
Introduction to Dynamic Stochastic Computing
Siting Liu

Department of Electrical and
Computer Engineering

McGill University
Montreal, QC H3A 0E9, Canada
Email: siting.liu@mail.mcgill.ca

Warren J. Gross
Department of Electrical and

Computer Engineering
McGill University

Montreal, QC H3A 0E9, Canada
Email: warren.gross@mcgill.ca

Jie Han
Department of Electrical and

Computer Engineering
University of Alberta

Edmonton, AB T6G 1H9, Canada
Email: jhan8@ualberta.ca

Abstract—Stochastic computing (SC) is an old but reviving
computing paradigm for its simple data path that can perform
various arithmetic operations. It allows for low power implemen-
tation, which would otherwise be complex using the conventional
positional binary coding. In SC, a number is encoded by a
random bit stream of ‘0’s and ‘1’s with an equal weight for
every bit. However, a long bit stream is usually required to
achieve a high accuracy. This requirement inevitably incurs a
long latency and high energy consumption in an SC system.
In this article, we present a new type of stochastic computing
that uses dynamically variable bit streams, which is, therefore,
referred to as dynamic stochastic computing (DSC). In DSC,
a random bit is used to encode a single value from a digital
signal. A sequence of such random bits is referred to as a
dynamic stochastic sequence. Using a stochastic integrator, DSC
is well suited for implementing accumulation-based iterative algo-
rithms such as numerical integration and gradient descent. The
underlying mathematical models are formulated for functional
analysis and error estimation. A DSC system features a higher
energy efficiency than conventional computing using a fixed-point
representation with a power consumption as low as conventional
SC. It is potentially useful in a broad spectrum of applications
including signal processing, numerical integration and machine
learning.

I. INTRODUCTION

As an unconventional computing paradigm, stochastic com-
puting (SC) operates on numbers encoded by sequences of
random ‘0’s and ‘1’s [1]. The probability of a ‘1’ in the
stochastic sequence is then used to encode a number. The
datapath of a typical SC system consists of three major
components: stochastic number generators (SNGs), stochastic
circuits and probability estimators (PEs), as shown in Fig. 1.
Complex computation can be performed by the stochastic
circuits in relatively simple bit-wise operations, while the
SNG array and PEs are used to convert numbers between the
conventional binary representation and stochastic encoding.
SC has been studied for decades for its relatively simple logic,

MUX

01100110…

p1=0.5

10101010…

p2=0.5

00100010…

p=p1p2=0.25

01100101…

p1=0.5

11101110…

p2=0.75

sel

psel=0.5

00110110…

0

1 p=(1-psel)p1+pselp2=0.625

01100111… (a)

(c)

10010000…

00101000…
01000111… ×2-1= -0.5

4
16

p1=

×2-1= -0.5 4
16

p2=

×2-1= 0.25
10
16

p1p2=

(b) A bipolar stochastic multiplier

00101000… 11010111…

p1=0.25 p=1-p1=0.75

(b)

p1

p2

p=p1p2

1

1

p1

p2

(1, 1)

A<B

A<B

RN1

RN2

Counter

(b) A bipolar stochastic multiplier

Stochastic number
generator (SNG)

array

Binary inputs
(from memory

devices)

Stochastic
sequences

Stochastic
computing

circuits

Stochastic
sequences

Probability
estimators

(PEs)

Binary
outputs

+

-

DSNG
Digital
signal

Bipolar stochastic

sequence encoding‘0’

Integration results

Output DSS

Fig. 1: Datapath of a stochastic computing system.

...010100101010110100...

A =
Δt

n (t; t+Δt)

p =
p

N

Δt

L

N: number of ‘1’s in the sequence

n(·): number of spikes in the time window

: encoded value L

A: encoded value

(a) Stochastic unipolar encoding.

(b) Rate coding.

RNG
Dynamic stochastic sequence

encoding signal {xn}

111010001011…

Comparator

Y

X
X<Y

{xn}

...010100101010110100...

p =
L

N

L

N: number of ‘1’s in the sequence

p: encoded value

(a) Stochastic unipolar encoding.

A =
Δt

n (t; t+Δt)

Δt

n(·): number of spikes in the time window

A: encoded value

(b) Rate coding.

Fig. 2: (a) Stochastic encoding vs. (b) rate coding.

low power consumption, an inherent resilience to bit-flip errors
and biological plausibility.

In a stochastic sequence, a number, x, can be simply
encoded as the probability of a ‘1’ or, approximately, as the
ratio of the number of ‘1’s in the total number of bits. An
inverter then computes 1− x for an input sequence encoding
x. For two independent input sequences encoding x and y,
an AND gate outputs a ‘1’ when both the input bits are
‘1’s, so the probability of a ‘1’ in the output sequence is
equal to the product of the probabilities of ‘1’s of the two
input stochastic sequences, i.e., xy, whereas in conventional
arithmetic, a multiplier requires a complex circuit.

Since numbers are represented by redundant random bits, a
bit-flip usually incurs a relatively small error in the final result,
so SC is fault-tolerant and robust against moderate operational
errors. However, if a bit flip occurs at a more significant bit in
a conventional circuit, it can introduce a large error [2], [3].

In fact, a stochastic sequence works in a similar manner to
the rate coding [4] in a spiking neuron, as shown in Fig. 2.
With this coding, the frequency of spikes during a time interval
carries the information in a neuron [5], similar to the stochastic
encoding using the frequency of the occurrence of ‘1’ in
SC. Inspired by the neuronal coding, SC has been used to
implement various machine learning algorithms [6]–[17].

To achieve a high accuracy, however, a long sequence is
often required in SC due to stochastic fluctuations. A long
sequence in turn implies a high latency and a high energy
consumption. In addition, the costly SNGs and PEs can
account for a major part of the circuits in an SC system [18].

To address this issue, we noticed that a stochastic sequence
can carry the information of a varying signal with each bit
encoding a value from the signal. This new type of sequences
is referred to as a dynamic stochastic sequence (DSS). In

a DSS, the sequence length encoding each number is just
1 bit, so it can significantly improve the performance and
energy efficiency of a stochastic circuit. In this article, we
present dynamic stochastic computing (DSC) using DSS’s and
discuss the efficient implementation of iterative accumulation-
based computations, including filtering, the Euler method
for solving ordinary differential equations (ODEs) and the
gradient descent (GD) algorithm in machine learning.

II. BACKGROUND

Originally proposed in the 1960s, SC is intended to be a
low-cost alternative to conventional computing. In SC, num-
bers are encoded by random binary bit streams or stochastic
sequences. The probability of each bit being ‘1’ is considered
to be the probability encoded by a stochastic sequence and
used in different mapping schemes to encode numbers within
different ranges [1].

