
An Efficient Simulated Oscillator-based Ising Machine on FPGAs

Bailiang Liu, Tingting Zhang, Xingjian Gao, and Jie Han

Abstract— Ising model-based computing has emerged as
an efficient approach for solving combinatorial optimization
problems. In particular, oscillator-based Ising machines (OIMs)
have shown promising performance in such metrics as solu-
tion quality, time-to-solution, and energy-to-solution. Existing
designs, however, require customized chips and use sparsely
connected topologies with limited precision for the spin coupling
coefficients. In this paper, a simulated oscillator-based Ising
machine (SOIM) is designed with a fully connected topology
and high coefficient precision for an efficient implementation
on field-programmable gate arrays (FPGAs). To this end, an
FPGA-oriented model is first developed to describe the under-
lying mechanism of an oscillator-based Ising machine based
on revised differential equations. To save hardware, periodic
functions that are expensive to implement are replaced by piece-
wise linear functions. Moreover, Gaussian noise is omitted in the
system to further save hardware. An OIM simulation algorithm
is then proposed to solve the new differential equations using
the Euler integration method. From experiments on solving 800-
node max-cut problems, the results reach a level of 99% of the
best-known values. SOIMs of different sizes are then developed
and synthesized on a Zynq UltraScale+ board. Compared
with state-of-the-art FPGA-based Ising machines, the SOIM is
expected to utilize fewer hardware resources to efficiently solve
complex combinatorial optimization problems by leveraging a
high coefficient precision and a fully connected topology.

I. INTRODUCTION

Combinatorial optimization has become the foundation
of many modern technologies, such as electronic design
automation [1] and pharmaceutical product design [2]. The
non-deterministic polynomial time-hard combinatorial op-
timization problem (COP) is challenging to solve due to
the exponential growth of the search space when using an
enumerating approach. Ising machines have emerged as an
efficient COP solver to find a near-optimal solution within a
much shorter time frame. A heuristic algorithm [3], such
as simulated annealing (SA) [4] or simulated bifurcation
(SB) [5], makes the energy of the Ising model converg-
ing to the ground state. An oscillator-based Ising machine
(OIM) uses an oscillator network to implement the Ising
model. By its analog nature, an OIM often shows promising
results in solution quality, time-to-solution, and energy-to-
solution measures. Numerous OIM designs, such as the
RC-Tank OIM [6], the Schmitt-trigger OIM [7], and the
Ring OIM [8], have been proposed over the years. Most
implementations are sparsely connected and the precision of
coupling coefficients is very limited due to the use of resistive
or capacitive coupling. Based on the complementary metal-
oxide semiconductor technology, a digitally emulated OIM
(DEOIM) supports 33 fully connected spins [9]. However, a

The authors are with the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
(e-mail: bailiang@ualberta.ca; ttzhang@ualberta.ca; xg6@ualberta.ca;
jhan8@ualberta.ca).

significant loss occurs to the solution quality due to the use
of approximation for efficient digital implementations.

A field-programmable gate array (FPGA) is an efficient
alternative to custom chip design. It offers significant advan-
tages in terms of cost efficiency, scalability, and precision.
It also provides the flexibility to alter functionality post pro-
duction, allowing for on-the-fly adjustments to meet evolv-
ing computational demands. This reconfigurability ensures
that FPGA-based implementations are easily scaled up or
modified for meeting specific requirements without costly
redevelopment. Moreover, the ability to reconfigure hardware
enables FPGAs to achieve high precision in computation,
thus potentially capable of achieving a high solution quality
for solving COPs.

In this paper, an efficient simulated OIM design, referred
to as an SOIM, is proposed for FPGA implementations.
To this end, an FPGA-oriented model is first developed to
capture the evolution behavior of oscillator phases in the
OIM by using revised differential equations. Specifically,
the numerical range is first scaled for ease in hardware
implementation. The complex periodic functions are mod-
ified to FPGA-friendly piece-wise linear functions to further
reduce hardware. Gaussian noise is omitted in the system,
based on the observation from experiments that it has little
influence on the tested Gset benchmarks. An OIM simulation
algorithm is then proposed for the FPGA-oriented model by
solving the differential equations using the Euler integration
approach. An SOIM with a fully connected topology is
developed for the proposed algorithm. The precision of
coupling coefficients is set to 5 bits to provide a relatively
high accuracy for number representation. The simulation
results for solving max-cut problems and synthesis results
in FPGAs show that the SOIM achieves a high hardware
efficiency with a great potential to solve complex COPs.

