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Abstract— Reliability is an important feature in the design and 

maintenance of a large-scale network. In this paper, the reliability 

of information transmission between a transmitter and a receiver 

(i.e. a two-terminal network) is considered as a generalized 

connectivity framework of terminal nodes. As network complexity 

increases, existing approaches to reliability analysis are 

encountering significant challenges. In this paper, stochastic 

computational models are presented to efficiently analyze the 

reliability and criticality of a two-terminal network. 

Non-Bernoulli sequences with fixed numbers of 1’s and 0’s are 

utilized to encode the signal probabilities and to improve the 

computational efficiency and accuracy. Both unidirectional and 

bidirectional links are considered for the probabilistic 

information transition process by imperfect links. Imperfect 

nodes are also modeled by the stochastic model of an imperfect 

unidirectional link. Non-exponential failure distributions and 

correlated signals in a two-terminal network are readily handled 

by the stochastic approach. The reliability of a system with 

external deterministic failures on a link is compared to that of the 

system prior to the occurrence of the failures. The difference in 

reliability is referred to as the criticality of the link. An analysis is 

pursued for the critical links based on the value of criticality. The 

proposed approach can be used to analyze and improve network 

reliability when utilizing a limited redundancy for protecting the 

links.  

I. INTRODUCTION 

etworks exist in many large-scale systems such as 

those for communication, power delivery, water 

distribution and gas supply. For these systems, large 

economic losses and security risks are likely to be incurred if 

the underlying network fails. Hence, the robust operations of 

these systems are critical, and reliability is a very important 

requirement. A network often connects its two end terminals, 

also referred to as the transmitter and the receiver; hence, this 

type of network is commonly referred to as a two-terminal 
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network. Such a network is usually modeled by a probabilistic 

graph, i.e., 𝐺(𝑉, 𝐸), consisting of a node set 𝑉 and a link set 𝐸 

[1]. The set 𝑉  consists of a transmitter ( 𝑇  in Figure 1), a 

receiver (𝑅 in Figure 1) and the intermediate nodes (𝐼1 ⋯ 𝐼𝑚, 

𝐼𝑁𝑘  and 𝐽1 ⋯ 𝐽𝑛  in Figure 1). The set 𝐸 consists of the links 

between the nodes of the network (either unidirectional or 

bidirectional).  

Such a network is likely to be affected by various 

catastrophic failures due to externally induced events (e.g., 

earthquakes and hurricanes). It fails when the anticipated 

delivery service cannot be completed through a fault-free path 

connecting the transmitter and the receiver. Therefore, it is 

important to predict its performance under these failures, for 

example, to evaluate whether a gas supply network can reliably 

function following a hurricane. The reliability of a 

two-terminal network is defined as the probability of a 

successful communication (or the anticipated information 

transmission) between the transmitter and the receiver of a 

network. Hence, reliability evaluation usually deals with the 

connectivity probability between the transmitter and the 

receiver [1]. Redundancy is often utilized to guarantee the 

network to be operational in the presence of failures. However, 

it requires a detailed analysis to determine the critical links [2]. 

Methods found in the technical literature can be classified 

into two major categories: Monte Carlo (MC) simulation and 

probabilistic analysis. In MC simulation, a large sample size is 

usually required for achieving a suitable accuracy and 

obtaining a stable probability due to the slow convergence [3]. 

Thus, a long simulation time is usually incurred. For 

probabilistic analyses such as the path- [4] and cut-based 

algorithms [5], an accurate result can be derived by 

decomposing a network into disjoint paths; however, a large 

computational complexity results for path-based algorithms. 