Assume that x is the number to be encoded and that p is the
probability of a stochastic sequence. The simplest mapping is
to let x = p, i.e., the probability of the stochastic sequence is
used to represent a real number within [0,1]. This is referred
to as the unipolar representation. In order to expand the range
to include negative values, the bipolar representation takes a
linear transformation of the unipolar representation by x =
(p− 0.5)× 2, so that the representation range is [−1, 1].

Recently, a sign-magnitude representation was proposed to
expand the unipolar representation range by adding an extra
sign bit to a stochastic sequence [19]. The same range is
obtained as the bipolar representation and the computed result
is more accurate. However, it is still considered a linear
mapping since it is a modified unipolar representation. A few
examples of these representations are shown in Table I.

TABLE I: Examples of different SC representations

Sequence p Sign Value encoded

Unipolar 0110101110 0.6 – 0.6
Bipolar 0100110100 0.4 – 2× 0.4− 1 = −0.2

Sign-mag. 0110101110 0.6 1 (−1)× 0.6 = −0.6

A different mapping scheme may require different comput-
ing elements. For the rest of this article, the unipolar and sign-
magnitude representations are adopted for its simple circuit
implementation and high accuracy, unless stated otherwise.

A. Stochastic sequence generation

An SNG consists of a random number generator (RNG)
and a comparator, as shown in Fig. 3. An RNG is usually
implemented by a linear-feedback-shift register (LFSR). A
maximum-length n-bit LFSR traverses all the integer numbers
within [1, 2n−1]. The numbers generated by an LFSR are con-
sidered pseudorandom numbers because they are deterministic
rather than truly random once the seed and the structure of the
LFSR are determined. However, due to their statistical char-
acteristics, deliberately generated pseudorandom numbers can
be considered as uniformly distributed. If the n-bit number,
used to encode a fractional number within [0, 1], p, after the

normalization by 2n, is larger than an n-bit pseudorandom
number, a ‘1’ is generated; otherwise, ‘0’ is the output.
Then, the probability of generating a ‘1’ is approximately p.
The resulting stochastic sequence encodes p in the unipolar
representation and x in the bipolar representation using the
aforementioned linear mapping, x = 2p − 1. A sequence
with probability p is generated similarly to encode x in this
representation. A detailed description and the mathematical
model for an LFSR-based SNG can be found in [20].

Inputs Hidden
layers

Outputs

(a)

…

x

w o=f(wx)

…

(b)

(c)

wl+1

δl+1
o wl

…

δw,l = f`wl+1δl+1

…

Random number
generator (RNG)

p

Stochastic sequence
with probability p

0101100…

Comparator

B

A
A<B

N

N

(a)

CLK

Fig. 3: An SNG.

In [21] and [22], two types of low-discrepancy (LD) se-
quences, the Halton and Sobol sequences, are introduced to
SC. They are originally proposed to accelerate and improve the
accuracy of Monte Carlo simulations by using a regular gener-
ation of quasirandom numbers, as shown in Fig. 4 [23]. Halton
sequences can be generated by a binary-coded prime number-
based counter (e.g., (2120)3 is stored as (10)2(01)2(10)2(00)2
in the counter). The order of the digits in the counter is
then reversed and the resulting number is converted to a
binary number for generating a Halton sequence [21]. Sobol
sequences can be generated by the circuit shown in Fig. 5.
As per the Sobol generation algorithm [24], the index of
the direction vector is first obtained by the least significant
zero (LSZ) detection and index generation component. The
direction vector array (DVA) is generated by using a primitive
polynomial. At each clock cycle, one direction vector (DV),
Vk, is fetched and XORed with the current Sobol number,
Ri, to generate the next Sobol number, Ri+1. In SC, the use
of the LD sequences improves the accuracy with a shorter
length. However, a fairly long sequence is still required for a
high accuracy.

B. Stochastic circuits

Stochastic circuits are the core of an SC system. The
operation of a combinational circuit can be considered as

0 0.5 1
(a)

0

0.2

0.4

0.6

0.8

1

0 0.5 1
(b)

0

0.2

0.4

0.6

0.8

1

Fig. 4: Examples of two-dimensional (a) Sobol sequences,
and (b) LFSR-generated sequences. The quasirandom numbers
in (a) are more evenly distributed than the pseudorandom
numbers in (b).

Synapse

Dendrites

Axon

Soma
(cell)

Membrane

VM (t+1) = VM (t) + Σεij - Σιij

if VM > Vth , reset and fire

else , do not fire
{

εij : Excitatory inputs of the neuron

ιij : Inhibitory inputs of the neuron

VM : Membrane potential

Vth : Threshold voltage

+

-

Ui,j-1
Ui-1,j
Ui+1,j
Ui,j+1

ui,j

Ui,j

+
3

Usum

÷4

+

-

Ui,j-1

Ui-1,j

Ui+1,j

Ui,j+1 ui,j

Ui,j

+
3

cN

CS

CE

CW

CN

3
+

CS

CE

CW

CN

Counter
(starting

from i=0)

Priority
encoder

index
k

Direction vector
array (DVA)

V3

V2

V1

V0

…

Ri

Vk

Ri+1D-flip
flops

Least significant zero (LSZ)
detection and index generation

Fig. 5: A Sobol sequence generator [25]. It can be used as the
RNG in an SNG to improve the accuracy.

a Monte Carlo simulation process [21]. For example, the
function of a unipolar stochastic multiplier is equivalent to
estimating the rectangular area determined by p1p2, where p1
and p2 are the probabilities encoded by the input sequences,
by randomly dropping points into a unit square. The AND
gate is used to decide whether the randomly generated point
with coordinates (r1, r2) is within the rectangle. Only when
both r1 < p1 and r2 < p2, is the random point located within
the rectangle,, as shown in Fig. 6, and the output of the AND
gate is ‘1’. The counter is then used to count the total number
of points within the rectangle as an estimate of p1p2.

MUX

01100110…

p1=0.5

10101010…

p2=0.5

00100010…

p=p1p2=0.25

01100101…

p1=0.5

11101110…

p2=0.75

sel

psel=0.5

00110110…

0

1 p=(1-psel)p1+pselp2=0.625

01100111… (a)

(c)

10010000…

00101000…
01000111… ×2-1= -0.5

4
16

p1=

×2-1= -0.5 4
16

p2=

×2-1= 0.25
10
16

p1p2=

(b) A bipolar stochastic multiplier

00101000… 11010111…

p1=0.25 p=1-p1=0.75

(b)

p1

p2

p=p1p2

1

1

p1

p2

(1, 1)

A<B

A<B

r1

r2
Counter

(b) A bipolar stochastic multiplier

Stochastic number
generator (SNG)

array

Binary inputs
(from memory

devices)

Stochastic
sequences

Stochastic
computing

circuits

Stochastic
sequences

Probability
estimators

(PEs)

Binary
outputs

+

-

DSNG
Digital
signal

Bipolar stochastic

sequence encoding‘0’

Integration results

Output DSS

MUX

+SNG
array

y

x

Stochastic sequences
encoding coefficients

z0
z1

zN

…

N copies of independent
stochastic sequences that

each encodes x

SEL0

1…

N

…

A

B

+

-

+

-

A

B

A/B

(a) (b)

B/(A+B)

(a) (b)

…

k

+

-

p

p

(c)

^

Fig. 6: (a) A unipolar stochastic multiplier and (b) its Monte
Carlo model.

