
Lukáš Sekanina
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
sekanina@fit.vutbr.cz

Approximate Computing 
with 

Approximate Circuits: 
Methodologies and Applications

ESWEEK 2017 Tutorial

Jie Han
Department of Electrical and Computer 

Engineering, University of Alberta
Edmonton, AB, Canada

jhan8@ualberta.ca



Part I:

Approximate Arithmetic Circuits and 

Applications

Jie Han
Department of Electrical and Computer Engineering

University of Alberta

Edmonton, AB, Canada

Cite: Honglan Jiang, Cong Liu, Leibo Liu, Fabrizio Lombardi, and Jie Han. "A review, classification, and 

comparative evaluation of approximate arithmetic circuits." ACM Journal on Emerging Technologies in 

Computing Systems (JETC) 13, no. 4 (2017): 60.



• Introduction
• Design automation methods for approximate circuits

– Classification and overview
– Circuit parameter estimation
– Error computation
– Relaxed equivalence checking
– Evaluation methodology

• Examples of design automation methods for approximate circuits
– Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER

• Evolutionary algorithms, CGP and circuit optimization
• Applications of CGP-based approximation methods

– Open-source library of approximate adders and multipliers
– Approximate TMR
– Approximate multipliers in neural networks
– Symbolic error analysis using BDDs/SAT solving in CGP-based tools
– Approximate image filters

• Conclusions

Tutorial Outline – Part II. Design automation methods



 Background and Motivation

 Scope of Approximate Computing

 Classification, Review and Comparison of 

Approximate Adders

 Classification and Comparison of Approximate 

Multipliers

 Approximate Dividers

 Image Processing Applications

 Cerebellar Models using Approximate Circuits

 Conclusion and Prospects

Part I: Outline
1



 The continuous miniaturization of electronic devices requires

fault-tolerant and variation-resilient designs:

o to ensure operational reliability during their lifetime (due to soft errors, aging, etc.);

o to accommodate the inevitable variations in nanoscale manufacturing processes.

 However, conventional fault-tolerant techniques result in

significant overhead in energy consumption.

o Including techniques using hardware, time and/or information redundancies.

 The conflict between reliability and energy efficiency presents

significant design challenges.

Background: Fault Tolerance
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This view, that noise or error is an integral part of a system,

is as valid today as it was in the early days of computers.

Error: Essential Part of the Design Process

[1]  J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms from unreliable components,” 

Automata Studies, Shannon C.E. & McCarthy J., eds., Princeton University Press, pp. 43-98, 1956.

John von Neumann’s View on Error (1952):

“Our present treatment of error is unsatisfactory 

and ad hoc. … Error is viewed (in this work), 

therefore, not as an extraneous and misdirected 

or misdirecting accident, but as an essential part 

of the process under consideration …” [1]
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 At the nanoscale era, improving performance of digital circuits and

systems becomes increasingly difficult.

o Energy efficiency is of paramount concern in digital system design.

 Computing becomes increasingly heavy with multimedia

processing (audio, video, graphics, and

image), recognition, search, machine

learning and data mining.

 A common characteristic: a perfect result is

not necessary and an approximate or

less-than-optimal result is sufficient

o Human perception is not sensitive to high frequency changes.

o Natural noise floor due to quantization noise.

Motivation for Approximate Computing
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How can we exploit a system’s ability of imprecision tolerance

and error resilience for energy efficiency?

 Approximate Computing

o Does not involve assumptions on the stochastic nature of any underlying processes

implementing the system. Utilizes statistical properties of data and algorithms to

trade quality for energy reduction.

 Stochastic Computing

o Real numbers are represented by random binary bit streams that are implemented

in series (or parallel) and in time (or space). Information is carried on the statistics

of the binary streams.

 Probabilistic Computing

o Exploits intrinsic probabilistic behavior of the underlying circuit fabric, most

explicitly, of the stochastic behavior of a binary switch under the influence of

thermal noise.

Error-Resilient Paradigms
6

[2]  J. Han and M. Orshansky, “Approximate Computing: An Emerging Paradigm For Energy-Efficient   

Design,” In ETS, pages 1-6, Avignon, France, 2013.



 In contrast to the passive use of redundancies, approximate

computing (AC) employs active design methodologies that

exploit the feature that many systems and applications can

tolerate some loss of accuracy in the computation result.

 Effort in approximate computing covers a broad spectrum of

research, ranging from those addressing issues at circuit and

system levels, up to those at software and application levels.

7
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We focus on how hardware is re-designed.

