from the effect of previous ones. Transient faults are usually caused by 
neutron and alpha particles, power supply and interconnect noise, electromagnetic inference and 
electrostatic discharge. Error detecting/correcting codes [13,14

Several fault tolerant routing algorithms have been proposed. In [

] are pervasively used to handle 
these errors. Our work focuses on dealing with permanent faults, which can be detected by add-on 
mechanisms such as Built-In Self-Test or periodic run-time testing. The proposed scheme could 
also be combined with error detecting/correcting codes for tolerating transient faults.  

5] and [15

With the ever increasing circuit density and available hardware resources on a chip, 
redundancy techniques have been widely utilized for achieving fault tolerance. Redundancy 
technique can be applied at different levels. Previous attempts include introducing 
microarchitecture-level redundancies [

], random walk 
and probabilistic flooding algorithms are presented; faulty links or congested routers are avoided 
in these algorithms. They are based on generating a number of packet copies in the flooding stage 
and sending them to the destination. These algorithms increase the load in a network and cause 
congestion, thus decreasing the throughput. Furthermore, they do not address the aforementioned 
problem of isolated PEs.  

16,17,18 19], core-level redundancies [ ] and router-level 
redundancies [20]. One simple rule about the use of redundant resources is that the simpler it is, 
the less likely it is to suffer a failure. The microarchitecture-level redundancy is appropriate for 
use in multi-core chips (e.g., a quad-core processor) to keep the overhead low. As the size of a 
mesh increases and the cost of a single router becomes relatively inexpensive compared with the 
entire NoC, microarchitecture-level redundancy is considered inefficient [19]. As a result, it is 
reasonable to provide redundancy at the router level [20

20
]. In the router-level redundant design 

proposed in [ ], each column has a common spare router located on the top row, which is shared 
by the routers of the column. This method works well, but the reconfiguration is complicated and 
cannot be performed dynamically. Hence, there is still room for improvement. The router-level 
redundant design proposed in this paper can be dynamically reconfigured and has a better 
reliability.  

III. Design of the Quad-spare Mesh  

 In this section, the proposed network topology with spare routers, i.e., the quad-spare mesh, 
is first presented. The topology reconfiguration algorithm is then developed to maintain the correct 
function of the system in the presence of faulty routers. This topology reconfiguration can work 
dynamically, i.e., the faulty routers can be replaced by spare ones while the NoC is working. 
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Finally, the routing algorithm based on a bypassing mechanism is introduced. 

3.1 Quad-spare Mesh Topology 

The topology of the quad-spare mesh is shown in Fig. 2(a). The original 2D mesh is 
partitioned into blocks. Each block has an array of 2×2 routers, with one spare router placed in 
the center of the block. The spare router is shared by the four routers in the block and can replace 
any of them if one becomes faulty. Hence, this design is referred to as a quad-spare mesh. Each 
router has six directions, namely N/E/S/W/SR/C, representing the north/east/south/west/spare 
router/PE respectively. The communication path between routers and the spare router in one block 
is shown in Fig. 2(b).  

 

  

Fig. 2. (a) Quad-spare mesh topology  (b)Communication path between routers 
 

The communication path between a PE and a router/spare router in one block is shown in Fig. 
3. Communication channels are divided into input and output channels. For clarity, the input and 
output channels of PEs in one block are shown in Fig.4 (a) and (b) respectively. The input port of 
each PE is connected to the original router and spare router by a 2-to-1 MUX. As to the output 
port, each PE is also connected to the original router and spare router. Because the spare router has 
only one input port, a 4-to-1 MUX is needed to select the PE whose router is replaced by the spare 
router. 
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Fig. 3. PE connections in a block  

  

Fig. 4. (a) Input channels of PEs (b) Output channels of PEs 
 

3.2 Topology Reconfiguration 

The reconfiguration works dynamically. Faults can be captured by add-on mechanisms such 
as the Built-In-Self-Test (BIST) or periodic online testing of circuits [21,22

Fig. 5 shows an example of a 4×4 NoC reconfiguration. In this example, the routers are 
numbered from 0 to 15. Routers 5 and 14 are faulty and are thus replaced by the spare routers in 
their blocks respectively. That is, Router 5 is replaced by SR0 and Router 14 is replaced by SR3. 
For paths between a spare router and routers in other blocks (e.g., SR0 to R6 and R9), a bypass 