The reliability evaluation process is cumbersome, because the 

number of paths increases exponentially with the number of 

network edges or nodes. [6] has presented an improved 

recursive algorithm to calculate the reliability; however, only 

approximate results (within an error bound) can be obtained. [7] 

has provided an exact algorithm to find the reliability of 

two-terminal networks; however, the process for deriving the 

expressions is rather complex. Binary decision diagram (BDD) 

based approaches have also been proposed [8] and the 

reliability assessment of multiple-valued networks has been 
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Figure 1. A general structure for a two-terminal network. 𝐼𝑖, 𝑖 ∈ {1, 2, ⋯ , 𝑚}, is a node connected transmitter. 𝐼𝑁𝑘 is a node connected to the intermediate nodes.  𝐽𝑖, 

𝑖 ∈ {1, 2, ⋯ , 𝑛}, is a node connected receiver . 

 

pursued in [9]. The methods using BDDs have been shown to 

be very efficient for network analysis; however, the 

construction of a BDD is not always simple. Additionally, a 

reduced order BDD (ROBDD) (as the most efficient form of 

BDD) requires variable ordering, thus further increasing the 

complexity of BDD construction process. Finally, the failure 

distributions of imperfect links/nodes are not limited to fixed 

values, but they vary with the mission time. The mission time is 

defined as a time period and the status of the system is 

investigated within this time period. The analysis of 

exponentially or non-exponentially distributed failure events is 

even more complex. Hence, a more comprehensive and 

efficient approach is required for the reliability analysis of a 

network. Recently, stochastic computation has been proposed 

for reliability analysis of logic circuits [10] and dynamic fault 

trees (DFTs) [11][12]. The use of non-Bernoulli sequences 

leads to an efficient evaluation [10]. Signal correlations are 

preserved in stochastic sequences, thus they are correctly 

accounted in a network. Non-exponential distributions can also 

be efficiently modeled [11][12].  

In this paper, a stochastic computational approach is 

proposed for analyzing the reliability of a two-terminal network, 

i.e., a network in which information flows from the transmitter 

to the receiver through intermediate nodes and links. This can 

also be generalized to other networks with minor modifications 

[13]. Stochastic models are proposed for imperfect 

unidirectional and bidirectional links between two nodes, as 

well as for the imperfect nodes considered in [1]. 

Non-Bernoulli sequences are used to encode the failure 

probabilities, and the evaluation accuracy is found to be high at 

a reasonable sequence length. A stochastic analysis is further 

performed for modeling information transmission for reliability 

and criticality assessment. In the sequel, we first present a 

review of stochastic computation. Then, we present the 

stochastic models for the imperfect links and nodes 

respectively. A criticality analysis and an evaluation procedure 

are then provided; they can be used to improve the performance 

of a network by utilizing a limited redundancy. 

II. REVIEW OF STOCHASTIC COMPUTATION 

Stochastic computation has been proposed in the past for 

reliable circuit design [14]. In a stochastic sequence, a 

proportional number of bits is set to a specific value; for 

example, a fixed number of 1’s is assigned in a non-Bernoulli 

sequence to encode a probability. Computations can be 

efficiently implemented by logic gates; the stochastic sequence 

at the output encodes the (output) probability. Therefore, 

Boolean logic operations are transformed into probabilistic 

computation in the real domain.  

 In stochastic computation, the number of 1’s in the output 

sequence is not deterministic, but probabilistic due to stochastic 

fluctuations [10] [11][12]. However, the use of non-Bernoulli 

sequences (as initial inputs) can greatly reduce the stochastic 

fluctuation [10]. A longer sequence length is usually required 

for achieving a higher accuracy. Stochastic logic circuits can 

handle correlated signals (usually caused by reconvergence of 

fanout signals), because signal dependencies are maintained 

and propagated [11][12]. This is useful when analyzing 

common components in a network.  