 Arithmetic circuit design at the transistor and logic levels [3]

o Adders, multipliers and dividers

 Approximate memory and storage [4]

o SRAM, DRAM and non-volatile memories

 Approximate processor architectures [5]

o Neural networks, general-purpose and reconfigurable processors such as

instruction set architectures (ISAs), graphic processing units (GPUs) and FPGAs
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Approximate Hardware Design

[3]  S. Venkataramani, S.T. Chakradhar, K. Roy, and A. Raghunathan, “Computing approximately, and efficiently,” 

In Design, Automation & Test in Europe Conference & Exhibition, pp. 748-751, 2015. 

[4]  A. Sampson, J. Nelson, K Strauss, and L. Ceze, “Approximate storage in solid-state memories,” ACM 

Transactions on Computer Systems (TOCS), vol. 32, no. 3, 9, 2014.

[5]  H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for disciplined approximate 

programming,” ACM SIGPLAN Notices, vol. 47, no. 4, pp. 301-312, 2012.



We classify approximate adders into four categories:

 Speculative Adders

o For a 128-bit adder, the probability that the carry propagation chain is longer than

12 and 18 are 1% and 0.01%, respectively [6].

o Therefore, k bits are used to speculate the carry for each bit of sum (k < n).

 Segmented Adders

o An n-bit adder is divided into a number of smaller k-bit sub-adders.

o The carry is generated by using different methods.

 Carry-Select Adders

o Multiple sub-circuits are used to compute the sum for different carry values, and

the result is selected by the carry of a sub-circuit.

 Approximate Full Adders

o Including truncated adders with a lower resolution.

Approximate Adders: A Classification
9

[6]  A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addition: A new paradigm for 

arithmetic circuit design,” In DATE, pages 1250 - 1255, 2008.



The almost correct adder (ACA):

Speculative Adders

The n-bit almost correct adder (ACA).

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ: 𝑂(log(𝑘)) 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑎𝑟𝑒𝑎: 𝑂((𝑛 − 𝑘)𝑘log(𝑘))

Critical Path
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[6]  A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addition: A new paradigm for 

arithmetic circuit design,” In DATE, pages 1250 - 1255, 2008.



The error-tolerant adder type II (ETAII):

Segmented Adders

The n-bit error-tolerant adder type II (ETAII).

Carry 

Generator

Carry 

Generator

Sum 

Generator

Sum 

Generator

...

...

...

Sum 

Generator

Carry 

Generator

sk-1:0sn-1:n-k sn-k-1:n-2k

ak-1:0bk-1:0an-k-1:n-2kbn-k-1:n-2kan-1:n-kbn-1:n-k

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ: 𝑂(log(𝑘)) 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑎𝑟𝑒𝑎: 𝑂(𝑛log(𝑘))

Critical Path

11

[7]  N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed adder for error-tolerant 

application,” In ISIC 2009, pages 69-72, 2009.



The speculative carry selection adder (SCSA):

Carry Select Adders

Critical Path

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ: 𝑡𝑎𝑑𝑑𝑒𝑟 + 𝑡𝑚𝑢𝑥
A𝑎𝑑𝑑𝑒𝑟: 𝑂(𝑛log(𝑘))

The n-bit speculative carry selection adder (SCSA).

𝑡𝑎𝑑𝑑𝑒𝑟: 𝑂(log(𝑘))

𝑡𝑚𝑢𝑥: 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟

Circuit  𝑎𝑟𝑒𝑎: 𝐴𝑎𝑑𝑑𝑒𝑟+𝐴𝑚𝑢𝑥

𝐴𝑚𝑢𝑥: 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟

12

[8]  K. Du, P. Varman, and K. Mohanram, “High performance reliable variable latency carry select addition,” 

In DATE, pages 1257-1262, 2012.



A general schematic:

Approximate Full Adders

The n-bit approximate adder using approximate full adders 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ:
𝑡𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒_𝑎𝑑𝑑𝑒𝑟 + 𝑡𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒_𝑎𝑑𝑑𝑒𝑟

𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑎𝑟𝑒𝑎:
𝐴𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒_𝑎𝑑𝑑𝑒𝑟 + 𝐴𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒_𝑎𝑑𝑑𝑒𝑟

Approximate 

Full Adder

a0 b0al-2 bl-2

...

al-1 bl-1

l-bit Approximate Sub-Adder

(n-l)-bit Accurate

 Sub-Adder

al-1:0bl-1:0an-1:lbn-1:l

s0sl-1

Cin

sl-1:0sn-1:l

Cout AFA AFA AFA

sl-2

Cl-1 C1

...
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Approximate Mirror Adders (AMAs)

The conventional mirror adder (MA).

The mirror adder approximation 1 (AMA1).

A B Cin Sum’ Cout’

0 0 0 0 0

0 0 1 1 0

0 1 0 0 1

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The truth table for AMA1.
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[9]  V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal processing using

approximate adders,” IEEE Trans. CAD, 32(1):124-137, 2013.



