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Abstract—Combinatorial optimization problems are difficult
to solve due to the space explosion in an exhaustive search.
Using Ising model-based solvers can efficiently find near-optimal
solutions by minimizing the energy of a nonlinear Hamiltonian
system. In contrast to Ising machines based on quantum me-
chanics, classical Ising machines using conventional technologies,
such as the complementary metal–oxide–semiconductor, offer
efficient implementations with competitive performance. In this
paper, we briefly review recently developed simulation algorithms
of classical Ising machines. These algorithms are classified by
considering various inherent mechanisms in the simulation of
physical phenomena. Then, strategies to improve the simulation
efficiency are discussed by generalizing their characteristics and
behaviours. These simulation algorithms are key for improving
the efficiency of classical Ising machines in solving combinatorial
optimization problems.

Index Terms—Combinatorial optimization, annealing, bifurca-
tion, coherent Ising machine, Ising model

I. INTRODUCTION

Combinatorial optimization (CO) is an important task in
various social and industrial applications, such as machine
learning, chip design, and data mining [1]. However, CO
problems are non-deterministic polynomial time (or NP)-
hard, characterized by the exponentially increasing number of
candidate solutions as the problem size increases. It is very
challenging to solve such problems by using enumeration. For
example, an enumeration method needs to traverse all (M−1)!
possible routes to solve a traveling salesman problem (TSP)
of M cities, which is prohibitive when M is large.

The Ising model has recently emerged as an efficient
method to solve a CO problem by maximizing (or minimizing)
an evaluation function under a given set of constraints. It
describes the ferromagnetism of magnetic spins in statistical
mechanics [2]. An Ising machine aims to find the ground state
(i.e., the lowest-energy state) of an Ising model. Various Ising
machines have been designed, including those implemented
in superconducting circuits based on quantum annealing [3],
[4] and the coherent Ising machines (CIMs) implemented
using optical parametric oscillators [5], [6]. However, it is
challenging to build those systems due to the requirements
of cryogenic environments or a long optical fibre. Therefore,
classical Ising machines [7]–[12] have been developed to offer
inexpensive implementations and an easier integration with
complementary metal–oxide–semiconductor (CMOS) circuits.

At the core of an Ising machine, the algorithm plays an
important role in the solution search process. Simulation algo-
rithms, which emulate certain physical phenomena on classical
computers, have been developed for solving CO problems by
decreasing the energy of the Ising model. In this paper, we
review these algorithms for classical Ising machines to solve
CO problems.

The remainder of this paper is organized as follows. Section
II presents the background. In Section III, the simulation
algorithms for Ising models are classified. Classical Ising
machines based on the simulation algorithms are reviewed in
Section IV. Section V concludes this paper and discusses the
challenges and prospects.

II. BACKGROUND

A. The Ising Model

The Hamiltonian of the Ising model (H) with the external
magnetic field is defined as [2]

H = −
∑
i

∑
j

Ji,jσiσj −
∑
i

hiσi, (1)

where σi (or σj) denotes the state of the ith (or jth) spin that
takes the value of −1 (as the down state) or +1 (as the up
state), Ji,j is the interaction coefficient between σi and σj ,
and hi is the external magnetic field on σi.

B. Combinatorial Optimization (CO)

CO searches for the solution that indicates the maxima (or
minima) of an objective function and that satisfies the given
constraints. It can be formulated as a quadratic unconstrained
binary optimization (QUBO) problem. Let B = {0,+1} be
a binary set, N be a set of integers, and R be a set of
real numbers. Given B, N and R, a QUBO problem can be
described as [13]

min
x∈BN

F (x) = xTAx+ xT b+ c, (2)

where x (x ∈ BN , N ∈ N) is a vector of binary variables, A
(∈ RN×N ), b (∈ RN ) and c (∈ R) denote the weight matrix,
the weight vector and a constant scalar, respectively.

By using x = 1+σ
2 , where σ ∈ {−1,+1}N , (2) can be

converted to the expression in (1). Then, a QUBO problem
can easily be mapped to an Ising model. The configuration of
spins at the ground state provides the optimal solution.
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Fig. 1. Solving a combinatorial optimization problem using an Ising machine. An example of graph partitioning is given at
the top. Given an undirected graph with an even number of vertices (V ) and edges with weights (W ), graph partitioning
divides the vertices into two subsets of an equal size (as the constraint) with the sum of the weights of edges between the
vertices belonging to different subsets minimized (as the objective). To this end, the problem is first mapped to a logical Ising
model, where the weights of edges (W ) are converted to the interactions between spins (J) by considering the objective and
the constraint. ..Then, the logical Ising model is embedded into the topology of an Ising machine, where JC is the coupling
strength between duplicated spins to ensure that they are in the same states [15]. The solution found in Phase 3 is interpolated
back to the logical Ising model, which may provide a solution that violates the constraint. Finally, the solution is modified to
satisfy the constraint in Phase 5.