The remainder of this paper is organized as follows.
Section II introduces the basics of the Ising model and OIMs.
The design of the proposed SOIM is presented in Section III.
Section IV reports the experimental results on solving max-
cut problems and evaluates the hardware performance. Con-
clusions are given in Section V.

II. PRELIMINARIES

A. The Ising Model and OIMs

The Ising model mathematically describes the ferromag-
netism in a spin glass. The coupling between spins induces a
spin into a ferromagnetism or anti-ferromagnetism state. The
energy of the spin glass, i.e., the Hamiltonian (H), without
external magnetic fields, is given by [10]:

H = −
∑
i,j

Jijσiσj , (1)

where σi (or σj) is the state of the ith (or jth) spin with
either an upward (+1) or downward (−1) state, and Jij is
the coupling coefficient for the ith and the jth spins.

B. The Oscillator-based Ising Machine

The OIM implements the Ising model by an oscillator
network and encodes spins into the oscillator phases. By
injecting a second harmonic signal, oscillators are set under
second harmonic injection locking (SHIL). In this way, os-
cillator phases are polarized, which can be used to represent
the spins in an Ising model. The dynamics of the oscillator
network under SHIL is governed by the generalized Adler’s
equation, as [6]:

dϕi(t)

dt
= ωi − ω∗ + ωiKssi(2ϕi(t)) (2)

+ωiK
∑

j [Jijcij(ϕi(t)− ϕj(t))],

where ϕi(t) is the phase of the ith oscillator at time t; ωi is
the frequency of the ith oscillator; ω∗ is the central frequency
of the oscillator network; cij(·) is a periodic function for the
coupling between the ith and jth oscillators, referred to as the
coupling function; si(·) is a periodic function for the second
harmonic signal injected to the ith oscillator, referred to as
the second harmonic injection function; and K and Ks are
the modulation parameters for the coupling coefficient and
the second harmonic signal, respectively.

For an RC-tank based oscillator network, cij(·) and si(·)
are defined as sinusoidal functions. All the oscillators in the
system are expected to share the same frequency without
considering circuit and device variability, hence ωi = ω∗.
Since ωi is a constant, it is merged into the modulation
parameters, K and Ks, for simplicity. Then, the global
Lyapunov function of the network, E(ϕ⃗(t)), is given by [6]:

E(ϕ⃗(t)) = −K
∑

i,j Jij cos(ϕi(t)− ϕj(t)) (3)
−Ks

∑
i cos(2ϕi(t)).

When an oscillator is under SHIL, its phase can only
be 0 or π. Therefore, cos(ϕi(t) − ϕj(t)) outputs −1 or
+1, respectively depending on whether ϕj(t) and ϕi(t) are
out of phase (ϕi(t) ̸= ϕj(t)) or not (ϕi(t) = ϕj(t)),
and cos(2ϕi(t)) always produces 1. When K = 1, (3) is
equivalent to the Hamiltonian of the Ising model, as given
in (1), only with a constant offset.

To deal with the scalability issue in simulation, Wang and
Roychowdhury utilized a smoothened square function, i.e.,
tanh(10 sin(·)), as the coupling function, instead of using
sin(·) [6]. To help the system escape from local minima, a
time-variant modulation parameter is used for the coupling
coefficient, and Gaussian noise is introduced to the system.
Thus, the modified Adler’s equation is obtained as [6]:

dϕi(t) = [−K
∑

j Jij tanh(10 sin(ϕi(t)− ϕj(t))) (4)
−Ks sin(2ϕi(t))]dt+KndWt,

where dWt is a time-variant Gaussian noise with the mean
0 and the variance dt, and Kn is the modulation parameter.
The parameters K, Ks, and Kn are usually given by [6]:


K = 1 +

t

20
Ks = 1 + 2 tanh(10 cos(πt))

Kn = 0.8

. (5)

III. THE SIMULATED OSCILLATOR-BASED ISING
MACHINE

A. An FPGA-Oriented Model of OIMs
For an efficient implementation of OIMs on an FPGA, the

modified Adler’s equation in (4) is revised by following the
observations below:
1) An experimental evaluation shows that omitting the Gaus-

sian noise in (4) only decreases the solution quality by a
mere 0.8% for solving max-cut problems (although the
details are not shown due to limited space). As shown
in [11], using a random number generator for each spin
to introduce Gaussian noise in a 1024-spin FPGA-based
annealer increases hardware costs by at least tenfold.
Therefore, Gaussian noise is omitted in this work to save
on hardware usage.

2) All the periodic functions in (4) have a period of 2π,
which is accurate for describing physical models but
inefficient for an FPGA implementation. To address this
issue, the period is reduced to 2, thus eliminating the
multiplication and division involving π.

3) For ease in implementation, the complex coupling func-
tion (tanh(10 sin(·))) and the second harmonic injection
function (sin(·)) in (4) are approximated by simple piece-
wise linear functions, which can be implemented using
bit-wise operations with simple addition and subtraction.
Moreover, a function, called an evolution bound function,
is used to constrain the phase values to be within [−2, 2].
The proposed coupling function, the second harmonic
injection function, and the evolution bound function are
defined as follows:
• Coupling Function (C): The coupling function in (4)

utilizes the functions tanh(x) and sin(x), which are
hardware-consuming for FPGA implementations. The
tanh(10 sin(x)) is approximated by a piece-wise func-
tion with a period of 2, where the definition over [0, 2)
is defined as:

C(x) =

 0 x = 0 or 1
1 0 < x < 1

−1 1 < x < 2
. (6)

Fig. 1a presents the comparison between the original
and proposed coupling function.

• Second Harmonic Injection Function (S): Equation (4)
uses the sin(x) function as the second harmonic in-
jection function. As shown in Fig. 1b, to facilitate
hardware implementation while preserving its periodic
nature along with its ascending and descending trends,
the following piece-wise linear function with a period
of 2 is proposed:

S(x) =


2x 0 ≤ x < 0.5

2− 2x 0.5 ≤ x < 1.5

2x− 4 1.5 ≤ x < 2

. (7)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

0

1

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

0

1

(b)

Fig. 1: The comparisons between the original and the pro-
posed approximate (a) coupling function, and (b) second
harmonic injection function.

• Evolution Bound Function (B): Since all functions
exhibit a period of 2 in the proposed FPGA-oriented
model, modulo and addition by a power of 2 to the
oscillator phases do not affect the results. An evolution
bound function with period of 4 is introduced to limit
the oscillator phases to be within [−2, 2], given by:

B(x) =

{
x 0 ≤ x < 2

x− 4 2 ≤ x < 4
. (8)

Therefore, for an N -spin Ising model, the proposed
FPGA-oriented model searches for a solution by solving the
following differential equation for each spin:

dϕi(t) = [−K

N∑
j=1

JijC(ϕj(t)− ϕi(t))−KsS(2ϕi(t))]dt,

(9)
where K is defined in (5) and Ks is given by:

Ks = 1 + 2×M(x), (10)

where the function M(x) is modified from the coupling
function C(x + 0.5) by setting M(1.5) to 1 and M(0.5)
to −1, so excluding 0 as a functional output. It is obtained
by shifting C(x) to the left by 0.5 in order to compensate
the difference between tanh(sin(·)) in (4) and tanh(cos(·))
in (5). The oscillator phase is updated by first calculating the
new oscillator phase and then limiting it to be within (−2, 2]
as

ϕi(t+ 1) = B(ϕi(t) + dϕi(t)), (11)

where ϕi(t+1) is the phase of the ith oscillator at time t+1.