III. STOCHASTIC MODELS FOR IMPERFECT LINKS 

A link connecting two intermediate nodes is bidirectional, 

while the link connecting the transmitter or the receiver to an 

intermediate node is unidirectional. There are two possible 

states for an imperfect link: operational (fault-free) and 

disconnected (faulty). Usually, the state of an imperfect link is  
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Figure 2. (a) Probabilistic transition between Data 1 and Data 2; let the probability of imperfect link be 𝑝. (b) The logic gates used for stochastic computation. (c) A 

stochastic model for the imperfect unidirectional link from Data 1 to Data 2. The transition can occur from the transmitter 𝑇 to an intermediate node 𝐼𝑖 or from an 

intermediate node 𝐼𝑖 to the receiver 𝑅. (d) Stochastic model for an imperfect bidirectional link between two intermediate nodes 𝐼𝑖 and 𝐼𝑗 .  

 

denoted by a binary variable  𝑎 , 𝑎 ∈ {0,1} , where 1 or 0 

indicates that the link is either faulty (disconnected) or 

operational (fault-free). The information is passed on by an 

operational link, i.e., when 𝑎 = 0. In the following analysis, it 

is also assumed that all imperfect links and nodes fail with 

known probabilities; the failure probabilities are either fixed or 

time-dependent (i.e. they vary with the mission time, either 

exponentially or non-exponentially distributed). Input 

parameters for evaluating the reliability include network 

configuration, mission time, and failure parameters or failure 

probability for each link/node. 

In a network, the anticipated information, e.g. the 

telecommunication data in a wireless network or gas for a gas 

supply network, is delivered from the transmitter to the receiver. 

For simplicity, denote the information from the transmitter by 1, 

which indicates that the transmitter is totally reliable. Then the 

initial stochastic sequence for the signal probability of the 

transmitter, i.e., 𝑆𝑇, is a sequence of 1s, i.e., the 𝑖th bit of 𝑆𝑇 is 

given by 𝑆𝑇,𝑖 = 1, 𝑖 ∈ {1, 2, ⋯ , 𝐿} where 𝐿 is the length of the 

stochastic sequence. The reliability is determined by analyzing 

the stochastic sequence received by the receiver in the network 

with imperfect links and nodes.  

A. A stochastic model for unidirectional links 

A unidirectional link usually exists between either the 

transmitter 𝑇 and an intermediate node 𝐼𝑖 , or an intermediate 

node 𝐼𝑖  and the receiver  𝑅 (as in the unidirectional transition 

from Data 1 to Data 2 in Figure 2(a)). For simplicity, denote the 

unidirectional link between 𝑇  and 𝐼𝑖  by 𝐿𝑇𝑖  and the 

unidirectional link between 𝐼𝑖  and the receiver by 𝐿𝑖𝑅 . As an 

imperfect link, 𝐿𝑇𝑖 fails with a probability 𝑝 (that can be either 

fixed or having a value dependent on the mission time), then, 

the two nodes 𝑇 and 𝐼𝑖  is connected with a probability of 1 − 𝑝. 

The stochastic model for the unidirectional link is shown in 

Figure 2(c). 

Let 𝑆𝐿𝑇𝑖
 denote the stochastic sequence generated for the 

failure probability 𝑝  of the imperfect link 𝐿𝑇𝑖 ; then 𝑆𝐿𝑇𝑖,𝑗 

denotes the 𝑗th bit of the stochastic sequence 𝑆𝐿𝑇𝑖
. Furthermore, 

let 𝑆𝐼𝑖,𝑗  denote the 𝑗th bit of the stochastic sequence for the 

reliability of an intermediate node 𝐼𝑖 , i.e. 𝑆𝐼𝑖
.  If 𝑆𝐿𝑇𝑖,𝑗 = 1,  the 

link between the transmitter and the destination node is 

disconnected. Thus, 𝑆𝐼𝑖,𝑗  = 0, i.e., the intermediate node 𝐼𝑖 

receives no information from the transmitter, because the link 

𝐿𝑇𝑖 is disconnected for the 𝑗th trial (or bit). Otherwise, 𝑆𝐼𝑖,𝑗 =

𝑆𝑇,𝑗, i.e., the information can be delivered to node 𝐼𝑖 through 

the fault-free link.  