Fig. 7 shows several stochastic multipliers in different
representations: a bipolar multiplier is implemented by an
XNOR gate and the sign-magnitude stochastic multiplier is
implemented by a unipolar multiplier and an XOR gate for
computing the sign bit. Generic methods have also been
proposed to synthesize combinational circuits for computing
Bernstein polynomials [2] or multi-linear functions [26].

Inputs Hidden
layers

Outputs

(a)

…

x

w o=f(wx)

…

(b)

(c)

wl+1

δl+1
o wl

…

δw,l = f`wl+1δl+1

…

Random number
generator (RNG)

p

Stochastic sequence
with probability p

0101100…

Comparator

B

A
A<B

N

N

(a)

CLK

01100110…

p1=0.5

10101010…

p2=0.5

00100010…

p=p1p2=0.25

(a) A stochastic multiplier for
the unipolar representation

0100010010010000…

1000100010001000…
0011001111100111…

×2-1= -0.5
4

16
p1=

×2-1= -0.5 4
16

p2=

×2-1= 0.25
10
16

p1p2=

(b) A stochastic multiplier for
the bipolar representation

01100110…

|p1|=0.5

10101010…

|p2|=0.5

00100010…

|p|=|p1||p2|=0.25

(c) A stochastic multiplier for the
sign-magnitude representation

|p1|=0.5

Sign(p1)=1
(negative)

Sign(p2)=0
(positve)

Sign(p)=1
(negative)

Fig. 7: Three stochastic multipliers for different representa-
tions. The input sequences should be uncorrelated for a higher
accuracy.

There are primarily two types of sequential circuits, the
FSM-based and stochastic integrator-based circuits. An FSM-
based circuit can be modeled by a state transition diagram, as
shown in Fig. 8. For an input bit of ‘0’, the FSM moves to
the left of its current state; otherwise, it moves to the right.
Note that when the FSM is at the leftmost (or rightmost)
state, it stays at the current state when receiving a ‘0’ (or ‘1’).
The FSM can be considered as a Markov chain if the input
sequence is not autocorrelated or every bit in the sequence is
generated independently with the same probability to be ‘1’. A
steady hyper-state can be reached after several runs, where the
probability that the FSM staying at each state converges [1].
By assigning a different output (‘0’ or ‘1’) to each state,
exponential, logarithmic and high-order polynomial functions
can be implemented by the FSM-based circuits. A general
synthesis method is discussed in [27].

S0 S1 Sk-1 Sk Sk＋1 SN－2 SN－1…………

X=0X=0X=0X=0X=0X=0

X=1 X=1 X=1 X=1 X=1 X=1 X=1

X=0

Fig. 8: State transition diagram for an FSM-based stochastic
circuit.

Stochastic integrators are sequential SC elements that accu-
mulate the difference between two input sequences [1]. The
stochastic integrator consists of an RNG, an up/down counter
and a comparator, as shown in Fig. 9(a). Let the output of
the comparator be Si (either ‘0’ or ‘1’) at clock cycle i, the
input bits be Ai and Bi, and the n-bit integer stored in the
counter be Ci. The RNG and the comparator work as an SNG,
and the probability of generating a ‘1’ is ci = Ci/2

n, i.e., the
n-bit counter stores a number in a fixed-point manner and all
the bits belong to the fractional part. The counter updates its
value Ci at each clock cycle by Ci+1 = Ci + Ai − Bi, or,
equivalently,

ci+1 = ci + 1/2n(Ai −Bi). (1)

In k clock cycles, the stochastic integrator implements

ck = c0 + 1/2n
k−1∑
i=0

(Ai −Bi), (2)

where c0 is the initial (fractional) value stored in the counter.
A stochastic integrator works in a similar manner to a

spiking neuron, as shown in Fig. 9. The stochastic integrator
“fires” randomly depending on the value stored in the counter,
whereas the spiking neuron fires when the accumulated mem-
brane potential, VM , reaches a threshold, Vth [5]. The inputs to
the neuron can be excitatory (εij) or inhibitory (ιij), while the
input sequences, A and B, of the stochastic integrator increase
and decrease the value stored in the counter.

The integrator has been used in a stochastic divider, with
the output stochastic sequence as the feedback signal [1], as
shown in Figs. 10(a) and (b). The quotient is obtained when
the value stored in the counter reaches an equilibrium state,
i.e., the up/down counter has an equal probability to increase

Rate = average over pool of equivalent neurons
(several neuron, single runs)

j=1

2

3

…

A =
1
Δt M

n(t; t+Δt)M

Δt

j=1

2

3

M

…

...01010...

...11000...

...00010...

...01000...

p =
M

N

L

...010100101010110100...

A =
Δt

n (t; t+Δt)

p =
L

N

Δt

L

N: number of ‘1’s in the sequence

n(·): number of spikes in the time window

 2n-state Counter
INC

DEC

RNG

> S

A

B

comparator

C

ri

C i+1 = C i + Ai - Bi

if Ci > ri , S = 1

else , S = 0
{

p: encoded value

A: encoded value

(a) A stochastic integrator.

S+

-

CA

B

(b) A symbol.

Synapse

Dendrites

Axon

Soma
(cell)

Membrane

VM (t+1) = VM (t) + Σεij - Σιij

if VM > Vth , reset and fire

else , do not fire
{

εij : Excitatory inputs of the neuron

ιij : Inhibitory inputs of the neuron

VM : Membrane potential

Vth : Threshold voltage

(c) An integrate-and-fire spiking neuron model.

Fig. 9: (a) A stochastic integrator, (b) its symbol and (c) a
spiking neuron [5].

or decrease. However, it may take a long time to converge to
the equilibrium state as discussed in [6], [25]. A stochastic
integrator with a feedback loop has been used as an ADpative
DIgital Element (ADDIE), shown in Fig. 10(c). The ADDIE
can function as a probability follower, i.e., the probability of
the output sequence tracks the change of the probability of the
input sequence [1], [28].