B. The Proposed Algorithm

In this work, we consider a simple Euler integration
method to solve the differential equation in (9). As shown
in Algorithm 1, it requires external inputs including the
coupling coefficient matrix J , the simulation stop time Tstop,

Algorithm 1 Oscillator-based Ising Machine Simulation
Algorithm

Input: J , Tstop, and ∆T
Output: Φ

1: Initialize oscillator phases
2: for q = 1 to Tstop/∆T do
3: K ⇐ 1 + q∆T/20
4: Ks ⇐ 1 + 2×M(q∆T)
5: for each oscillator, i, do
6: pdi ⇐ Φq−1,i · ones(1, N)−Φq−1

7: lfi ⇐ −K(Ji · C(pdi))
8: ssi ⇐ −KsS(2Φq−1,i)
9: ∆Φq,i ⇐ lfi + ssi

10: end for
11: Φq ⇐ B(Φq−1 +∆T ·∆Φq)
12: end for

Controller

KCU

KSCU

in
cr

em
en

t
LFC

ISG

P
C

lfi

ssi

KS

Φi

ΦIn,i
Ji

K

j in

Φi

LF
C

En

IS
G

EninputSel

i
i+1

...

N
Φi+1

ΦN

Φ
i

Φ
i+

1

Φ
N

...

ΦIn,i+1 ΦIn,N

Φi

Fig. 2: The top-level circuit architecture of SOIM.

and the time step for each iteration ∆T . The output is a
matrix for oscillator phases, Φ. The oscillator phases are
initialized by using uniformly distributed random numbers
between −1 and +1 (Line 1). At the qth iteration and at
time t = ∆T · q, K and Ks are first updated according
to (5) and (10) (Lines 3 and 4). For the ith oscillator, the
phase difference between the ith and other oscillators (pdi)
is computed for the coupling function (Line 6). Then, the
output from the coupling function is multiplied with the
coupling coefficient (Ji) and its modulation parameter K
to compute the local field on the ith oscillator (lfi) (Line 7).
The second harmonic injection signal (ssi) is then generated
depending on the ith oscillator phase at the (q−1)th iteration
(Φq−1,i) (Line 8). The cumulative effect from lfi and ssi on
the ith oscillator, ∆Φq,i, is then computed (Line 9). Finally,
all the oscillator phases at the qth time step (Φq) are updated
depending on the oscillator phases at the (q− 1)th time step
(Φq−1) and the cumulative effect multiplied by ∆T based
on the evolution bound function (Line 11). The oscillator
phases will continue being updated until Tstop is reached.

C. Circuit Design

Fig. 2 shows the top-level architecture of the proposed
SOIM. An N -spin SOIM consists of two computing units
for different parameters, one for K (KCU) and the other for
Ks (KsCU), as well as N injection signal generators (ISGs)
for SHIL, N local field calculators (LFCs), and N phase
calculators (PCs). Note that the SOIM uses the fixed point

R
ST1

C
LK

In
cr

em
en

t
K

Δ
K

MUX1

K

(a)

>> tbits

-4

CMP

3

ISGIi

CMP

1

Ks

ISGSel

2

-1

SCISi

CLK

ISGEn

<< 1

MUX2MUX2

MUX3MUX3

ssi

-1

(b)

Fig. 3: The block diagrams for (a) KCU, and (b) ISG.

number representation with a total of (int+ frac) bits, int
bits for the integer part and frac bits for the fractional part.
The modules in the SOIM are designed as follows:

1) Computation Unit for K (KCU): As shown in Fig. 3a,
the KCU computes the time-variant parameter K in (5)
(Algorithm 1, Line 3). When RST = 1, the register is
initialized to decimal 1. When all the oscillator phases have
been updated, the increment is set to high to enable the
accumulation. Each accumulation increases K by a constant
step ∆K, where ∆K = ∆T/20. The output from the
accumulator is used for the lf computation in the LFC.

2) Computation Unit for Ks (KsCU): Similarly, the
KsCU uses an accumulator to compute Ks in (10). The
accumulator is enabled by the increment signal and is reset
when an overflow occurs. According to (10), the value of
Ks is either −1 or 3 since M(t) can only be ±1. To reduce
the hardware overhead in the ISG, the KsCU encodes −1
as “1” and 3 as “0”. Ks is then sent to the ISG to generate
the second harmonic injection signal for SHIL.