As an imperfect link 𝐿𝑇𝑖  fails with probability 𝑝, then the 

probability of the information reliably received by node 𝐼𝑖 from 

the transmitter  𝑇 is given by 1 − 𝑝. The stochastic model of 

Figure 2(c) accurately implements the information transmission 

from transmitter through an imperfect link. A similar analysis 

can be applied to a unidirectional link between the intermediate 

node 𝐼𝑖  and the receiver 𝑅. If the reliability of the imperfect link 

is provided (instead of the failure probability), then the NOT 

gate in the stochastic model can be removed, because the 

reliability is represented as 𝑝′ = 1 − 𝑝. This also applies to the 

bidirectional stochastic model, as presented next. 

B. A stochastic model for bidirectional links 

A bidirectional link usually exists between two intermediate 

nodes (unless specific assumptions are made), e.g. 𝐼𝑖  and 𝐼𝑗, as 

shown in Figure 2(a) for a bidirectional transition. The 

bidirectional link between 𝐼𝑖  and 𝐼𝑗 is represented by 𝐿𝑖𝑗 . The 

stochastic model for the imperfect link is illustrated in Figure 

2(d). 

𝑆𝐿𝑖𝑗
 denotes the stochastic sequence generated for the failure 

probability of the imperfect link  𝐿𝑖𝑗 . For the 𝑘th trial, the state 

of the imperfect link is denoted by 𝑆𝐿𝑖𝑗,𝑘. If 𝑆𝐿𝑖𝑗,𝑘 = 1, then the 

link 𝐿𝑖𝑗  is disconnected; hence, the states of the two 

intermediate nodes 𝐼𝑖  and 𝐼𝑗  do not affect each other. 

Otherwise,  
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Figure 3. (a) Links connected to the node 𝐽𝑖. (b) A stochastic model for determining the state of 𝐽𝑖. 𝐼𝑗 , ⋯, 𝐼𝑘 indicate the intermediate nodes connected to 𝐽𝑖, with 

links denoted as 𝐿𝑗𝑖, ⋯, 𝐿𝑘𝑖 . 

 

𝑆𝐼𝑖,𝑘 = 𝑆𝐼𝑗,𝑘 . If either 𝐼𝑖  or 𝐼𝑗  has received the information 

(indicated by a “1”), then the other node also receives the 

information through the fault-free link 𝐿𝑖𝑗 . Given the stochastic 

sequence 𝑆𝐿𝑖𝑗
 (for the failure probability of the imperfect link  

𝐿𝑖𝑗), the stochastic model in Figure 2(d) accurately evaluates 

the reliability of the bidirectional link. For the bidirectional link, 

there is no order in the transmission of the anticipated 

information, and this is also the case in the model of Figure 2(d). 

Hence, the system is considered as stable, unless the stochastic 

sequences for each node at two adjacent time steps are 

different. 

C. A stochastic model for nodes with multiple links 

Multiple links can be connected to a node (Figure 3(a)). If all 

incoming links to a node 𝐽𝑖  (either an intermediate node or 

receiver) are disconnected, then 𝐽𝑖  cannot receive any 

information. However, if any of the links is connected, i.e., at 

least for a link connecting 𝐼𝑗 and 𝐽𝑖, say, 𝐿𝑗𝑖, 𝑆𝐿𝑗𝑖,𝑗 = 0, then 𝐽𝑖 

receives the information  once any of the nodes connected to 𝐽𝑖 

has already received it ( 𝐼𝑗  can be the transmitter or an  

intermediate node, i.e., 𝐼𝑗 ∈ {𝑆, 𝐼𝑗 , ⋯ , 𝐼𝑘}) for 𝑗th trial. The state 

of the intermediate node 𝐽𝑖 is determined by the states of other 

intermediate nodes connected to 𝐽𝑖 . If any of the nodes 

connected to 𝐽𝑖 has already received information (e.g. 𝑆𝐼𝑖,𝑗 = 1, 

𝐼𝑖 ∈ {𝑆, 𝐼𝑗 , ⋯ , 𝐼𝑘}) and the link 𝐿𝑗𝑖 is fault free, i.e., 𝑆𝐿𝑗𝑖,𝑗 = 0, 

then information can be received by 𝐽𝑖 , i.e. 𝑆𝐽𝑖,𝑗 = 1 . The 

relationship in Figure 3(a) can be modeled by an 𝑛-input OR 

gate where 𝑛 denotes the number of nodes connected to 𝐽𝑖.  