MUX

01100110…

p1=0.5

10101010…

p2=0.5

00100010…

p=p1p2=0.25

01100101…

p1=0.5

11101110…

p2=0.75

sel

psel=0.5

00110110…

0

1 p=(1-psel)p1+pselp2=0.625

01100111… (a)

(c)

10010000…

00101000…
01000111… ×2-1= -0.5

4
16

p1=

×2-1= -0.5 4
16

p2=

×2-1= 0.25
10
16

p1p2=

(b) A bipolar stochastic multiplier

00101000… 11010111…

p1=0.25 p=1-p1=0.75

(b)

p1

p2

p=p1p2

1

1

p1

p2

(1, 1)

A<B

A<B

RN1

RN2

Counter

(b) A bipolar stochastic multiplier

Stochastic number
generator (SNG)

array

Binary inputs
(from memory

devices)

Stochastic
sequences

Stochastic
computing

circuits

Stochastic
sequences

Probability
estimators

(PEs)

Binary
outputs

+

-

DSNG
Digital
signal

Bipolar stochastic

sequence encoding‘0’

Integration results

Output DSS

MUX

+SNG
array

y

x

Stochastic sequences
encoding coefficients

z0
z1

zN

…

N copies of independent
stochastic sequences that

each encodes x

SEL0

1…

N

…

A

B

+

-

+

-

A

B

A/B

(a) (b)

B/(A+B)

(a) (b)

…

k

+

-

p

p

(c)

^

Fig. 10: Stochastic dividers compute: (a) A/B, (b) B/(A+B).
(c) shows an ADDIE.

C. Probability estimators
The computed probability of the output sequence can be

found by using a counter. It is estimated as the quotient

of the number of ‘1’s divided by the sequence length. The
ADDIE in Fig. 10(c) is an alternative component to estimate
the probability by using a stochastic integrator reaching the
equilibrium state [1].

D. Limitations

Although the SC circuits are much simpler than conven-
tional arithmetic circuits, a large sequence length is required
to achieve a high accuracy. This requirement leads to poor
performance and low energy efficiency. Fig. 11 shows the root
mean square error (RMSE) encoding a number in the unipolar
representation using different types of “random” numbers. The
pseudorandom numbers are generated by a 16-bit LFSR with
randomly generated seeds. The RMSEs are obtained from
1,000 trials using different sequence lengths. As shown in
Fig. 11, to achieve an RMSE of 1×10−2, a sequence length of
212 bits is required for the LFSR generated sequences. For the
stochastic Sobol sequences, the length is significantly reduced
to 26 or 64 bits to achieve a similar accuracy, although it is
still not as compact as an equivalent 5-bit fixed-point number
that results in a similar RMSE. Meanwhile, low precision (e.g.
at an RMSE of 1× 10−2 or larger) can be tolerated in many
applications such as inference in a machine learning model
[12]–[17], [29]–[33], digital signal processing [34]–[40] and
image processing [41]–[44]. Hence, progressive precision (PP)
can be employed and the Sobol sequence length can be as low
as 8 bits in an application in a CNN inference engine [45].

0 2 4 6 8 10 12

Sequence length (2N)

10-4

10-3

10-2

10-1

100

R
M

SE

Sobol sequence
Pseudorandom sequence

Fig. 11: RMSE of the encoded numbers with different types
of stochastic sequences.

Despite the fact that some of these implementations achieve
a lower energy consumption with PP compared with conven-
tional circuits, the application of conventional SC (CSC) is
still quite limited.

III. DYNAMIC STOCHASTIC COMPUTING

In a DSC system, as shown in Fig. 12, the stochastic
sequences encode varying signals instead of static numbers.
Consider a discrete-time digital signal {xi} within [0, 1] (i =
0, 1, 2, . . .). A DSS encoding {xi} satisfies that E[Xi] = xi,
where Xi is the ith bit in the DSS. Thus, every bit in the
sequence can have a different probability to be 1.

Digital signals
(from ADCs or

storage)

DSNGs
Signal

reconstruction To be stored or
converted back to

analog signals

Stochastic
logicDynamic

stochastic
sequences

Dynamic
stochastic
sequences

Fig. 12: A DSC system.

RNG
Dynamic stochastic sequence

encoding signal {xi}

111010001011…
Comparator

B

A
A<B

{xi}

Fig. 13: A DSNG. {xi} is an input to the comparator at one
sample per clock cycle.

A. DSS generation

A DSS can be generated by a dynamic SNG (DSNG), as
shown in Fig. 13. It is similar to a conventional SNG except
that the input is a varying signal instead of a static number. The
RNG generates uniformly distributed random numbers within
[0, 1]. Given a discrete signal, {xi}, as shown in Fig. 13, it
is compared with a random number one sample at a time.
If xi is larger than the random number, a ‘1’ is generated;
otherwise, the DSNG generates a ‘0’. Generating every bit in
the DSS is a Bernoulli process (in the ideally random case),
so the expectation getting a ‘1’ is equal to the corresponding
sample value from the discrete digital signal. The discrete
signal can either be sampled from an analog signal or read
from a memory device.

B. Data representations in DSC

Similar to CSC, all the aforementioned mapping schemes
can be used to encode numbers within certain ranges in DSC,
which subsequently requires the use of different computational
elements. Specifically, a DSS can encode a signal within [0, 1]
in the unipolar representation or within [−1, 1] in the bipolar
or sign-magnitude representation. For the sign-magnitude rep-
resentation, two sequences are used to encode a signal. One
encodes the magnitude of the signal. Since the signal can have
both positive and negative values, another sequence is used to
represent the signs of the numbers.

C. Stochastic circuits

The DSC circuits can be combinational or sequential.
1) Combinational circuits: A combinational circuit using

DSS’s as its inputs implements the composite function of the
original stochastic function. For example, an AND gate, or a
unipolar stochastic multiplier, computes zi = xiyi for each
pair of bits in the input DSS’s that independently encode xi
and yi (i = 0, 1, 2 . . .), respectively [46], due to E[Zi] =
E[XiYi] = E[Xi]E[Yi] = xiyi, where Zi, Xi and Yi are the
ith bits in the output and input DSS’s, respectively. Note that
for a continuous signal, oversampling is required to produce
the discrete signals, xi and yi, for accurate multiplication [46].
Fig. 14(a) shows the DSC circuit for a signal multiplication,
and (b) shows the results of multiplying two sinusoidal signals

DSNG Signal Xx(t)

DSNG

DSNG

Signal
reconstruction

X

Y

x(t)

y(t)
ziZ

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

x(
t)

Original signal
DSS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

y(
t)

0 0.5 1 1.5
t (s)

0

0.5

1

z(
t)

Double precision
Dynamic stochastic

(b)

Fig. 14: A frequency mixer by using a stochastic multiplier
with DSS’s as the inputs: (a) circuit and (b) results.

with frequencies of 1.5 Hz and 2 Hz, both sampled at a rate
of 210 Hz. The sampled signals are converted to DSS’s by two
DSNGs with independent Sobol sequence generators [47] as
the RNGs. The output DSS is reconstructed to a digital signal
by a moving average [28]. The DSS can also be reconstructed
by an ADDIE [1].