Lower-part OR Adders (LOAs)

The n-bit lower-part-OR adder (LOA).

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ: 𝑂(log(𝑛 − 𝑙)) 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑎𝑟𝑒𝑎: 𝐴𝑎𝑑𝑑𝑒𝑟 + (𝑙 × 𝐴OR)

𝐴𝑂𝑅 ∶ 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑂𝑅 𝑔𝑎𝑡𝑒.

15

[10]  H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-Inspired Imprecise computational Blocks for 

Efficient VLSI Implementation of Soft-Computing Applications,” IEEE Trans. Circuits Syst., 57(4):850-862, 2010.

𝐴𝑎𝑑𝑑𝑒𝑟: 𝑂((𝑛 − 𝑙)𝑙𝑜𝑔(𝑛 − 𝑙) )



A Brief Summary

Adder Type Adder Name Delay Circuit Area

Conventional Adders
RCA 𝑂(𝑛) 𝑂(𝑛)

CLA 𝑂(𝑙𝑜𝑔(𝑛)) 𝑂(𝑛𝑙𝑜𝑔(𝑛))

Approxim-

ate Adders

Speculative Adders ACA [6] 𝑂(log(𝑘)) 𝑂((𝑛 − 𝑘)𝑘log(𝑘))

Segmented Adders

ESA [12] 𝑂(log(𝑘)) 𝑂(𝑛log(𝑘))

ETAII [7] 𝑶(𝐥𝐨𝐠(𝒌)) 𝑶(𝒏𝐥𝐨𝐠(𝒌))

ACAA [13] 𝑂(log(𝑘)) 𝑂((𝑛 − 𝑘)log(𝑘))

Carry Select Adders

SCSA [8] 𝑡𝑎𝑑𝑑𝑒𝑟 + 𝑡𝑚𝑢𝑥 𝐴𝑎𝑑𝑑𝑒𝑟+𝐴𝑚𝑢𝑥

CSA [14] 𝑂(log(𝑘)) 𝐴𝑎𝑑𝑑𝑒𝑟+𝐴𝑐𝑎𝑟𝑟𝑦

CSPA [15] 𝑡𝑎𝑑𝑑𝑒𝑟 + 𝑡𝑚𝑢𝑥 𝐴𝑎𝑑𝑑𝑒𝑟+𝐴𝑚𝑢𝑥+𝐴𝑐𝑎𝑟𝑟𝑦

CCA [16] 𝑡𝑎𝑑𝑑𝑒𝑟 + 𝑡𝑚𝑢𝑥 𝐴𝑎𝑑𝑑𝑒𝑟+𝐴𝑚𝑢𝑥

GCSA [11] 𝑂(log(𝑘)) 𝑂(𝑛log(𝑘))

Approximate Full 

Adders
LOA [10] 𝑂(log(𝑛 − 𝑙)) Aloa+(𝑙 × 𝐴OR)

Truncated Adders TruA 𝑂(log(𝑛 − 𝑙)) 𝑂((𝑛 − 𝑙)log(𝑛 − 𝑙))

A𝑎𝑑𝑑𝑒𝑟: 𝑂(𝑛log(𝑘)),𝑡𝑎𝑑𝑑𝑒𝑟: 𝑂 log 𝑘 ,

Analysis of delay and circuit complexity of approximate adders.

16

A𝑙𝑜𝑎: 𝑂((𝑛 − 𝑙)log(𝑛 − 𝑙)),
𝐴𝑐𝑎𝑟𝑟𝑦: circuit area of the 
carry prediction circuit



Accuracy Comparison 17

The mean relative error distance (MRED) of 

approximate adders.

o ETAII, ACAA and SCSA have the same error characteristics.

o The carry select adders (CSA, CSPA, CCA, GCSA) and the speculative adder (ACA)

are very accurate with small values of ER and MRED (except for CSPA).

o The approximate full adder (LOA) has a moderate MRED but very large ER.

o The segmented adders (ESA, ETAII, ACAA) are not very accurate.

o The truncated adder (TruA) is the least accurate in terms of ER among the equivalent

designs.
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The error rate (ER) of approximate adders.

 16-bit approximate adders with an equivalent 8-bit carry propagation



Hardware Comparison 18

The power of approximate adders.

o The carry select adders (CSA, CSPA, CCA, GCSA) tend to consume large power at a

relatively high performance.

o The speculative adder (ACA) is very fast but very power consuming.

o The approximate full adder (LOA) is slow, but it consumes a low power and area.

o The segmented adders (ESA, ETAII, ACAA) are power and area efficient.

o The truncated adder (TruA) is very power and area efficient, but with a relatively long

delay.