C. Problem Solving via Ising Machines

As shown in Fig. 1, solving a CO problem using an Ising
machine consists of the following five phases [14]:

Phase 1: A CO problem formulated as a QUBO problem is
mapped to a logical Ising model that describes the problem
without any restriction in the topology and the precision of
coefficients [1].

Phase 2: This logical Ising model is converted to a physical
Ising model that can readily be embedded into the topology
of an Ising machine and that meets the requirement for the bit
width of coefficients [14]–[17].

Phase 3: A specific algorithm searches for the ground state
of the Hamiltonian of the physical Ising model [18]–[23].

Phase 4: The result from Phase 3 is restored back to the
logical Ising model using the inverse steps that are specified
in the embedding method in Phase 2 [16].

Phase 5: The solution found may not meet the constraints
due to the stochastic behavior of the Ising model. Thus,
interpretation methods are applied to force the solution to
satisfy the constraints by identifying and modifying the states
of spins that cause the violation of constraints [24].

III. A CLASSIFIED REVIEW

A. Simulated Annealing (SA)

As a generic algorithm for the classical Ising machine,
simulated annealing (SA) emulates the thermal annealing pro-
cess in metallurgy [18]. Initially, the spin states are randomly
configured at the beginning of the annealing process with a
high temperature. Then, the Hamiltonian decreases through
flipping the states of spins with a decreasing temperature. The

flip probability for the ith spin (Pi) depends on the energy
variation (∆Ei) and the temperature (T ), given by Pi =
min{1, exp(−∆Ei/T )}, where ∆Ei indicates the variation
of Hamiltonian when σi is flipped. With a lower temperature,
the flip probability decreases. This randomness is introduced to
help the Ising model to escape from the local minimum energy
states. Finally, the Ising model approaches the ground state
when the temperature decreases to a sufficiently low value.

The computational flow of SA is divided into three phases:
(1) the calculation of ∆Ei, (2) the update of spin states, and
(3) the random flip of spins. In what follows, we discuss the
typical methods for accelerating the annealing process and
improving the hardware efficiency during these three phases.

1) The Calculation of ∆Ei: An N -spin Ising model calcu-
lates ∆Ei through accumulation by N times. The calculation
of ∆Ei is the most time-consuming step in SA.

The parallel computation of ∆Ei is considered in the
stochastic cellular automata annealing (SCA) [10], [11] and the
digital annealing (DA) [25], [26] by allocating N accumulators
to N spins. Compared with the computation in series, a
parallel ∆Ei calculation can achieve a speedup of N times,
however at the cost of a large circuit area.

2) The Update of Spins: The states of disconnected spins
are updated according to the spin flip probability in each
iteration of annealing, which is considered as one Monte Carlo
(MC) step. The connected spins cannot be simultaneously
updated in SA, so it takes up to N MC steps to update all
spins in a fully connected N -spin Ising model.

To realize a parallel spin update, the SCA [10] and the
momentum annealing (MA) [27] utilize a two-layer structure
that duplicates N spins to 2N spins. Each spin in one layer is



connected to N spins in the other layer without any connection
between the N spins in the same layer. Specifically, the
interaction between a spin and its replica must be sufficiently
large at the end of the annealing to ensure that these two spins
are in the same state.

3) The Random Flip of Spins: Random flips of spins help
an Ising model to escape from the local minimum energy.
There are three main approaches for optimizing this process:
increasing the flip probability, simplifying the function to
generate the flip probability and generating random numbers
for a higher hardware efficiency.

A dynamic offset is applied in the calculation of the energy
variation to increase the probability of the spin flip in the
DA [25], [26]. The energy variation increases with a growing
offset over MC steps when there is no spin-state transition.
This method can increase the probability of the spin flip and
then improve the chance of jumping out of the local minima.

The function to generate the spin flip probability, such as the
sigmoid function, is difficult to implement on circuits. Hence,
it is approximated by a piece-wise linear function in the SCA
[10] to reduce the hardware cost.

Moreover, due to the high hardware cost of random number
generators, randomness is introduced by using the variability
in the minimum operating voltage of a static random access
memory (SRAM) cell in CMOS annealing [9].

B. Simulated Bifurcation (SB)

A quantum mechanical bifurcation machine is based on
the adiabatic optimization of the Kerr-nonlinear parametric
oscillators (KPOs), where two branches of the bifurcation
indicate two states of a spin [22]. Simulated bifurcation
(SB) has been proposed to numerically model the adiabatic
evolution of a classical nonlinear Hamiltonian system [23].