2) Sequential circuits: The stochastic integrator is an im-
portant component used in DSC for iterative accumulation. It
implements integrations of the signal encoded by accumulating
the stochastic bits in a DSS. Fig. 15 shows that a bipolar
stochastic integrator can be used to perform numerical inte-
gration. In Fig. 15(a), the input digital signal is cos(πt/2),
sampled at a sampling rate of 28 Hz and converted to a DSS
by the DSNG. The other input of the stochastic integrator is
set to a bipolar stochastic sequence encoding 0 (a stochastic
bit stream with half of the bits being ‘1’). By accumulating
the input bits, the stochastic integrator provides an unbiased
estimate to the Riemann sum [48]. The integration is obtained
by recording the changing values of the counter. Since the
integrated results are directly provided by the counter, a
reconstruction unit is not required.

As can be seen from Fig. 15(b), the results produced by
the stochastic integrator is very close to the analytical results.
Since the output DSS is generated by comparing the changing
signal (as the integration results) with uniformly distributed
random numbers, the RNG and the comparator inside the
integrator works as a DSNG. As a result, the output sequence
encodes the discretized stochastic integration solution for the
analytical solution, (2/π) sin(πt/2). The output DSS is also
shown in Fig. 15(b).

MUX

01100110…

p1=0.5

10101010…

p2=0.5

00100010…

p=p1p2=0.25

01100101…

p1=0.5

11101110…

p2=0.75

sel

psel=0.5

00110110…

0

1 p=(1-psel)p1+pselp2=0.625

01100111… (a)

(c)

10010000…

00101000…
01000111… ×2-1= -0.5

4
16

p1=

×2-1= -0.5 4
16

p2=

×2-1= 0.25
10
16

p1p2=

(b) A bipolar stochastic multiplier

00101000… 11010111…

p1=0.25 p=1-p1=0.75

(b)

p1

p2

p=p1p2

1

1

p1

p2

(1, 1)

A<B

A<B

RN1

RN2

Counter

(b) A bipolar stochastic multiplier

Stochastic number
generator (SNG)

array

…

Binary inputs
(from memory

devices)

…

Stochastic
sequences

Stochastic
computing

circuits

Stochastic
sequences

Probability
estimators

(PEs)

… …

Binary
outputs

+

-

DSNG
Digital
signal

Bipolar stochastic

sequence encoding‘0’

Integration results

Output DSS

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
t

-1

-0.5

0

0.5

1

Analytical results
Results by DSC
Original signal
Output DSS

(b)

Fig. 15: A bipolar stochastic integrator for numerical integra-
tion: (a) circuit and (b) results. The output DSS is decimated
for a clear view.

The stochastic integrator has been used in a stochastic low-
density parity-check (LDPC) decoder to implement a tracking
forecast memory in [49]. It solves the latch-up problem in the
decoding process with a low hardware complexity.

For the FSM-based sequential circuits, however, the DSS
cannot work well because the probability consistently changes
and a steady hyper-state is hard to reach. The DSS could also
violate the condition of the model being a Markov chain due
to the autocorrelation of the encoded signal.

IV. APPLICATION OF DSC

By using the stochastic integrators, DSC can implement a
series of algorithms that involve iterative accumulations, such
as an IIR filter, the Euler method and a GD algorithm.

A. IIR filtering

In [50], it is shown that an ADDIE with different parameters
can be used as a low-pass IIR filter with different frequency
responses, as shown in Fig. 16. Given the bit width of the
stochastic integrator n, the transfer function of such a filter in
the Z-domain is given by

H(Z) =
1

2nZ + 1− 2n
, (3)

for a stable first-order low-pass IIR filter [50]. An oversampled
∆ − Σ modulated bit stream is then used as the input of the
circuit. Since the generation of a ∆−Σ modulated bit stream

 2n-state Counter
INC

DEC

RNG

>
Seqout

A

B
Seqout

(a) (b)

comparator

A

B

+

-

Countout

Countout

Seqout

(b)

+

-

Countout

X

+

-

p

y(t)

Fig. 16: ADDIE circuit produces an exponential function when
the input is a sequence encoding a static number.

0 0.1 0.2 0.3 0.4
t (s)

(a) Original and filtered signals

-1

0

1

0 50 100 150 200 250
f (Hz)

(b) Spectra of original and filtered signals

0

0.2

0.4
Original signal
Filtered signal

Fig. 17: The low-pass filtering results in (a) the time domain
and (b) the frequency domain.

can also be considered as a Bernoulli process [51], the DSS
can be used for IIR filtering as well.

Fig. 17 shows the filtering of mixed sinusoidal signals of 4
Hz and 196 Hz. The mixture is first sampled at a sampling rate
of 65.6k Hz and the sampled digital signal is then converted
to a DSS. The DSS is filtered by an 8-bit ADDIE. As can be
seen, the high-frequency signals are almost filtered out while
the low-frequency signals remain.

B. ODE solvers

The Euler method provides numerical solutions for ODEs
by accumulating the derivative functions [52]. For an ODE
dy/dt = f(t, y(t)), the estimated solution, ŷ(t), is given by

ŷ(ti+1) = yi+1 = yn + hf(ti, yi) (4)

with h as the step size and ti+1 = ti + h. After k steps of
accumulation,

yk = y0 + h

k−1∑
i=0

f(ti, yi). (5)

To use a stochastic integrator, let the pair of input DSS’s
(e.g., A and B in (2)) encode the discrete derivative function,
{f(ti, yi)}, such that E[Ai − Bi] = f(ti, yi). By doing so,
the stochastic integrator implements (2) and approximately
computes (5) with a step size h = 1/2n. As a result, the bit
width of the counter does not only decide the precision of the
computation but also the time resolution. The integration in the
Euler method is implemented by accumulating the stochastic
bits in the DSS’s instead of real values.

Using this method, an exponential function can be generated
by a stochastic integrator. The ADDIE circuit, as shown in
Fig. 16, solves

dy(t)

dt
= p− y(t), (6)

which is the differential equation for a leaky integrator
model [53]. Thus, the ADDIE can be used to implement

neuronal dynamics in a leaky integrate-and-fire model. The
analytical solution of (6) is given by

y(t) = p− (p− y0)e−t, (7)

where y0 is provided in the initial condition, i.e., y(0) = y0.
This model is commonly seen in natural processes such as
neuronal dynamics [53]. Fig. 18 shows the results produced
by the ADDIE when y0 = 1 and p = 0.