]. When an error is 
detected, this information will be sent to the centralized topology-reconfiguration controller, so 
that adjacent routers will know which of their neighbors is faulty and then packets will be sent to 
spare routers. The topology of the NoC and the routing algorithm, which will be described in the 
next subsection, seem the same to the upper layer, such as operating system and application 
software. Assuming no delay, the system will not have to stop working to reconfigure the network. 
As a result, the proposed method is transparent to the upper layer, which is a great advantage. 
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mechanism is used. The controller connects the path from R6 to R5 and R5 to SR0 together, so 
that packets from R6 can be sent to the spare router, and the path between R9 to SR0 is the same. 
While for packets sending from SR0 to R6 or R9, a switch is used. The bypass switch is located 
outside the router. The switch works together with the spare router. The selection signal of the 
switch is generated by the routing module of the spare router. When an error occurs and a spare 
router is used, the switch functions as the faulty router. Because there are only two choices when a 
spare router routes packets to adjacent blocks, a single switch would meet the need. Connecting 
paths between routers and PEs have been shown in Figs. 3 and 4. They can be reconfigured by 
changing the selection signals on the 2-to-1 MUX and 4-to-1 MUX by controller. 

 
Fig. 5. An NoC reconfiguration example. For clarity, PEs, faulty routers and unused 

interconnections are not shown in the figure. 
 

3.3 Routing Algorithm 

A routing algorithm is indispensible in the topology reconfiguration. In the XY routing 
algorithm, a routing table can be easily obtained when given the current position and destination 
of packets, as shown in Table 1.  

Table 1. Routing Table* 

 
Ydest > Ycurrent Ydest < Ycurrent 

Ydest =Ycurrent 
Xdest > Xcurrent 

Ydest =Ycurrent 
Xdest < Xcurrent 

Ydest =Ycurrent 
Xdest = Xcurrent 

Routing 
Direction 

E W S N C 

* Xdest/Xcurrent/Ydest/Ycurrent are the coordinates of the destination and current routers. 
 
As discussed in the previous section, when an error is detected in the router, the error 

information will be sent to the controller, and then the controller will reconfigure the routing 
tables of adjacent routers, i.e., updating the faulty routing direction to “Spare Router” direction. In 
addition, the reconfiguration information will also be sent to the spare router. According to the 
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replacing position of the faulty router, namely NW, NE, SW or SE in the block, the routing table 
of a spare router is obtained as Table 2. If the spare router is routing to the direction of the faulty 
router, the selection signal for the switch is also generated by the spare router. In this way, packets 
can be transmitted between original routers and spare routers following the routing algorithm. 
Hence, the NoC works correctly when faulty routers are present.  

Table 2. Routing Table in Spare Router of Different Replacing Directions* 

Spare Router 
Replacing Direction 

Ydest > Ycurrent Ydest < Ycurrent 
Ydest =Ycurrent 
Xdest > Xcurrent 

Ydest =Ycurrent 
Xdest < Xcurrent 

NE NE NW SE NE 
SW SE SW SW NW 
SE SE SW SE NE 

NW NE NW SW NW 

* NE/NW/SE/SW are the port names of the spare router. 

IV. Evaluation and Experimental Results 

The proposed design is evaluated through mathematical analysis and simulation in terms of 
reliability, mean time to failure, system throughput, latency and area.  

4.1 Effective Reliability Analysis 

A system is considered to be reliable if all PEs function properly and exchange data correctly. 
In a traditional NN × mesh, if one router fails to work, the data being transmitted may get lost, 
thus deteriorating the performance. An NoC with spare routers, however, has the advantage of 
replacing the faulty router with a spare one to maintain the functionality of the network, therefore 
achieving a higher reliability. With more faulty routers in the system, NoC with spares can either 
replace all the faulty routers and continues to work, or cannot repair the network and fails to work. 
Whether it will work or not depends on the pattern of faulty routers.  

The reliability of an NoC system is defined as the probability of the system to function 
correctly, provided that each router works independently and fails with an error probability. Given 
the mesh size and the error rate of each router, a large number of patterns are randomly generated. 
The reliability of the NoC is then measured by the statistical outcome of the network working 
correctly. Another router-level redundant NoC design is presented in [20]. This design uses a spare 
router in each column, so it is referred to as the column-spare NoC and compared to the proposed 
quad-spare NoC. Fig. 6 shows the reliability of both quad-spare and column-spare NoCs in 
different sizes with different router error rates. It can be seen that the reliability of the quad-spare 
NoC is higher than the column-spare NoC. 
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Fig. 6. Reliability of various spare NoCs with different router error rates (the proposed design 

vs. the design in [20]) 
 
For systems of the same size, the proposed design uses more spare routers than that of [20]. 