Moreover, if 𝐽𝑖  is an intermediate node connected to the 

receiver (𝑅) (Figure 3(a)), then 𝑅 has no effect on the state of 𝐽𝑖; 

hence, the connection from 𝐽𝑖 to the receiver can be neglected 

for the purpose of determining the state of node 𝐽𝑖. 

 

IV. STOCHASTIC MODELS FOR IMPERFECT NODES 

In addition to links, nodes can also be imperfect; an analysis 

of an imperfect node 𝐼𝑑 is pursued in this work. There are 𝑚 

incoming links, 𝑛  outgoing links and ℎ  bidirectional links 

connected to other nodes. A bidirectional link is effectively 

considered as two unidirectional links.  

The imperfect node 𝐼𝑑 is further assumed to be divided into 

two virtual perfect nodes, 𝐼𝑑′ and 𝐼𝑑′′. The imperfection of a 

node is therefore implemented by the imperfect unidirectional 

link, 𝐿𝑑′𝑑′′ , between the two virtual nodes. Let 𝑆𝐼
𝑑′  and 𝑆𝐼

𝑑′′  be 

the stochastic sequences encoding the probabilities of a 

successful information arrival at 𝐼𝑑′  and 𝐼𝑑′′ , respectively. The 

sequence encoding the failure probability of the imperfect link 

𝐿𝑑′𝑑′′  is denoted by 𝑆𝐼
𝑑𝑑′′ . If 𝑝𝐼𝑑

 is the probability of the node 

to be operational, then 𝑆𝐼𝑑
 is the stochastic sequence for the 

failure probability of the imperfect virtual unidirectional link 

between the two nodes. If the ith bit in 𝑆𝐼𝑑
 is 1, i.e., 𝑆𝐼𝑑,𝑖 = 1,  

the link between 𝐼𝑑′  and 𝐼𝑑′′  is disconnected, then the 

information is lost after the imperfect node; otherwise, 𝑆𝐼
𝑑′ ,𝑖 =

𝑆𝐼
𝑑′′ ,𝑖. Hence, the probabilistic information passing through an 

imperfect node can be also implemented by the stochastic 

model for the unidirectional link in Figure 2(c). 

The stochastic sequence 𝑆𝐼
𝑑′  consists of 1s and 0s. If 𝑆𝐼

𝑑′ ,𝑖 = 1, 

the node successfully receives the information for the 𝑖th trial; 

otherwise, no information is received. If 𝑆𝐼
𝑑𝑑′′ ,𝑖 = 1, then the 

imperfect unidirectional link is faulty and the information 

cannot be passed to the virtual node; hence, the state of node 

𝐼𝑑′′ is 0, i.e., 𝑆𝐼
𝑑′′ ,𝑖 = 0. If 𝑆𝐼

𝑑′ ,𝑖 = 0, irrespective whether the 

link fails or not, there is no information received, i.e. 𝑆𝐼
𝑑′′ ,𝑖 = 0. 

Furthermore, if the imperfect links in/out of the imperfect node 

𝐼𝑑  are considered, the stochastic models for imperfect links 

presented previously can be applied. 
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V. CRITICALITY ANALYSIS 

A two-terminal network can be evaluated by using the 

stochastic models proposed previously for imperfect links and 

nodes. Catastrophic failures can occur due to externally 

induced events. Redundancy is often introduced to improve the 

reliability and guarantee the network to remain operational. 