0 2 4 6 8
t

0

0.2

0.4

0.6

0.8

1

y(
t)

DSC
Analytical

Fig. 18: ADDIE used as an ODE solver. The solution is an
exponential function.

For a set of ODEs,{
dy1(t)

dt = y2(t)− 0.5,
dy2(t)

dt = 0.5− y1(t),
(8)

with the initial values y1(0) = 0 and y2(0) = 0.5, a numerical
solution can be found by the circuit in Fig. 19. The upper
integrator computes the numerical estimate of y1(t) by taking
the output DSS from the lower integrator and a conventional
stochastic sequence encoding 0.5 as inputs. So the difference
of the two input sequences approximately encodes y2(t)−0.5,
the derivative of y1(t). Simultaneously, the output DSS of the
upper stochastic integrator encodes the numerical solution of
y1(t), which is used to solve the second differential equation
in (8). Thus, the stochastic integrator can be viewed as an
unbiased Euler solution estimator [54]. The results produced
by the dynamic stochastic circuit is shown in Fig. 20. 8-bit
up/down counters are used in both stochastic integrators and
the RNG is implemented by a Sobol sequence generator [47].
Since the results are provided by the counter in the stochastic
integrator, an explicit reconstruction unit, as shown in Fig. 12,
is not required.

A partial differential equation, such as a Laplace’s equation,
can also be solved by an array of stochastic integrators with
a finite-difference method.

C. Weight update for an adaptive filter
DSC can be applied to update the weights in an adaptive

digital filter. An adaptive filter system consists of a linear filter
and a weight update component, as shown in Fig. 21. The
output of the linear filter at time i is given by

yi = F (wi,xi) = wixi =
∑M−1

j=0
wj

ixi−M+j+1, (9)

+

-

y(t)

1

z(t)

×2

+

-

Y

+

-

+

-

y1(t)

y2(t)

p=0.5
Y1

Y2

(a) (b)

p=0.5
(×2)

bi

ai

+

-

y(t)

1

z(t)

×2

+

-

+

-

+

-

y1(t)

y2(t)

p=0.5

p=0.5
(×2)

bi

ai

+

-

1

0
+

-0
+

-0

1
6

y(t)= t3

y(t)=t

y(t)= t21
2

Fig. 19: A pair of stochastic integrators solving (8) [54].

0 2 4 6 8 10 12
0

0.5

1

y 1
(t

)

DSC
Analytical solution

0 2 4 6 8 10 12
t

0

0.5

1

y 2
(t

)
Fig. 20: Simulation results of the ODE solver in Fig. 19. They
are compared with the analytical solutions.

where M is the length of the filter or the number of weights,
wi is a vector of M weights, wi = [w

(0)
i , w

(1)
i , . . . , w

(M−1)
i]

and xi is the input vector for the digital signal sampled at
different time points, xi = [xi−M+1, xi−M+2, . . . , xi]

T.

+

-

y(xi)

F(wi, xi)

F(wi, xi) wi

ti

SNG
∂ F(wi, xi)

∂ wi,j
SNG

SNG

ai

bi

EEEE

Linear filter with
weights wi

LMS weight
update unit

xi-M+1xi-M+2

xi

…

yi +
- ti+

ei

xi

+ -

xi-M+j

wi,j

xixi-M+1

+ -

yi

wi,1

ti

RNG

+ -

wi,M

RNG

… …

… …

… …

Comparator:

+ - + - + -

wi,jwi,1 wi,M

xi-M+j+1 xixi-M+1

yi

ti

RNG

RNG
… …

… …

… …

Comparator:

Linear filter with
parameters wi

Δw
i

LMS weight
updating unit

…

yi +
- ti+

ei

…

Δwi

(Ci)

wi,j[Pi] = [1/2nCi] =

Fig. 21: An adaptive filter.

In the least-mean-square (LMS) algorithm, the cost function
is the mean squared error between the filter output and the
guidance signal, {ti}. The weights are updated by

wi+1 = wi + ηxi(ti − yi), (10)

where η is the step size. The update is implemented by the
circuit in Fig. 22. The two multipliers are used to compute
xiti and xiyi, respectively. The integrator is then used to
accumulate ηxi(ti − yi) over i = 0, 1, . . .

The dynamic stochastic circuit is used to perform system
identification for a high pass 103-tap FIR filter. 103 weights
are trained by using randomly generated samples with the
LMS algorithm. 14-bit stochastic integrators are used. After
around 340k iterations of training, the misalignment of the

Actual classification
results

Trained
parameters

-

+

1 , 6 , 8 , 0

Estimate classification
results (distribution)

SNG
array

Images

10 classes

00000…

11010…

00010…

Trained
parameters

-

+

1 , 6 , 8 , 0
DSNG
array

10 classes

×

×

ti

yi

xi

Fig. 22: A DSC circuit training a weight in an adaptive filter.
The stochastic multipliers are denoted by rectangles with “×”.
Bipolar and sign-magnitude representations can be used for the
stochastic multipliers and integrator.

weights in the adaptive filter converges to about -45 dB
compared to the target system. The frequency responses of
the target and the trained filter are shown in Fig. 23. As can
be seen, the adaptive filter has a similar frequency response
to the target system, especially in the passband, indicating an
accurate identification result.

0 0.5 1 1.5 2 2.5 3
Normalized frequency

-80

-60

-40

-20

0

M
ag

ni
tu

de
 in

 d
B

target system
adaptive filter

Fig. 23: Frequency responses of the target and trained filter
using the sign-magnitude representation.

D. A gradient descent (GD) circuit

GD is a simple yet effective optimization algorithm. It finds
the local minima by iteratively taking steps along the negatives
of the gradients at current points. One-step GD is given by

wi+1 = wi − η∇F (wi), (11)

where F (wi) is the function to be minimized at the ith step,
∇F (wi) denotes the current gradient, and η is the step size.
The step size is an indicator of how fast the model learns. A
small step size leads to a slow convergence while a large one
can lead to divergence.

Similar to the implementation of the Euler method, let a
pair of differential DSS’s encode the gradient {−∇F (wi)},
the stochastic integrator can be used to compute (11) with a
step size, η = 1/2n, by using these DSS’s as inputs. DSC can
then be used to perform the optimization of the weights in a
neural network (NN) by minimizing the cost function.