The delay of approximate adders.

 Delay and power of 16-bit equivalent approximate adders
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Accuracy and Hardware Tradeoffs

The ER and PDP of approximate adders.

19

The MRED and PDP of approximate adders.

 Error rate (ER) is the probability of producing an incorrect result.

 MRED (mean relative error distance (RED) is used to evaluate the

mean relative difference between an approximate result and the

accurate result.



Unsigned Multiplier with Wallace tree
20

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ: 𝑂(log(𝑛))

Partial product 

generation

Partial product 

reduction

Final addition



We classify the approximate multipliers into four categories:

 Approximation in Generating Partial Products

o Using simpler structure to generate partial products.

 Approximation in the Partial Product Tree

o Omitting some partial products.

o Dividing partial products into several sections and applying approximation in the

less significant sections.

o Truncated multipliers with a lower precision in input operands.

 Using Approximate Counters or Compressors in the

Partial Product Tree

 Approximating adders, counters or compressors

 Approximate Booth Multipliers

Approximate Multipliers: A Classification
21



Approximate Multipliers
22

Classification Multiplier

Approximation in 

Generating partial products
Under-Designed Multiplier (UDM) [17]

Approximation in the partial

products

Broken Array Multiplier (BAM) [10]

Error Tolerant Multiplier (ETM) [19]

Approximate Wallace Tree Multiplier (AWTM) [20]

Truncated Wallace Multiplier (TruMW)

Truncated Array Multiplier (TruMA)

Using approximate counters 

or compressors

Inaccurate Compressor based Multiplier (ICM) [21] 

Approximate Compressor based Multiplier (ACM) [22] 

Approximate Multiplier 1/2 (AM1/AM2) [18]

Truncated AM1/AM2 (TAM1/TAM2) [23]

Approximate Booth

multipliers
Fixed-width Booth multipliers



Approximation in Generating Partial Products 23

The Underdesigned Multiplier (UDM):

[17] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an underdesigned multiplier

architecture,” in Proceedings of the 24th IEEE International Conference on VLSI Design, 2011, pp. 346–351.

A 4 x 4 bit multiplier built on 2 x 2 bit block.

1001

K-Map for the 2 x 2 bit underdesigned multiplier block



Approximation in the Partial Product Tree 24

The Broken-Array Multiplier (BAM):

[10] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-Inspired Imprecise Computational Blocks for

Efficient VLSI Implementation of Soft-Computing Applications,” IEEE Transactions on Circuits and Systems, vol. 57,

no. 4, pp. 850–862, Apr. 2010.



Approximate Multiplier using Approximate Counters or 

Compressors 

25

Approximate Multiplier (AM) with Configurable Partial Error Recovery 

and Truncated AM (TAM):

[19] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approximate multiplier with configurable partial 

error recovery,” DATE, 2014.

• Two error accumulation trees

for AM1 and AM2.

• TAM1 and TAM2 are obtained

by truncating half LSBs of the

partial products.

The approximate adder cell.

The approximate multiplier with 4-bit error recovery.



Accuracy Comparison 26

The mean relative error distance (MRED)

o The multiplier approximated in generating the partial product (UDM) has very large

values of NMED and MRED.

o The multipliers approximated in the partial product tree (AWTM) mostly have

relatively small NMEDs and moderate MREDs.

o The multipliers approximated using approximate counters or compressors (ICM, ACM,

AM1/2) have smaller NMED and MRED.

o The truncated multiplier (TruM) has large values of both NMED and MRED.

The normalized mean error distance (NMED)

 Equivalent 16x16 approximate multipliers with16-bit accurate MSBs

0.0001

0.001

0.01

0.1

1

10

N
M

E
D

 (
%

)

0.01

0.1

1

10

M
R

E
D

 (
%

)



Hardware Comparison 27

PowerDelay

 Delay and power of equivalent approximate multipliers:
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o TruMA, TruMW, ETM, TAM1/TAM2 and BAM have smaller delay and power

dissipation due to truncation.

o The multiplier approximated in generating the partial product (UDM) tends to have a

large delay and power.

o The multipliers approximated in the partial product tree (AWTM) have moderate

delay and power.

o The multipliers approximated using approximate counters or compressors (ICM, ACM,

AM1/2) require higher power dissipation.



Accuracy and Hardware Tradeoffs (Unsigned) 28

o Truncation is effective to save hardware. However, it incurs a large ER and moderate MRED.

o ICM and UDM have low ERs, but their MREDs are usually large because of the large errors that may

occur in the more significant part of the multiplier. Moreover, they usually have rather high PDPs.

[24] H. Jiang, J. Han, and F. 