When only a limited amount of redundancy can be provided, it 

is important to determine the most critical links. In this 

manuscript, the reliability of an imperfect network without 

external catastrophic (i.e., deterministic) failures is considered 

as a reference. Criticality of a link is defined as the reliability 

difference of an imperfect two-terminal network with a set of 

failure parameters, when that link works with a predefined 

failure probability and fails deterministically (e.g. due to a 

catastrophic failure). If multiple network components fail at the 

same time (so there is a common cause failure), this scenario 

can be readily taken into account by the proposed stochastic 

models.  

A stochastic model can be constructed using the stochastic 

models presented in previous sections to analyze the criticality 

of a link, e.g., 𝐿𝑖 , in the network. 𝑆𝐿𝑖
 encodes the failure 

probability of the imperfect link 𝐿𝑖  not affected by a 

catastrophic failure, while 𝑆𝐿𝑖

′  encodes the failure probability of 

𝐿𝑖  when it is affected by a catastrophic error. Due to the 

deterministic nature of a catastrophic failure, 𝑆𝐿𝑖

′  is a sequence 

of 1s. For the stochastic two-terminal network at time 𝑡, the 

stochastic sequences obtained by the receiver under these two 

failure scenarios of  𝐿𝑖 are given by 𝑆𝑅 and 𝑆𝑅
′  respectively.  An 

XOR gate is utilized to measure the difference in these two 

sequences, this is denoted by ∆𝑆𝑅. The criticality of 𝐿𝑖 is then 

encoded in ∆𝑆𝑅. This process can be applied to other links to 

find the most critical link to ensure the functionality of the 

two-terminal network.  

The process of evaluating the reliability of a two-terminal 

network (with an analysis of criticality) is shown as follows: 

(1) Determine failure probabilities of the imperfect links and 

nodes at the specified mission time point based on the provided 

failure parameters and distributions; 

(2) Generate the non-Bernoulli sequences for the different 

failure probabilities of the links and nodes; 

(3) For unidirectional or bidirectional links, the proposed 

stochastic models presented previously are applied to build the 

stochastic model; 

(4) If more than one link are connected to a node, the 

stochastic OR gate model is applied; 

(5) If an imperfect node is considered, then the stochastic 

model for the imperfect node is applied; 

(6) Generate a stochastic sequence (consisting of 1s) for the 

transmitter and propagate the sequence through the network 

(made of stochastic logic gates);  

(7) Calculate the probability of the information obtained by 

the receiver; then the reliability of the network is determined; 

(8) By varying the failure probability of a specific link or 

node for the mission time, the criticality of each link or node in 

the network reliability is found by analyzing the stochastic 

sequence ∆𝑆𝑅(𝑡) obtained. 

VI. ANALYSIS AND APPLICATIONS 

The stochastic analysis is performed for an imperfect bridge 

network. The network [15] consists of four nodes (2 

intermediate nodes, 𝐴  and 𝐵 ; a transmitter 𝑇,  a receiver 𝑅 ) 

(Figure 4). Initially, the nodes are assumed to be perfect, while 

each link fails with a fixed probability 𝑝𝑖 = 0.1. The failures of 

different links are assumed to be mutually independent; then, 

the reliability of the links is given as 𝑟𝑖 = 1 − 𝑝𝑖 = 0.9, 𝑖 ∈
{1, 2, ⋯ , 5} . As in [15], the algebraic expression for the 

reliability of this network is given by 𝑅𝑆 = 𝑟5(𝑟1 + 𝑟2 −
𝑟1𝑟2)(𝑟3 + 𝑟4 − 𝑟3𝑟4) + (1 − 𝑟5)(𝑟1𝑟3 + 𝑟2𝑟4 − 𝑟1𝑟2𝑟3𝑟4) , 

where 𝑅𝑆  denotes the system reliability; 𝑟𝑖  denotes the link 

reliability, 𝑖 ∈ {1, 2, ⋯ , 5}. The exact reliability is calculated as 

0.9785. While the accurate analytical expression can be derived 

here, the required computational complexity increases 

exponentially with the number of connections among nodes 

and the scale of a network. It becomes difficult, if not 

impossible, to perform an accurate analysis for large networks.  