A higher reliability is thus expected, as shown in Fig. 6. In this case, reliability may not an 
appropriate metric. For a fair comparison, therefore, a new metric referred to as effective 
reliability, is proposed and utilized for evaluation. The effective reliability takes into account the 
amount of redundancy introduced into a design and evaluates the effectiveness of utilizing 
redundancy to improve reliability. It is defined as:  

 
Redundancy  withRouters of Number

Redundancy  withoutRouters of Numbery  ReliabilitilityEff_Reliab ×=  (1)
 

The effective reliability of various NoCs with different numbers of error rates is shown in Fig. 
7. As can be seen, there is a threshold point, at which the quad-spare mesh technique starts to 
outperform the column-spare technique. This threshold is dependent on the router error probability 
and the size of the mesh. The quad-spare mesh technique works better for a larger error rate and/or 
in a larger network. Hence, it is more effective and provides a better fault-tolerance when more 
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routers are likely to fail in an NoC.  

 
Fig. 7. Effective reliability of various spare NoCs with different router error rates (the 

proposed design vs. the design in [20]) 
 

4.2 Time Degradation Reliability Analysis 

The performance of hardware may degrade with time. Next, time degradation is taken into 

consideration. The reliability of an NoC router )(tRr  is defined as the probability that a router 

works correctly from time 0 to t. It is determined by the error rate, )(tλ , which is a measure in the 

number of errors per time unit. After the router has been initialized, )(tRr  can be expressed 

using the exponential failure law [23
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and )4/( NNNN ×+×  quad-spare mesh are derived as follows. 

In the NN × mesh, all the routers must work correctly to ensure the system’s reliability. As 
a result, the reliability of the system is the product of all the routers’ reliability, shown as follows: 

 ( ) NN
rmeshsys RtR ×=)(_  (3) 

 
The column-spare mesh is spilt into N columns. Therefore every column must function 

correctly to ensure the system’s functionality. The reliability of such a system is then the product 

of each column’s reliability cR . Each column has N+1 routers. A column works correctly if either 

all the routers within the column are operational, which gives a reliability of 1+N
rR  , or N of the 

N+1 routers are operational. In the latter case, one of the N+1 routers is faulty, resulting in a 

reliability of ( )( )N
rr

N

N RRC −+ 11 .The reliability of the column-spare mesh is given by: 

 ( ) ( )( )[ ]NN
rr

N

N
N

r
N

csparecolsys RRRRtR C −+== ++ 1)( 11
__  (4) 

 
As to the quad-spare mesh, a system has (N / 2)2 blocks and every block has to work 

correctly to ensure the system’s reliability. The reliability of a system is then the product of each 

block’s reliability blockR . A block works correctly if at least four of the five routers in the block are 

operational. This leads to the reliability of the quad-spare mesh given by: 

 ( ) ( )( )[ ] 22 )2/(45

4
5)2/(

__ 1)(
N

rrr
N

blocksparequadsys RRRRtR C −+==  (5) 

  
In the reliability analysis using equations (3) (4) and (5), the error rate of a router is assumed 

to be 00315.0=λ (times/year) [24

 

]. The reliability of various meshes with different sizes over 1 
to 10 years is shown in Fig. 8. As can be seen, the spare mesh architectures outperform the 
traditional one and the quad-spare mesh has a higher reliability than the column-spare mesh. As 
the mesh size increases, the reliability decreases. However, the traditional mesh drops more 
quickly than the other two designs, while the quad-spare mesh has the most slowly decreasing 
reliability – it still maintains a reliability of nearly 0.8 in the 10th year.  

Fig. 8. Reliability in time of the traditional non-spare NoC, the column-spare NoC and the proposed 
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quad-spare NoC for different sizes. 
 
For a further comparison, the reliability gain is defined as the ratio of the reliability between 

a spare NoC and a non-spare NoC. The result is shown in Fig. 9. It can be seen that the reliability 
gain increases with the mesh size and time, and that the quad-spare NoC has a higher reliability 
gain than the column-spare NoC.  