Lombardi, “A comparative 

evaluation of approximate 

multipliers,” IEEE Nanoarch

Symposium, Beijing, China, 

2016.



Accuracy and Hardware Tradeoffs (Booth) 29

o ABM2 shows the lowest PDP and a moderate accuracy.

o BM11 and BM07 area very accurate in terms of MRED but with relatively poor PDPs.

o PEBM shows both moderate PDP and MRED.

[25] H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate Radix-8 Booth Multipliers for Low-Power and 

High-performance Operation,” IEEE Transactions on Computers, 65, 8: 2638–2644, 2016.



We classify approximate multipliers into three categories:

 Approximate Array Dividers

o Using approximate subtractor cells or a smaller array divider.

 Curve Fitting based Approximate Dividers

o Using curve fitting to approximate the binary logarithmic and antilogarithmic

values.

o Adders and subtractors are sufficient for a division.

 Rounding based approximate dividers

 Transforming division to multiplication by rounding the divisor.

Approximate Dividers: A Classification
30



Approximate Array Dividers 31

Accurate Restoring Divider

Accurate and Approximate Divider Cells Approximate Subtractor Cell

[26] L. Chen, J. Han, W. Liu 

and F. Lombardi, “On the 

Design of Approximate 

Restoring Dividers for Error-

Tolerant Applications,” IEEE 

Transactions on Computers, 

vol. 65, no. 8, pp. 2522 - 2533,  

2016.



Approximate Divider Designs
32

Classification Divider

Approximation array 

dividers

Approximate non-restoring divider (AXDnr) [26]

Approximate restoring divider (AXDr) [27]

Dynamic approximate divider (DAXD) [28]

Curve fitting based 

approximate dividers
High-speed divider (HSD) [29]

Floating-point divider (FPD) [30]

Rounding based 

approximate dividers

High-speed, energy-efficient, rounding-based 

approximate divider (SEERAD) [31]



Image Processing Applications
33

Image sharpening using approximate adders and multipliers

Approximate 

Design
LOA-16 CSA-8 ETAII-8 CSPA-8

TAM1-16

AM1-13

Images sharpened using different adder and multiplier pairs. 



Image Sharpening (cont’d)
34

Approximate 

Design
LOA-16 CSA-8 ETAII-8 CSPA-8

TAM2-13

TAM1-13

Images sharpened using different adder and multiplier pairs. (cont’d) 



Image Sharpening (cont’d)
35

Approximate 

Design
LOA-16 CSA-8 ETAII-8 CSPA-8

BAM-17

BAM-18

Images sharpened using different adder and multiplier pairs. (cont’d) 



Image Sharpening: Accuracy
36

 The images sharpened by CSPA have unacceptable defects, and some

defects can be seen in the image sharpened by AM1-13 and ETAII-8.

 Other images show similar quality with the accurate result.

 The PSNRs of the images sharpened by a truncation based multiplier are

fixed as the adder is changed among LOA-16, CSA-8 and ETAII-8.

Approximate 

Design
LOA-16 CSA-8 ETAII-8 CSPA-8

TAM1-16 46.97 46.97 46.97 25.01

AM1-13 45.21 45.06 36.86 24.20

TAM2-13 41.87 41.87 41.87 24.32

TAM1-13 41.42 41.42 41.42 24.35

BAM-17 40.09 40.09 40.09 25.19

BAM-18 33.99 33.99 33.99 24.21

Peak signal-to-noise ratios (PSNRs) of the sharpened images (dB).  



Image Sharpening: Hardware
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 For the same multiplier, LOA-16 and ETAII-8 result in similar delay,

power and area (except for AM1-13), while the implementations using

CSA-8 result in relatively larger values of these metrics.

Multiplier Adder
Delay

(ns)

Power

(mW)

PDP

(pJ)

Area

(um2)

ADP

(um2.ns)

ArrayM CLAG 6.74 1.995 13.45 31,183.9 210,179.5

TAM1-16 LOA-16 5.36 0.9723 5.215 18,139.0 97,225.0

TAM1-16 CSA-8 7.45 1.032 7.69 23,652.1 176,208.1

TAM1-16 ETAII-8 5.34 0.9643 5.15 18,056.8 96,423.3

AM1-13 LOA-16 5.41 1.193 6.45 26,644.0 144,144.0

AM1-13 CSA-8 7.41 1.377 10.20 30,586.5 226,646.0

AM1-13 ETAII-8 6.40 1.369 8.76 28,214.7 180,574.1

TAM2-13 LOA-16 5.25 1.055 5.54 17,057.8 89,553.5

TAM2-13 CSA-8 6043 1.053 6.77 20,526.6 131,986.0

TAM2-13 ETAII-8 5.22 1.041 5.43 16,975.6 88,612.6

Delay, power and area of image sharpening using approximate multipliers and adders.  