The stochastic structure of the bridge network in Figure 4 can 

be constructed with the application of the stochastic models for 

imperfect links presented in Figure 2(c) and (d). Here, the 

stochastic sequences for the failure probabilities of links 𝐿𝑇𝐴, 

𝐿𝑇𝐵 , 𝐿𝐴𝐵 , 𝐿𝐴𝑅  and 𝐿𝐵𝑅  are denoted as 𝑆𝐿𝑇𝐴
, 𝑆𝐿𝑇𝐵

, 𝑆𝐿𝐴𝐵
, 𝑆𝐿𝐴𝑅

 

and 𝑆𝐿𝐵𝑅
 respectively; while 𝑆𝑇 and 𝑆𝑅 denote the information 

sequences sent by the transmitter 𝑇  and received by the 

receiver 𝑅  respectively. Then, a stochastic analysis can be 

performed by propagating the stochastic sequences through the 

constructed stochastic model. The mean and the variance of the 

network reliability found using a stochastic analysis with 30 

simulations are given in Table 1 for different sequence lengths. 

The mean and variance of the average run time are also 

provided to show the efficiency of the proposed analysis. 
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Figure 4. A bridge network [15].  

 

As shown in Table 1, the accuracy of the stochastic approach 

is affected by the sequence length. A more accurate result can 

be obtained by increasing the sequence length. However, a 

longer run time is also incurred, because longer stochastic 

sequences must be generated to represent the signal 

probabilities. Hence, the stochastic sequence length is 

determined by a tradeoff between accuracy and efficiency. 

Nevertheless, with a reasonable sequence length, the stochastic 

approach provides a relatively accurate estimate of the 

reliability of a two-terminal network. The precision of the 

stochastic analysis is affected by: (1) failure probabilities of 

imperfect nodes/links and the inherent random fluctuations, i.e., 

permutations of 1s, in the sequences; (2) the numbers of 

imperfect links/nodes and the network topology. As in [10], 
quantization error is incurred when converting a probability into a 
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stochastic sequence; however, quantization error can be avoided if 

using an appropriate sequence length to encode the probabilities. 

For instance, for a probability of 0.001, a sequence length of 1000 

bits is sufficient to avoid quantization error. Furthermore, due to 

the existence of a limited resolution, a resolution error is incurred 

in the process of stochastic computation; hence, a minimal 

sequence length should be determined by the provided signal 

probabilities. For instance, in order to encode a probability of 0.01, 

at least a sequence length of 100 bits should be used. Any 

probability with a precision higher than that of 0.01 cannot be 

represented by a sequence length of 100 bits. Let 𝜖 denote the 

resolution requirement and 𝑁𝑔 indicate the number of gates in a 

network, a stochastic sequence with a length 𝐿 ≥ 𝑁𝑔/𝜖 is usually 

sufficient [10]. Although the accuracy of an analysis is affected 

by the network topology, the number of nodes, the number of 

imperfect links and so on, for a network with thousands of gates, 

a sequence length of 1000k bits is usually able to meet the 

precision requirement of 0.01. Thus in practice, a shorter sequence 

length is often utilized to produce a result with acceptable 

accuracy. 
 

Table 1 Mean and variance for the bridge network’s reliability 

obtained by the stochastic approach.  