3) Injection Signal Generator (ISG) for SHIL: Fig. 3b
shows the block diagram for the ISG. The ISG is enabled by
ISGEn and it takes two CLK cycles to generate the second
harmonic injection signal (Line 8). In the first CLK cycle,
it computes the second harmonic injection signal. According
to Algorithm 1 (Line 8), Φi is first multiplied by 2 to obtain
2Φi, then it undergoes a modulo 2 operation since S(2Φi)
is a periodic function with 2 as the period, as shown in (7).
Finally, the remainder is multiplied by 2 again because there
is a multiplication with 2 operation in the three candidate
values of the result of S(2Φi) in (7). ISGIi[frac + 1 :
0] = Φi[frac − 1 : 0] & “00” serves as the input to
implement the aforementioned operations by using simple
bit-wise operation, where & is the concatenation operator.
Since ISGIi carries the 2x value in (7), it ranges from 0 to
4 and is compared with 3 and 1 to determine the output of the
second harmonic injection function by using MUX2 from
the three candidate values. The output of MUX2, SCISi,
multiplied by ∆T is implemented by arithmetic right shifting
SCISi by tbits bits, where tbits = log2 ∆T . During the
second CLK cycle, SCISi is multiplied by Ks to generate
ssi. There are two possible values for ssi: −1×SCISi and

-1Ji,1 Ji,2 ... Ji,N

j

alfi

0

cpi,j

Ji,j

Ji,j C(pdi,j)

MUX6

MUX7

>> tbits

alfi

Ji,j

(a)

(c)(b)

Φ1 Φ2 ΦN... Φi

jin -1

Φj

pdi,j

MUX4

jinjin

CLKLFCEn

j

Φ1 Φ2 ΦN... Φi

jin -1

Φj

pdi,j

MUX4

jin

CLKLFCEn

j

pd2i,j

C
M

P

cpi,j1

0

-1

C
M

P

1

M
U

X
5

pd2i,j

C
M

P

cpi,j1

0

-1

C
M

P

 00 oor r 11

1

M
U

X
5

CLK

Fig. 4: The block diagram for LFC.

3 × SCISi implemented as 2 × SCISi + SCISi. Taking
these two values as the inputs of MUX3, ssi is determined
by Ks.

4) Local Field Calculator (LFC): Fig. 4 presents the
block diagrams for the LFC. The LFC performs the com-
putation in Algorithm 1, Lines 6 and 7. It can be divided
into four steps, as follows:

• The first stage is to compute the phase difference (Line 6).
As shown in Fig. 4a, the inputs are the oscillator phases
vector Φ, the index jin, the enable signal LFCEn, and the
phase of the ith oscillator Φi. The jin register outputs the
new index j when LFCEn and CLK are high. Otherwise,
it outputs the previous value stored. The N -to-1 MUX4

is used to select the jth oscillator phase Φj from Φ.
Then, the phase difference pdi,j between the ith and jth
oscillators is computed by using subtraction (implemented
as the addition of the negative phase in Fig 4a).

• The second stage is to compute the output from the
coupling function (6), taking pd2i,j as the input, as shown
in Fig. 4b. pd2i,j depends on the phase difference pdi,j cal-
culated in the first step. It is the remainder of pdi,j divided
by 2 in order to adapt to the periodic coupling function,
such that pd2i,j [frac : 0] = pdi,j [frac : 0], where the
most significant bit of pd2i,j is the integer bit and others
are fractional bits. The output of the coupling function
C(pdi,j) (= C(pd2i,j)) is encoded into cpi,j using two
bits with “00”, “01” and “10” indicating the decimal value
−1, 0 and 1, respectively. For example, if pd2i,j equals to
0 or 1, cpi,j = “01”; if the decimal value of pd2i,j falls
within the range of (1, 2), i.e., pd2i,j [frac] = “1”, then
cpi,j = “00”; otherwise, cpi,j = “10”.