The SB, also referred to as adiabatic SB (aSB), essentially
searches for a solution by solving a pair of differential
equations related to the positions and momenta of KPOs with
respect to time. The semi-implicit Euler method is used as an
efficient integrator to solve the differential equations [23]. The
sign of the position indicates the state of the spin at the end
of the search. The SB can efficiently solve CO problems by
the simultaneous update of positions and momenta.

The ballistic SB (bSB) and the discrete SB (dSB) have been
developed to restrain errors introduced by the use of continu-
ous variables (for positions) to represent the discrete spin states
[28]. The bSB introduces inelastic walls as hard limits to force
positions into [−1, 1]. The dSB further discretizes positions to
−1 or 1 in the sum of product operations. Compared with
aSB, the bSB can quickly find a better approximate solution
and the dSB can obtain a solution with a higher quality when
solving large-scale problems.

A fully connected Ising machine incurs unnecessary over-
head to traverse the zero entries in coefficients when solving
sparsely connected Ising problems [23]. An edge-centric SB
only traverses non-zero connections by treating the SB as an
iterative algorithm over edges instead of vertices when solving
a graph-based CO problem [29]. Moreover, various evolution

strategies for the position and different dynamic configurations
of the time step used in the integrator have been discussed in
[30] and [31] to efficiently solve the TSP by using bSB.

C. Simulated Quantum Annealing (SQA)

An Ising machine using quantum annealing can solve CO
problems significantly faster than a classical Ising machine.
However, it is impractical to solve large-scale problems due
to the limited number of quantum bits available in a quan-
tum Ising machine [3]. Thus, simulated quantum annealing
(SQA) imitates the quantum annealing dynamics on classical
computers based on a quantum MC method [19].

The transverse field in SQA plays a similar role as the
temperature in SA to control the probability of transition
between the states of spins. By decreasing the transverse field
from a very large value to zero, the Ising model tends to
converge to the ground state with the lowest energy. Multiple
replicas of spins called Trotters are used to map a quantum
Ising model into a classical Ising model. In each Trotter,
the spins flip in three steps. First, the energy variation is
computed in series for each spin. Then, the transverse field
decreases with MC steps. Finally, the spin states are updated
in a probabilistic manner determined by the energy variations.

The spins can be updated in parallel by restricting the num-
ber of interactions between spins for sparsely connected Ising
models [19], [32]. However, it is challenging to map real-world
problems with dense connectivity into a sparsely connected
Ising model. Thus, parallel processing is essential for a fully
connected Ising model using SQA. The spin flips in a Trotter
depend on the spin states in the two neighboring Trotters.
Hence, temporal parallelism is carefully scheduled without
violating the data dependency [33]–[36]. In this way, multiple
independent spins flip at the same MC step. Moreover, spatial
parallelism is applied to compute the energy variations using
multiple threads in a thread block for a spin [33], [34].

D. Coherent Ising Machine Simulation (CIMS)

A CIM has shown a significant promise over existing quan-
tum annealers due to its ability to run at room temperature,
especially for solving densely connected Ising problems [37].
However, the physical implementation of a CIM requires
hundreds of meters of optical fibres. Thus, innovative simula-
tion algorithms are inspired to improve space utilization and
computational speed.

The noisy mean-field annealing (NMFA) algorithm emulates
the operation of the CIM [20] by utilizing traditional mean-
field annealing (MFA) [38]. Gaussian noise is introduced
to simulate the quantum noise associated with the optical
parameters. The spin states in the NMFA are represented by a
set of continuous variables within a range of (−1,+1), which
is determined from the tanh activation function. All variables
are simultaneously updated based on their previous values at
the end of each MC step. This allows the NMFA to achieve
massive parallelism and speed up the annealing process. After
completing all MC steps, the final spin states are determined
by the signs of variables.



As another efficient simulated CIM algorithm, the SimCIM
[21] models the interference of the optical parametric oscil-
lators (OPOs) within the CIM. SimCIM treats each spin as a
continuous variable within [−1, 1] and truncates other values.
It updates the spin states by simulating the physical behavior
of a CIM. Similar to the NMFA, SimCIM can achieve massive
parallelism. At the end of the search, the spin states are given
by the signs of the corresponding variables.