Stochastic computation 

Sequence length 

(𝑳) 

Reliability Average run time (s) 

Mean Variance Mean Variance 

1k 0.978300 0.000417 0.000368 0.000957 

10k 0.978530 0.002483 0.002001 0.001160 

100k 0.978502 0.002294 0.016803 0.005379 

 

To assess criticality, link 𝑗  is considered with a failure 

probability that varies with the mission time 𝑡. Assume that the 

failure of link 𝑗  is exponentially distributed; its probability 

density function (pdf) and cumulative density function (cdf) are 

𝑓(𝑡) = 𝜆 𝑒−𝜆𝑡  and𝐹(𝑡) = ∫ 𝑓(𝑡)
𝑡

0
𝑑𝑡 = 1 −  𝑒−𝜆𝑡  respectively, 

where λ is the (constant) failure rate of link 𝑗 for an exponential 

distribution. Let 𝑡 = 100  hours, 𝜆 = 0.008  and 𝐿  = 100,000 

bits. The failure probabilities of the other links are kept constant 

at 0.2; the reliability for the bridge network from 𝑇  to 𝑅  is 

shown in Figure 5. 

 
Table 2 Different failure scenarios analyzed for the bridge 

network. 𝒑𝒊 denotes the failure probability of link 𝒊, 𝒊 ∈ {𝟏, 𝟐,
𝟑, 𝟒, 𝟓}. 

case 1 𝑝𝑖 = 0.2,  

case 2 the failure of link 1 is exponentially distributed; 𝑝𝑖 = 0.2, 𝑖 ≠ 1 

case 3 the failure of link 2 is exponentially distributed; 𝑝𝑖 = 0.2, 𝑖 ≠ 2 

case 4 the failure of link 3 is exponentially distributed; 𝑝𝑖 = 0.2, 𝑖 ≠ 3 

case 5 the failure of link 4 is exponentially distributed; 𝑝𝑖 = 0.2, 𝑖 ≠ 4 

case 6 the failure of link 5 is exponentially distributed; 𝑝𝑖 = 0.2, 𝑖 ≠ 5 

 

 
Figure 5. Reliability by varying the failure probability of different links by the 

proposed stochastic approach (sequence length 𝐿 = 100,000 bits). The failure 
scenarios are illustrated in Table 2. 

 

If the failure probability of link 𝑗 , 𝑗 ∈ {1, 2, 3, 4, 5} , is 

changed, then the reliability varies (Figure 5). Links 𝑖 , 𝑖 ∈
{1, 2, 3, 4} have the same criticality on the reliability of the 

bridge network. Link 5 is the least critical because the 

reliability change is the smallest, as also found by the 

comparison of the reliabilities for case 1 and case 6. 

As shown in the simulation results, the inaccuracy decreases 

with an increase of sequence length. In general, the use of the 

type of stochastic sequences remains a key issue to be 

investigated, because a different type of sequences such as 

low-discrepancy sequences may result in a shorter length for 

achieving a specific accuracy, thus significantly improving the 

efficiency of stochastic computation.  

VII. CONCLUSION 

Reliability of a network is of great importance. The rapid 

increase in network complexity causes substantial difficulty in 

evaluating its reliability when communication is required 

between a transmitter and a receiver through intermediate 

nodes and links in a two-terminal network. In this paper, a 

stochastic computational approach is proposed to efficiently 

investigate the reliability of such general two-terminal 

networks. Both imperfect links and nodes have been considered 

by arranging the failure probabilities with values either fixed or 

varying with the mission time. The imperfect links, either 

unidirectional or bidirectional, have been modeled 

stochastically for the process of information transmission by 

utilizing a combination of logic gates. Non-Bernoulli 

sequences have been used to improve the computational 

efficiency and accuracy of the stochastic approach. The 

imperfect nodes can be effectively modeled by the proposed 

stochastic model for unidirectional imperfect links. Hence, the 

stochastic approach can be used to evaluate a general 

two-terminal network under any failure distribution.  

It has been shown that the reliability of a two-terminal 

network decreases with an external failure. Moreover, the 

reliability of the network varies if the external failure affects 

different links. Hence, the criticality of different links is 

analyzed using the proposed stochastic approach for improving 

the reliability of a two-terminal network by applying 

redundancy for those critical links. In the future, transmission 

of multiple signals through networks with multiple transmitters 

and receivers will be investigated using a stochastic analysis. 
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