• The third stage is to compute
∑

j Ji,jC(pdi,j)∆T for the
local field. The ∆T is multiplied at this step to prevent
overflow and underflow in the multiply-accumulate (MAC)
operation. As shown in Fig. 4c, it takes the index j,
the coupling coefficient vector for the ith oscillator Ji

and cpi,j as inputs. First, the coupling coefficient, Ji,j ,
is selected from Ji by using MUX6. Then, using cpi,j as
the select signal for MUX7, the result of Ji,jC(pdi,j) in
Line 7 is obtained. When cpi,j = “01”, MUX7 outputs
0; when cpi,j = “00”, MUX7 outputs −Ji,j ; otherwise,

FSM

PC

LC SUM UP

KCU, KsCU

0 1 2 ... N+2 N+3LFC

ISG

ST LC ...ID

CLK

RST

Fig. 5: The timing chart of the SOIM.
MUX7 outputs Ji,j . It is then arithmetic-right shifted by
tbits bits to implement Ji,jC(pdi,j)∆T , which is added
to an accumulator to obtain alfi, an intermediate result of
lfi. This process needs to iterate over j = 1 to N cycles
to compute the dot product of Ji · C(pdi)∆T .

• In the last stage, the modulation parameter for the coupling
coefficient K generated in the KCU is multiplied by alfi
to compute the lfi∆T (Line 7).
5) Phase Calculator (PC): The PC calculates the new

oscillator phase depending on lfi, ssi and the current phase
(Algorithm 1, Lines 9 and 11). Note that the operations of
multiplication with −1 in Lines 7 and 8, are not implemented
in the LFC and the ISG, but is implemented in this unit
instead. The evolution bound function in (8) is applied to the
sum of lfi, ssi and the current phase, which is represented by
(int+frac) bits. By keeping the least significant (frac+2)
bits, the remainder of the sum divided by 4, denoted by x,
is obtained. In this way, 0 ≤ x < 4. Then, according to (8),
if 0 ≤ x < 2, i.e., the (frac + 2)th bit is “0”, the most
significant (int−2) bits of the sum are set to “0”; if 2 ≤ x <
4, i.e., the (frac+2)th bit is “1”, the remainder needs to be
subtracted by 4 which is accomplished by adding −4 in 2’s
complement, equivalent to setting the most significant (int−
2) bits to “1”. Thus, these operations can be implemented by
copying the (frac+2)th bit to the most significant (int−2)
bits in the sum.

D. Timing Design
Fig. 5 provides the timing chart of the SOIM for the first

iteration. The system is controlled by a finite state machine
(FSM) with five states: IDLE (or ID), START (Or ST), LC,
SUM, and UP. The SOIM uses an asynchronous reset signal
that forces the FSM go into the IDLE state when reset = 1.
When reset = 0, the FSM will go to the START state to
load the coupling coefficient and initialize the phases. After
one clock cycle, the local field computation begins and the
machine jumps to LC, in which the local field is computed
in the LFC. The local field computation process uses a four-
stage pipeline design, which is controlled by a local FSM as
follows:
• The first stage of the pipeline is to compute pdi,j .
• The second stage is to compute the coupling function with

the pdi,j as the input.
• The third stage is to compute the accumulated local field

on the ith oscillator.
• The fourth stage is to multiply the accumulated local field

by its modulation parameter, K.
The LC state takes N+3 cycles due to the MAC operation.

When this local FSM reaches N+2 iterations, the controller

will send an enable signal ISGEn to the ISG, as shown
in Fig. 2, and the increment signal is set to high. When
finishing N + 3 cycles, the FSM goes to the SUM state,
where the new oscillator phase is computed by the PC. The
FSM is changed to the UP state after one clock cycle to
load newly computed oscillator phases to internal registers.
After that, the FSM will loop back to the LC and start a new
iteration for updating the oscillator phases.

IV. EXPERIMENTAL RESULTS
A. Solving Max-Cut Problems

In this subsection, the performance and feasibility of the
proposed algorithm is evaluated in comparison with the clas-
sical SA [12], the OIM simulation [6], and the DEOIM [9]
algorithms. We consider twenty benchmark datasets from
the Gset [13] of 800-node max-cut problems with varying
connectivity.