Image Sharpening: Hardware (cont’d)
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 Using the same adder, the image sharpening circuits show similar

measurements except that AM1-13, BAM-17 and BAM-18 based schemes

show slightly larger values.

Multiplier Adder
Delay

(ns)

Power

(mW)

PDP

(pJ)

Area

(um2)

ADP

(um2.ns)

ArrayM CLAG 6.74 1.995 13.45 31,183.9 210,179.5

TAM1-13 LOA-16 5.25 0.9467 4.97 17,221.0 90,410.3

TAM1-13 CSA-8 7.45 0.9942 7.41 22,734.1 169,369.0

TAM1-13 ETAII-8 5.34 0.9350 4.88 17,138.8 89,464.5

BAM-17 LOA-16 6.14 1.226 7.53 14,993.8 92,061.9

BAM-17 CSA-8 7.36 1.247 9.17 16,533.0 121,682.9

BAM-17 ETAII-8 6.13 1.211 7.42 14,868.5 91,143.9

BAM-18 LOA-16 5.97 1.097 6.55 13,285.3 79,313.2

BAM-18 CSA-8 6.89 1.117 7.70 16,901.8 116,453.4

BAM-18 ETAII-8 5.96 1.076 6.41 13,156.0 78,409.8

Delay, power and area of image sharpening using approximate multipliers and adders. (cont’d)  



Image Sharpening: Hardware Comparison
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Compared to the accurate design

 The approximate designs using CSA-8 or AM1-13 achieve small

improvement in terms of delay and area.

 By using LOA-16, ETAII-8, TAM2-13, BAM-17 or BAM-18, the image

sharpening circuit can be 23% faster and saves as much as 53% in power

and 58% in area.

 The PDP and ADP are improved by 64% and 62%, respectively, by using

LOA-16, ETAII-8, TAM2-13, BAM-17 or BAM-18 for the image

sharpening circuit.



Image Processing Applications for Dividers
40

Change detection using approximate dividers

Input image 1 Input image 2 Accurate output

AXDr1 (42.75 dB) AXDr2 (33.22 dB) AXDr3 (43.38 dB)

 AXDr1 and AXDr3 with the triangle replacement of depth 8 perform well,

while AXDr2 has a relatively lower performance.



Change Detection (cont’d)
41

DAXD8 (21.26 dB) DAXD10 (25.03 dB) SEERAD1 (21.45 dB)

SEERAD2 (24.69 dB) SEERAD3 (24.67 dB) SEERAD4 (26.84 dB)

 The results by SEERAD4 is very good, while the results by DAXD8 and

SEERAD1 are of low quality.



Change Detection: Hardware
42

 The array-based dividers (ArrayD, AXDrs and DAXDs) are power and

area efficient with a very low speed.

 The rounding based approximate dividers (SEERADs) are very fast, but

they consumes more power and area due to the use of loop-up tables.

Multiplier
PSNR 

(dB)

Delay

(ns)

Power

(uW)

PDP

(pJ)

Area

(um2)

ADP

(um2.ns)

ArrayD -- 4.08 54.29 221.50 425.8 1,737.2

AXDr1 42.75 3.85 50.71 195.23 415.5 1,599.7

AXDr2 33.22 4.36 54.08 235.79 408.2 1,779.6

AXDr3 43.38 4.58 40.55 185.72 376.2 1,722.9

DAXD10 25.03 2.43 40.25 97.84 375.7 912.9

SEERAD3 24.67 1.83 60.27 110.29 615.8 1,126.8

SEERAD4 26.84 2.43 70.62 181.33 765.4 1,859.9

Delay, power and area of change detection using approximate dividers.  



 Approximate computing is emerging as a paradigm for energy-

efficient and/or high-performance design.

 It covers a broad spectrum of research from circuits and systems,

to software and application levels.

 A classification and comparison of approximate adders and

multipliers show that

o Truncation is effective and introduces a low error distance but a

high error rate.

o It does not significantly improve performance.

o The performance of other types of design varies (discussed as

follows).

Summary
43



 In general, approximate speculative adders show high accuracy

and relatively small PDPs.

 The approximate adders using approximate full adders in the LSBs

are slow, but they are power efficient with high ERs (due to the

approximate LSBs) and moderate NMED and MRED values (due

to the accurate MSBs).

 The error and circuit characteristics of the segmented and carry

select adders vary with the predictions of carry signals.

 With the highest ER, a truncated adder has a smaller MRED (an

indicator of a smaller error magnitude) than most approximate

designs at a similar PDP (except for LOA and CSA).

o However, it has a lower performance than other approximate designs.

o Due to the low power dissipation, it is useful in applications in which

hardware efficiency is of the utmost importance.