The training of an NN usually involves two phases. Take a
fully connected NN as an example, shown in Fig. 24. In the
forward propagation, the sum of product of the input vector x
and the weight vector w is obtained as v = wx. The output

Inputs Hidden
layers

Outputs

(a)

…

x

w o=f(wx)

…

(b)

(c)

wl+1

δl+1o wl

…

δw,l = f`wl+1δl+1

…

Random number
generator (RNG)

p

Stochastic sequence
with probability p

0101100…

Comparator

B

A
A<B

N

N

(a)

CLK

01100110…

p1=0.5

10101010…

p2=0.5

00100010…

p=p1p2=0.25

(a) A stochastic multiplier for
the unipolar representation

0100010010010000…

1000100010001000…
0011001111100111…

×2-1= -0.5
4

16
p1=

×2-1= -0.5 4
16

p2=

×2-1= 0.25
10
16

p1p2=

(b) A stochastic multiplier for
the bipolar representation

01100110…

|p1|=0.5

10101010…

|p2|=0.5

00100010…

|p|=|p1||p2|=0.25

(c) A stochastic multiplier for the
sign-magnitude representation

|p1|=0.5

Sign(p1)=1
(negative)

Sign(p2)=0
(positve)

Sign(p)=1
(negative)

Fig. 24: (a) A fully connected NN, in which the neurons
are organized layer by layer. (b) The computation during
the forward propagation. (c) The local gradient for wl is
computed by using the backward propagation. The output o
from previous neuron is required to compute the gradient.

of the neuron, o, is then computed by o = f(v), where f is
the activation function. During this phase, the weights do not
change. In the backward propagation, the difference between
the actual and the desired final outputs, i.e., the classification
results, is calculated, and the local gradients are computed for
each neuron based on the difference [55]. Take the neuron
in Fig. 24(c) as an example, the local gradient is obtained
by δl = f ′(v)wl+1δl+1, where f ′(·) is the derivative of the
activation function, wl+1 is the weight vector connecting layer
l and l+1, and δl+1 is the local gradient vector of the neurons
in layer l + 1. Then, the gradient of a weight at layer l is
computed by multiplying the local gradient with the recorded
output of the designated neuron, i.e., ∇F (wl) = −oδl.

In [56], it is found that the local gradient can be decomposed
into two parts δ = δ+ − δ−, where δ+ is contributed by
the desired output of the NN and δ− by the actual output
of the NN. So the gradient for weight w can be rewritten as
∇F (w) = −o(δ+−δ−). Similar to the implementation of (10),
the DSC circuit in Fig. 22 can be used to implement the GD
algorithm to perform the online training (one sample at a time)
of the fully connected NN with the input signals δ+, o and δ−.
However, a backpropagation, i.e., δ = f ′(v)wl+1δl+1, is still
computed by using a conventional method (e.g., a fixed-point
arithmetic circuit) to obtain the local gradients. Otherwise,
the accuracy loss would be too much for the algorithm to
converge.

Fig. 25 shows the convergence of cross entropy (as a cost
function) and testing accuracy for the training of a 784-128-
128-10 NN with the MNIST handwritten digit dataset. As can
be seen, the testing accuracy of the NN trained by the DSC
circuit using the sign-magnitude representation is similar to the
one produced by the fixed-point implementation (around 97%).
However, the accuracy of the DSC implementation using the
bipolar representation is relatively low.

The proposed circuitry can be useful for online learning
where real-time interaction with the environment is required
with an energy constraint [57]. It can also be used to train a
machine learning model using private or security-critical data
on mobile devices if data are sensitive and cannot be uploaded

to a cloud computer.

V. ERROR REDUCTION AND ASSESSMENT

One major issue in SC is the loss of accuracy [58]. Indepen-
dent RNGs have been used to avoid correlation and improve
the accuracy of components such as stochastic multipliers.
This method inevitably increases the hardware overhead.
However, in a stochastic integrator, the sharing of RNGs for
generating the two input sequences reduces the variance, thus
reducing the error. This is shown as follows.

The error introduced by DSC at each step of computation is
related to the variance of the difference of the two accumulated
stochastic bits, Ai−Bi. When independent RNGs are used to
generate Ai and Bi, the variance at a single step is given by

Var[Ai −Bi] = E[(Ai −Bi − E(Ai −Bi))
2]

= E[(Ai −Bi)
2]− 2E[Ai −Bi]

(PA,i − PB,i) + (PA,i − PB,i)
2,

(12)

where PA,i and PB,i are the probabilities of Ai and Bi being
‘1’, respectively, i.e., E[Ai] = PA,i and E[Bi] = PB,i. Since
(Ai−Bi)

2 is 0 when Ai and Bi are equal or 1 when they are
different, E[(Ai−Bi)

2] equals PA,i(1−PB,i)+PB,i(1−PA,i),
which is the probability that Ai and Bi are different when Ai

and Bi are independently generated1. (12) is then rewritten as

Varind[Ai −Bi] = PA,i(1− PB,i) + PB,i(1− PA,i)

− (PA,i − PB,i)
2

= PA,i(1− PA,i) + PB,i(1− PB,i).

(13)

On the other hand, if the same RNG is used to generate Ai

and Bi, the variance of Ai −Bi can be derived from (12) as
well. However, since only a shared random number is used to
generate Ai and Bi, E[(Ai−Bi)

2] equals |PA,i−PB,i|, which

1E[(Ai−Bi)
2] = Prob[(Ai−Bi)

2 = 1]×1+Prob[(Ai−Bi)
2 = 0]×0

0 5 10 15 20
Epoch

0

0.1

0.2

0.3

0.4

0.5

C
ro

ss
 e

nt
ro

py

Signed DSC
Bipolar DSC
Fixed-point

(a)

0 5 10 15 20
Epoch

88

90

92

94

96

98

Te
st

in
g

ac
cu

ra
cy

 (i
n

pe
rc

en
ta

ge
)

Signed DSC
Bipolar DSC
Fixed-point

(b)

Fig. 25: (a) Convergence of cross entropy and (b) testing
accuracy of MNIST hand-written digit recognition dataset.
Cross entropy is the cost function to be minimized during the
training of an NN. The weights of the NN are updated by the
DSC circuits. The DSC circuits using the sign-magnitude and
bipolar representations and the fixed-point implementation are
considered for comparison.

gives the probability that Ai and Bi are different. Thus, (12)
can be rewritten as

Varshare[Ai −Bi] = |PA,i − PB,i| − (PA,i − PB,i)
2

= |PA,i − PB,i|(1− |PA,i − PB,i|).
(14)

Since Varshare[Ai − Bi] − Varind[Ai − Bi] = 2PB,iPA,i −
2min(PA,i, PB,i) ≤ 0, we obtain Varshare[Ai − Bi] ≤
Varind[Ai−Bi] for any i = 0, 1, 2, . . . [54]. Therefore, sharing
the use of RNGs to generate input stochastic bit streams
improves the accuracy.