The average (AVG) and maximum (MAX) of the cut
values from ten runs are normalized by the best-known cut
values [6] for measuring the solution quality of different
algorithms. For the proposed algorithm, the unitless param-
eters are set as Tstop = 40 and ∆T = 2−9. Thus, the
total number of iterations for updating the spin states is
given by Tstop/∆T . The phases from all oscillators at all
iterations are evaluated to obtain the maximum cut value.
The SOIM and DEOIM simulations are conducted on an
AMD processor, Ryzen 7 5800X3D (4.5 GHz), with Python
3.11.7. The simulation results for SA and OIM simulation
algorithms are obtained from [6], where the SA was run on
Intel Xeon E3-1245v2 (3.4 GHz) and the OIM simulation
algorithm was run on Intel Xeon E5-1603v3 (2.8 GHz).

Fig. 6 compares the MAX and AVG results obtained
by using the proposed algorithm with the MAX results
obtained by using the SA, the OIM simulation, and the
DEOIM algorithms. In an evaluation across twenty max-
cut problems, the proposed SOIM algorithm returns average
values of 99.1% in MAX and 98.2% in AVG. Compared
to DEOIM, the SOIM achieves an average 8% increase in
MAX. It indicates that an SOIM-based system has a smaller
probability of getting stuck in local minima. When compared
to the SA and the OIM simulation algorithms, there is a
marginal degradation in MAX by approximately 0.9% and
1.8%, respectively. The loss in solution quality is attributed
to several key factors as follows:
• The use of piece-wise functions as the coupling and the

second harmonic injection functions results in a slightly
different evolution of oscillator phases.

• The exclusion of Gaussian noise reduces the probability
for the SOIM to escape from local minima.

• Using the Euler integration approach provides a limited
computational accuracy for solving the differential equa-
tions in the OIM system.
However, the proposed SOIM is expected to have a

significant improvement in hardware efficiency.

B. Hardware Performance

The hardware performance of the SOIM is compared with
the FPGA Annealer (FA) [11] and SB Machine (SBM) [14],

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

N
or

m
al

ize
d

Cu
t V

al
ue

s b
y

th
e

Be
st

-k
no

w
n

Va
lu

e
SOIM (AVG) SOIM (MAX) DEOIM (MAX) SA (MAX) OIM (MAX)

Fig. 6: The performance for solving max-cut problems by using different Ising model-based algorithms.

TABLE I: Comparison of FPGA Implementations for Dif-
ferent Ising Machines

Design Size Coefficient Precision Topology LUTs FFs DSPs
SOIM 50 5 bits Complete1 5,706 3,456 50
SOIM 100 5 bits Complete1 11,622 6,928 100
SOIM 500 5 bits Complete1 58,989 34,631 500
FA [11] 1,024 3 level Sparse2 468,183 - -
SBM [14] 2,048 1 bit Complete1 260,953 281,274 104

1 For the complete topology, all the spins are connected to each other.
2 For the sparse topology, not all the spins are coupled together.

as shown in Table I. The SOIMs were implemented on a
Zynq UltraScale+ ZCU104FPGA board with an XCZU7EV-
FFVC1156-2-E processor, simulated and synthesised in Vi-
vado 2022.2. This FPGA board is equipped with 230,400
Look Up Tables (LUTs), 460,800 Flip-Flops (FFs), and 1,728
Digital Signal Processing Elements (DSPs).

As a preliminary work, we constructed the SOIM with a
small size and verified its functionality for a 10-spin system.
The coupling coefficient and the initial phase are set as inputs
to the system, requiring significant I/O usage. Larger SOIMs
are synthesized with the presumption that the I/O constraint
is ignored and will be addressed in future work. Although
we only present the hardware measurements for the system
with 50, 100, and 500 spins, the hardware performance for
a larger size can be estimated. The DSPs are used for the
multiplication in the LFC, so its usage linearly increases with
the number of spins. When scaling up the number of spins to
1024, as can be inferred from Table I, the SOIM is expected
to use fewer LUTs than the FA; when scaled up to 2048
spins, it is expected that the SOIM requires fewer FFs than
the SBM. Compared with the FA, the SOIM offers a fully
connected topology, which makes it easy to embed a given
COP to the Ising machine. Compared with the SBM, it has
a stronger ability in solving complex COPs since it attains
5-bit precision for the coupling coefficient.