 
Fig. 9. Reliability gain in time of the traditional non-spare NoC, the column-spare NoC and the 

proposed quad-spare NoC for systems of different sizes. 
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The mean time to failure (MTTF) is the average time before a system fails, which is usually 
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Take equation (3) into (6), the MTTF for an NN × mesh can be expressed as: 
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quad-spare mesh are respectively given by: 

 ( )( )[ ]∫
∞ ++ −+=

0

11
_ 1 dtRRRMTTF

NN
rr

N

N
N

rsparecol C  (8) 

 

 ( )( )[ ]∫
∞

−+=
0

)2/(44

5
5

_

2

1 dtRRRMTTF
N

rrrsparequad C  (9) 

 
The MTTF for different mesh sizes is shown in Fig. 10. The gain of MTTF is also depicted to 

highlight the effect of spare NoC with the NoC size. For a 10×10 NoC, the MTTF of the 
column-spare mesh is 1.236, while the proposed scheme is 1.731, which is 40.0% higher than the 
column-spare mesh. 

 
Fig. 10. MTTF and MTTF gain the traditional non-spare NoC, the column-spare NoC and the 

proposed quad-spare NoC for systems of different sizes. 

4.4 Throughput and Latency 

A flit-level simulator in C++ is used for measuring the throughput and latency. Wormhole 
switching is used as the switching technique of the router. Each input port has three virtual 
channels and each channel has a FIFO buffer to store four flits. Each PE can inject packets 
independently. The packet length is set to 16 flits, including one header flit. The destination of a 
packet is randomly determined, resulting in a uniform traffic pattern. The XY routing is used for 
this network, which routes packets along the X-axis first, and then Y-axis. The performance 
measures include system throughput and latency. 

In the simulation of throughput, 100 different fault patterns are randomly generated. In this 
evaluation, all PEs are assumed to be healthy, but only one randomly chosen PE is injecting 
packets. The throughput is the average number of flits received by the other PEs per clock cycle. 
Figs.11 and 12 show the throughput of 4×4 and 6×6 quad-spare NoCs, averaged over 100 
different fault patterns. As revealed in the figures, an error-free network has the highest throughput. 
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The throughput decreases as the number of faulty routers increases. However, in an N×N network 
with only a few faulty routers, our proposed design has the advantage of keeping the throughput 
almost the same as an error-free network. This is due to the fact that the spare routers can replace 
some faulty routers, thus maintaining the functionality of the network and the throughput.  

 
Fig. 11. Average throughput for a network of 16 PEs 

 

Fig. 12. Average throughput for a network of 36 PEs 
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Quantization), MC (Motion Compensation) and Deblocking blocks. In order to simulate the 
effectiveness of the proposed architecture on the H.264 decoder, the distribution of data 
transmission is calculated, as shown in Fig. 13. Each block is mapped onto one PE and another PE 
serves as a controller. The throughput is shown in Fig. 14.  

 

Fig. 13. Distribution of data transmission of each block in an H.264 decoder 

 
Fig. 14. Throughput of the H.264 decoder implemented using a 4×4 NoC 
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to the input port of a neighboring router. A packet may stay longer in the input buffer if there is a 
contention at the crossbar or the destined output is currently blocked. Virtual cut-through 
switching is assumed. 

We have simulated the NoCs with various sizes and various numbers of faulty routers. Due to 
limited space here, only the latency for the 4×4 quad-spare NoC is shown in Fig. 15, which 
demonstrates the typical results for most simulation cases. In the simulation, all the PEs inject 
packets into the network. Fig. 15 shows the simulation results for a 4×4 mesh with zero and 
single faulty router. The dots denote the simulation data, while a solid line is a fitting curve of the 
discrete data. For low traffic densities, the latency is kept around 50 cycles. However, as the 
density increases, network saturation occurs, resulting in a latency wall. When the number of 
faulty routers increases, the maximum throughput decreases and the average latency increases. 
The error-free NoC has a maximum throughput of 0.289 (flits/cycle/node) and an average latency 
of 49.31 (cycles), while single-error NoC has a maximum throughput of 0.274 (flits/cycle/node) 
and an average latency of 50.52 (cycles). Compared with the error-free NoC, the throughput only 
decreases by 5.19% and the average latency increases by 2.40%. 