IV. CLASSICAL ISING MACHINES

Classical Ising machines using the simulation algorithms
have been developed with various topologies, as shown in Ta-
ble I. In the King topology, each spin has connections with its
neighbors in all eight directions. The 3D topology is based on
connected 2D lattices, where the neighbor spins are connected
to each other in a lattice. In the complete topology, all spins are
fully connected. A DA-based Ising machine implemented on
an FPGA can solve problems with up to 8192 spins [25]. A
two-layer structure has been realized in SCA [10] and MA
[27]. A CMOS annealing-based Ising machine constructed
by 9 ASIC chips can scale up to 144k spins [39]. The SB-
based Ising machines implemented using 16 clustered GPUs
employ continuous variables in 32-bit floating-point numbers
[28]. An FPGA implementation with a 16-bit representation of
continuous variables has been realized in [40], while a multi
FPGA SB machine achieves a higher scalability [41]. For the
SQA algorithm, a GPU implementation can solve problems
with up to 32768 spins [33]. Especially, the connectivity
coefficients can be implemented by using 32-bit floating-point
numbers. Both NMFA and SimCIM have been implemented
on GPUs, but only an Ising problem with 2k spins and 2-bit
connectivity coefficients was tested [20], [21].

V. SUMMARY, CHALLENGES AND PROSPECTS

In this paper, recently developed simulation algorithms are
reviewed in a classified manner for classical Ising machines.
Various strategies to reduce the search time and decrease
the computational complexity are investigated based on the
characteristics of the algorithms.

SA emulates the thermal annealing in metallurgy to realize
the convergence of Hamiltonian. However, it suffers from the
sequential update of spin states and the high implementation
cost of introducing randomness. Therefore, various methods
have been developed for improving efficiency, including cal-
culating the variation of energy in parallel, applying a dynamic
offset on the variation, simplifying the spin flip probability
function, and introducing randomness by using the SRAM.
In particular, a two-layer structure using duplicated spins
achieves a massive parallel processing.

As quantum mechanics-inspired algorithms, SB emulates
the adiabatic evolution in a classical nonlinear Hamiltonian
system exhibiting bifurcation, whereas SQA describes the
quantum tunneling phenomena with a transverse field. SB
allows the simultaneous update of positions and momenta, but
errors arise due to the use of continuous variables (for the
oscillator positions) to represent the spin states. Thus, two vari-
ant SB algorithms introduce inelastic walls or discretization to

TABLE I: Classical Ising Machines
Algorithm Topology Platform Precision Size

SA

DA [25] Complete ASIC - 8192
DA [26] Complete FPGA 16 bits 1024
MA [27] Complete 4 GPUs 10 bits 10k
SCA [10] Complete ASIC 5 bits 512

CMOS annealing [9] 3D ASIC 2 bits 20k
CMOS annealing [12] King 3 ASICs 3 bits 60k
CMOS annealing [39] King 9 ASICs 5 bits 144k

SB
aSB, bSB, dSB [28] Complete 16 GPUs 10 bits 100k

aSB [40] Complete FPGA 1 bit 4096
aSB [41] Complete 8 FPGAs - 16384

SQA
SQA [19] King FPGA 8 bits 9216
SQA [34] Complete 2 FPGAs 32∗ bits 32768
SQA [33] Complete GPU 32∗ bits 32768

CIMS NMFA [20] Complete GPU - ≥ 2k
SimCIM [21] Complete GPU - ≥ 2k

Precision: the bit-width of connectivity coefficients (default: fixed point;
*: floating point); Size: the maximum number of spins.

improve the solution quality and speed up the convergence of
Hamiltonian. To alleviate the time explosion problem in SQA,
temporal and spatial parallelism are, respectively, applied to
the spin update and the computation of energy variations.

The high performance of CIMs motivates the development
of simulation algorithms such as the NMFA and SimCIM to
improve computational speed and hardware efficiency. Even
though both algorithms are similar to some extent, they
originated from a different perspective. The NMFA algorithm
emulates the convergence of a CIM, while the SimCIM
algorithm models the interference of the OPO within the CIM.
The Ising machines using the NMFA and SimCIM algorithms
perform similarly to or even better than a CIM.

A major challenge for SA and SQA is to efficiently realize
the parallel spin update for speeding up annealing in fully
connected Ising models. The duplicated structure developed
from SA mitigates the sequential spin-update problems but it
suffers from a high hardware cost due to the use of redundant
spins. For SQA, temporal parallelism and spatial parallelism
can only realize partial parallelization because each spin up-
date is highly dependent on multiple other spins. SB and CIM
simulation algorithms utilize continuous variables to represent
the discrete states of spins. However, the computation with
continuous variables is more hardware-consuming compared
to the computation with discrete variables. Therefore, the
relatively high computational complexity and the resulting
hardware implementation are key obstacles for both methods.
Finally, due to the inherent complex mechanism of SB, it is
difficult to find the optimal settings of parameters to accelerate
the convergence of Hamiltonian.

Hence, efficient parallel processing for accelerating the
update of spin states and reducing computational complexity
for improving the scalability of classical Ising machines, as
well as how to improve the probability of escaping from the
local energy minima, are worthy of further investigation.
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