V. CONCLUSIONS

As a first FPGA design for a fully connected oscillator-
based Ising machine, the SOIM utilizes an FPGA-oriented
model to simulate the oscillator network using revised differ-
ential equations. For hardware efficiency, the complex peri-
odic functions for describing the coupling between oscillators
and the second harmonic signal are both replaced by piece-
wise linear functions. To further reduce hardware, Gaussian

noise is discarded in the system with a negligible loss in
solution quality. A heuristic algorithm is then developed for
this model to solve the differential equations by using a
Euler integration method. Based on the proposed algorithm,
SOIMs with a fully connected topology are implemented
and synthesized on FPGAs. The experimental results show
that the SOIM has an advantage in hardware performance
with a slight loss in solution quality, approximately by 1%
in the maximum and 1.8% in the average max-cut values
found. Based on this preliminary work, a larger SOIM will be
implemented and verified on FPGAs by fully exploiting the
limited on-board resources. Finally, large-scale COPs with
dense connectivity will be investigated in future work.

REFERENCES

[1] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov, “Min-cut
floorplacement,” IEEE TCAD, vol. 25, no. 7, pp. 1313–1326, 2006.

[2] S. Siddhaye, K. Camarda, M. Southard, and E. Topp, “Pharmaceutical
product design using combinatorial optimization,” Comput. Chem.
Eng., vol. 28, no. 3, pp. 425–434, 2004.

[3] T. Zhang, Q. Tao, B. Liu, and J. Han, “A review of simulation
algorithms of classical Ising machines for combinatorial optimization,”
in ISCAS. IEEE, 2022, pp. 1877–1881.

[4] D. Oku, K. Terada, M. Hayashi, M. Yamaoka, S. Tanaka, and
N. Togawa, “A fully-connected Ising model embedding method and
its evaluation for CMOS annealing machines,” IEICE Trans. Inf. Syst.,
vol. 102, no. 9, pp. 1696–1706, 2019.

[5] T. Zhang and J. Han, “Quantized simulated bifurcation for the Ising
model,” in IEEE NANO Conf. IEEE, 2023, pp. 715–720.

[6] T. Wang and J. Roychowdhury, “OIM: Oscillator-based Ising machines
for solving combinatorial optimisation problems,” in UCNC. Springer,
2019, pp. 232–256.

[7] J. Vaidya, R. Surya Kanthi, and N. Shukla, “Creating electronic
oscillator-based Ising machines without external injection locking,”
Sci. Rep., vol. 12, no. 1, p. 981, 2022.

[8] W. Moy, I. Ahmed, P.-w. Chiu, J. Moy, S. S. Sapatnekar, and C. H.
Kim, “A 1,968-node coupled ring oscillator circuit for combinatorial
optimization problem solving,” Nat. Electron., vol. 5, no. 5, pp. 310–
317, 2022.

[9] S. Sreedhara, J. Roychowdhury, J. Wabnig, and P. Srinath, “Digital
emulation of oscillator Ising machines,” in DATE. IEEE, 2023, pp.
1–2.

[10] A. Lucas, “Ising formulations of many NP problems,” Frontiers in
physics, vol. 2, p. 5, 2014.

[11] C. Yoshimura, M. Hayashi, T. Okuyama, and M. Yamaoka, “FPGA-
based annealing processor for Ising model,” in CANDAR. IEEE, 2016,
pp. 436–442.

[12] T. G. Myklebust, “Solving maximum cut problems by simulated
annealing,” arXiv preprint arXiv:1505.03068, 2015.

[13] S. E. Karisch. [Online]. Available:
https://web.stanford.edu/ yyye/yyye/Gset/

[14] K. Tatsumura, A. R. Dixon, and H. Goto, “FPGA-based simulated
bifurcation machine,” in FPL. IEEE, 2019, pp. 59–66.