 

Fig. 15. Latency for 4×4 mesh with zero and single faulty routers. The dots denote the simulation 
data. A solid line is the fitting curve of the discrete data. 

4.6 Hardware Implementation Result 

In a quad-spare NoC, one more port is added to each router in the mesh to provide 
connections to the spare router. Hence, each original router in the mesh has 6 ports, and the spare 
router has 5 ports. Take a 2×2 block for example. In a traditional non-redundant NoC, the number 
of ports is 5×4=20. As to the quad-spare NoC, this number is 6×4+5=29, resulting in a 45% 
increase. As the required hardware resource is approximately proportional to the number of ports, 
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the hardware overhead is estimated to be approximately 50% by taking the additional MUXs and 
wiring into consideration.  

The proposed quad-spare NoC architecture is implemented with TSMC 65nm 1P9M 
technology (CLN65GPLUS). The non-redundant NoC is also implemented for calculating the area 
overhead. Fig. 16 shows the layout of a 2×2 block in the non-redundant and quad-spare NoCs. 
The sizes of the non-redundant and quad-spare NoCs are 221μm×221μm  (0.049mm2 ) and 
266μm×266μm (0.071mm2) respectively. The results show that the area of the proposed 
architecture increases by 45.9% compared with the traditional NoC, which is consistent with the 
above estimated hardware overhead. 

 

Fig. 16. Implementation of one block in (a) a non-redundant NoC and (b) a quad-spare NoC 
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VI. Conclusion 

 In this paper, a router-level redundant architecture, referred to as the quad-spare mesh, is 
proposed for fault tolerant NoC designs. One spare router is located in the center of a 2×2 block, 
providing an alternative to four other routers. This prevents the problem that faulty router breaks 
the communication between healthy PEs, thus maintaining the correct function of an NoC with 
faulty routers. The proposed design significantly improves a system’s reliability and its mean time 
to failure. The throughput only slightly decreases when all faulty routers can be replaced by the 
spare ones. As the number of faults increases, the performance degrades gracefully. Topology 
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reconfiguration and routing algorithm can be performed dynamically. The NoC after 
reconfiguration is consistent to the original one, which implies that our design is transparent to the 
upper layers including operating systems and user applications.  

The reliability of an NoC is improved by using spare routers, which are regularly connected 
to as many original routers as possible. Therefore, the hardware overhead is kept low with a high 
throughput and a low latency. This idea on the use of redundancy is not restricted in the 2D-mesh 
topology and it could also be used in NoCs with other types of topologies. It can further be 
extended to tolerate errors due to faulty links. Hence, the proposed fault tolerant architecture is 
scalable and is potentially useful in future NoC designs. 
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Figure Captions 

Fig. 1. Healthy PEs are isolated by faulty routers and broken links. 
Fig. 2. (a) Quad-spare mesh topology 
Fig. 2. (b) Communication path between routers 
Fig. 3. PE connections in a block 
Fig. 4. (a) Input channels of PEs 
Fig. 4. (b) Output channels of PEs 
Fig. 5. An NoC reconfiguration example. For clarity, PEs, faulty routers and unused 

interconnections are not shown in this figure. 
Fig. 6. Reliability of various spare NoCs with different router error rates (the proposed design vs. 

the design in [20]) 
Fig. 7. Effective reliability of various spare NoCs with different error rates (the proposed design vs. 

the design in [20]) 
Fig. 8. Reliability in time of the traditional non-spare NoC, the column-spare NoC and the 

proposed quad-spare NoC for systems of different sizes. 
Fig. 9. Reliability gain in time of the traditional non-spare NoC, the column-spare NoC and the 
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proposed quad-spare NoC for systems of different sizes 

Fig. 10. MTTF and MTTF gain the traditional non-spare NoC, the column-spare NoC and the 
proposed quad-spare NoC for systems of different sizes 

Fig. 11. Average throughput for a network of 16 PEs 
Fig. 12. Average throughput for a network of 36 PEs 
Fig. 13. Distribution of data transmission of each block in an H.264 decoder 
Fig. 14. Throughput of the H.264 decoder implemented using a 4×4 NoC 
Fig. 15. Latency for 4×4 mesh with zero and single faulty routers. The dots denote the simulation 

data. A solid line is the fitting curve of the discrete data. 
Fig. 16. Implementation of one block in (a) non-redundant NoC and (b) quad-spare NoC 
 