Summary on Approximate Adders
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 Truncation is an effective scheme to reduce hardware. For a

similar PDP, it results in a moderate MRED (an indicator of the

error magnitude) that is smaller than most other approximate

designs, except for TAM1, TAM2 and ICM.

 Albeit with a relatively low ER, UDM shows a low accuracy in

terms of the error distance and a relatively high circuit overhead,

whereas ICM has the lowest ER among all designs.

 When truncation is not used, multipliers approximated in the

partial product tree tend to have a poor accuracy (except AWTM-3

and AWTM-4) and moderate hardware consumption.

 Multipliers using approximate counters or compressors are usually

very accurate with relatively high power dissipation and hardware

consumption.

 The approximate Booth multipliers show different characteristics

in hardware efficiency and accuracy.

Summary on Approximate Multipliers
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 The approximate array dividers are slow, but they are hardware

efficient with variable accuracy depending on the approximation

parameters.

 The dividers based on curve fitting are very accurate and fast but

they require a large area and high power dissipation due to the

utilization of look-up tables.

 The rounding based approximate dividers have a very high speed,

large area and power dissipation, with a relatively low accuracy.

Summary on Approximate Dividers
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 The image sharpening circuits using approximate adders and

multipliers achieves significant savings in hardware, while

producing similar results as the accurate design.

 The change detection circuits using the approximate array dividers

(AXDr1 and AXDr3) are power and area efficient but very slow.

 The circuit using the rounding based approximate divider

(SEERAD4) consumes more power and area with a high

performance for an excellent detection accuracy.

Summary on Image Processing Application
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 Background and Motivation

 Cerebellar Model Design

 Adaptive Filter based Cerebellar Model

 Proposed Hardware Implementation

 Evaluation

 Accuracy

 Circuit measurements

 Conclusion

Efficient Implementation of Cerebellar 

Models using Approximate Circuits
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[37] H. Jiang, L. Liu and J. Han, “Special Session Paper: An Efficient Hardware Design for Cerebellar Models using 

Approximate Circuits,” CODES/ISSS’17, October 15-20, 2017, Seoul, Korea.



 The cerebellum is a very important part of the brain.

o Keeping balance

o Smoothing movements

o Coordinating muscles

 Cerebellar models

o Perceptron based model

o Continuous spatio-temporal model

o Higher-order lead-lag compensator model

o Adaptive filter based model

 The adaptive filter based cerebellar model is the most widely

used due to its low complexity and high structure-resemblance

to the cerebellum.

 The cerebellar models are inherently error-tolerant.

Background: Cerebellum
49



 The cerebellar cortex consists of three layers.

o The granular layer: Granule cell (GC), Golgi cell (Go), mossy fibre (MF), Lugaro

cell, unipolar brush cell

o The Perkinje layer: Perkinje cell (PC) bodies

o The molecular layer: basket and stellate cells (BA), parallel fibre (PF), climbing 

fibre (CF)

 The learning ability of the cerebellum is related to the plasticity of synaptic weights.

Cerebellar Model Design
50

The connection networks of cerebellar cells [38].

Granule cell

Golgi cell

Mossy fibre

Basket cell Stellate cell

Perkinje cell

Climbing fibre

Lugaro cell

Serotonergic 

fibre

Unipolar 

brush cell

Parallel fibre

Granular layer

Molecular layer

Perkinje layer

Deep 

cerebellar 

nuclei
...

The internal connections of cerebellar cells [39].

BA

PCGo

GC

PF

MF CFoutput

Excitatory connection

Inhibitory connection



 The model acts as a lead-lag compensator with learning capability.

 The Go is assumed to be a lag element with a time constant of T.

 The Go-GC is simplified to a lead-lad compensator.

 The cerebellar cortex consists of three layers.

Adaptive Filter based Cerebellar Model
51

Block diagram of the cerebellar model based on the adaptive filter [40].
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[40] M. Fujita, “Adaptive filter model of the cerebellum. Biological cybernetics,” 45(3):195–206, 1982.



Adaptive Filter
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An adaptive filter.

𝑧 𝑡 =  

𝑖=0

𝑁−1

𝑤𝑖(𝑡) ∙ 𝑥𝑖(𝑡)

𝑤𝑖 𝑡 + 𝑇 = 𝑤𝑖 𝑡 + 𝜇 ∙ 𝑒(𝑡) ∙ 𝑥𝑖(𝑡)
𝑒 𝑡 = 𝑑 𝑡 − 𝑦(𝑡)

Error computation Weight update using 

the least mean square algorithm

Simplified adaptive filter based cerebellar model [41].

[41] Alexander Lenz, Sean R Anderson, Anthony G Pipe, Chris Melhuish, Paul Dean, and John Porrill, “Cerebellar-

inspired adaptive control of a robot eye actuated by pneumatic artificial muscles,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics) 39, 6: 1420–1433, 2009.
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Proposed Hardware Implementation
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Hardware implementation of error computation module.

Hardware implementation of weight update module.

× 

+

3N multipliers and 2N

adders are required for

an N-tap adaptive filter.

: Approximate radix-8

Booth multiplier [25]

: Lower-part-OR adder [10]

D D D...
u(t)

  

× × × × 
w0(t)

x1(t)

w1(t) wN-1(t)w2(t) ...

+
-

d(t)

e(t)

x0(t) x2(t) xN-1(t)

D D D...
u(t)

× × × × ...

+ + + +
w0(t) w1(t) wN-1(t)w2(t) ...

w0(t+T) w1(t+T) w2(t+T) wN-1(t+T)

 w0(t)  w1(t)  w2(t)  wN-1(t)

μe(t)

x1(t)x0(t) x2(t) xN-1(t)



Approximate Arithmetic circuits
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 Approximate radix-8 Booth multiplier (ABM2_C15) [25]

o ABM2_C15 is redesigned as an 𝑛 × 𝑛 fixed-width multiplier.

o Approximate recoding adder with n approximated bits.

o (𝑛-1) least significant bits of partial products are truncated.

 Lower-part-OR adder (LOA) [10]

a0 b0al-1 bl-1

...

al-1 bl-1

l-bit OR-based Sub-Adder

(n-l)-bit Accurate

 Sub-Adder

al-1:0bl-1:0an-1:lbn-1:l

s0sl-1

Cin

sl-1:0sn-1:l

Cout



 Vestibulo-ocular reflex (VOR)

 The VOR stabilizes a stimulus into the center of the retina for a clear vision when the

head moves .

 The cerebellum predicts the eye plant output to compensate the movement command.

 The horizontal canal in the vestibular system is modeled as a high-pass filter [42].

 The transfer functions of the brainstem and the eye plant are given by [43].

System Architecture for VOR
55

The simplified model of the vestibule-ocular reflex in a saccade system.
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+
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𝑃 𝑠 =
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𝑠 + 1/𝑇1 𝑠 + 1/𝑇2



 Parameters

o The constant delay T is 1ms.

o The length of the adaptive filter N is 128.

o The step size μ is 2-8.

Simulation Results: Accuracy
56

The output retinal slip during a 5s VOR training.

 Accuracy

o The accurate 20-bit fixed-point

cerebellar model shows the lowest

stable retinal slip.

o The retinal slip of the 16-bit

implementation does not converge.

o AP (6, 2), all multipliers are

implemented by 20×20 approximate

Booth multipliers, the adder tree in

the error computation module is

implemented by LOA-6’s, LOA-2’s

are used in the weight update module.

o AP(6, 2) generates a similar retinal

slip with Accurate (18-bit), while the

retinal slip of AP(8, 2) converges to a

slightly larger value.



 Synthesis tool and configuration

o Synopsys design compiler

o STM 28nm CMOS process

o The clock frequency is 125MHz.

o The supply voltage is 1V.

 Circuit measurements

o With a similar accuracy, the AP(6, 2) is faster by 17.3%, and consumes a smaller area

by 37.3% and a lower power by 29.7% than the accurate 18-bit design.

o A saving of 41.9% (power-delay product (PDP) is obtained by using approximate

multipliers and adders in the adaptive filter based cerebellar model.

Simulation Results: Hardware
57

Design
Delay 

(ns)

Area 

(um2)

Power

(mW)

PDP 

(pJ)

Accurate (18-bit) 7.01 332,616 12.08 84.68

AP (6,2) 5.80 208,696 8.49 49.24

AP (8,2) 5.76 207,274 8.41 48.44



 An efficient hardware design is proposed for the adaptive filter

based cerebellar model.

 Approximate multipliers and approximate adders are used in the

proposed design.

 The simulation results show that the approximate cerebellar

model (AP(6, 2)) achieves a similar accuracy as the exact 18-bit

design.

 AP(6, 2) is more efficient in hardware than the accurate 18-bit

design, with a reduction of PDP by 41.9%.

Conclusion
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 In parallel with the advances in approximate computing, brain-

inspired computing has gained momentum. Approximate

computing techniques appear promising to be integrated into the

algorithms and architectures of a brain-inspired computing system.

 Approximate arithmetic circuits are applicable in many

computational models for robotic control (as robot brains).

 Approximate computing is appealing to implementations of deep

neural networks (DNNs); it remains to be investigated.

Prospects
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