For the circuit in Fig. 22, though the inputs of the stochastic
integrator are the outputs of the stochastic multipliers instead
of being directly generated by a DSNG, the RNG sharing
scheme still works in the generated DSS’s encoding δ+ and
δ−, i.e., it produces a smaller variance in the computed result
[56]. However, an uncorrelated RNG must be used to generate
the DSS encoding the recorded output of the neuron, o,
because independency is still required in general for accurate
stochastic multiplication.

The accuracy of the accumulated result is also related to the
bit-width of the counter in the stochastic integrator. The bit
width does not only determine the resolution of the result but
also the step size, especially in the ODE solver, adaptive filter
and the gradient descent circuit. A larger bit width indicates
a smaller resolution and a smaller step size for fine tuning at
the cost of extra computation time. It is shown in [56] that the
multi-step variance bound exponentially decreases with the bit
width of the counter. However, for the IIR filter, the change
of bit-width affects the characteristic of the filter.

For the ODE solver circuit, it is also found that the use of
quasirandom numbers improves the accuracy compared to the
use of pseudorandom numbers [54]. However, when the DSS is
used to encode signals from the input or images such as in the
adaptive filter and the gradient descent algorithm, quasirandom
and pseudorandom numbers produce similar accuracy. The
reason may lie in the fact that the values of the encoded
signals in these two applications are independently selected
from the training dataset. However, for the ODE solver, the
signals encoded are samples from continuous functions, and
adjacent samples have similar values. As a result, within
a short segment of the DSS in this case, it approximately
encodes the same value. It then works similarly as CSC,
for which the Sobol sequence helps improving the accuracy.
Fig. 26 compares the convergence of misalignment during
the training of the adaptive filter using pseudorandom and
quasirandom numbers. 16-bit stochastic integrators are used
in this experiment. The misalignment is given by

Misalignment =
E[(w − ŵ)2]

E[w2]
, (15)

where w denotes the target value and ŵ is the trained result.
It can be seen that the convergence speed of using these two
types of random numbers is similar and their misalignments
both converge to around -52 dB.

TABLE II: Hardware evaluation of the gradient descent circuit
array training a 784-128-128-10 neural network.

Metrics DSC Fixed-point Ratio

Step size 2−10 2−10 -
Epochs 20 20 -
Min. time (ns) 1.6× 106 4.7× 106 1:3
EPO (fJ) 1.2× 107 1.1× 108 1:9.2
TPA (image/s/µm2) 5.7× 101 1.5 38:1
Aver. test Accu. 97.04% 97.49% -

TABLE III: Hardware performance comparison of the ODE
solvers for (8).

Metric DSC Fixed-point Ratio

Step size 2−8 2−8 -
Iterations 3217 3217 -
Min. time (ns) 2573.59 8557.20 1:3.3
EPO (fJ) 201.21 466.00 1:2.3
TPA (word/µs/µm2) 4.75 0.58 8.2:1
RMSE 4.7× 10−3 3.6× 10−3 -

VI. HARDWARE EFFICIENCY EVALUATION

Due to the extremely low sequence length used for encoding
a value in DSC, the power consumption of DSC circuits is
much lower than conventional arithmetic circuits. Moreover,
since each bit in a DSS is used to encode a number, DSC
is more energy-efficient than CSC. The gradient descent and
ODE solver circuits are considered as examples to show the
hardware efficiency. Implemented in VHDL, the circuits are
synthesized by Synopsys Design Compiler with a 28-nm tech-
nology to obtain the power consumption, maximum frequency
and hardware measurements. The minimum runtime, energy
per operation (EPO), throughput per area (TPA) and accuracy
are reported in Table II for the gradient descent circuits and
in Table III for ODE solvers.

As can be seen, with a slightly degraded accuracy, the
DSC circuits outperform conventional circuits using a fixed-
point representation in speed, energy efficiency and hardware
efficiency. For the gradient descent circuit, since the two RNGs
can be shared among the 118,282 stochastic integrators (for
118,282 weights), the improvement in hardware efficiency is
even more significant than the ODE solver, for which one RNG

0 0.5 1 1.5 2 2.5 3
Number of steps (64 input samples) 104

-60

-50

-40

-30

-20

-10

0

M
is

al
ig

nm
en

t (
dB

)

Pseudorandom
Quasirandom

Fig. 26: Comparison of the convergence of misalignment using
pseudorandom and quasirandom numbers.

is shared between two stochastic integrators. However, since
the sharing of RNGs does not significantly affect the critical
path, the performance improvements are similar for these two
circuits.

VII. CONCLUSION

In this article, a new type of stochastic computing, dynamic
stochastic computing (DSC), is introduced to encode a varying
signal by using a dynamically variable binary bit stream,
referred to as a dynamic stochastic sequence (DSS). A DSC
circuit can efficiently implement an iterative accumulation-
based algorithm. It is useful in implementing the Euler method,
training a neural network and an adaptive filter, and IIR
filtering. In those applications, integrations are implemented
by stochastic integrators that accumulate the stochastic bits in a
DSS. Since the computation is performed on single stochastic
bits instead of conventional binary values or long stochastic
sequences, a significant improvement in hardware efficiency
is achieved with a high accuracy.

ACKNOWLEDGMENT

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) under
Projects RES0025211 and RES0048688.

REFERENCES

[1] B. R. Gaines, Stochastic Computing Systems. Boston, MA: Springer
US, 1969, pp. 37–172.

[2] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, no. 1, pp. 93–105, 2011.

[3] P. Li and D. J. Lilja, “Using stochastic computing to implement
digital image processing algorithms,” in 2011 IEEE 29th International
Conference on Computer Design (ICCD), 2011, pp. 154–161.

[4] S. C. Smithson, N. Onizawa, B. H. Meyer, W. J. Gross, and T. Hanyu,
“Efficient CMOS invertible logic using stochastic computing,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 6,
pp. 2263–2274, June 2019.

[5] W. Maass and C. M. Bishop, Pulsed neural networks. MIT press, 2001.
[6] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A stochastic

computational multi-layer perceptron with backward propagation,” IEEE
Transactions on Computers, vol. 67, no. 9, pp. 1273–1286, 2018.

[7] J. Zhao, J. Shawe-Taylor, and M. van Daalen, “Learning in stochastic bit
stream neural networks,” Neural Networks, vol. 9, no. 6, pp. 991–998,
1996.

[8] B. D. Brown and H. C. Card, “Stochastic neural computation. I.
computational elements,” IEEE Transactions on Computers, vol. 50,
no. 9, pp. 891–905, 2001.

[9] D. Zhang and H. Li, “A stochastic-based FPGA controller for an
induction motor drive with integrated neural network algorithms,” IEEE
Transactions on Industrial Electronics, vol. 55, no. 2, pp. 551–561, 2008.

[10] Y. Ji, F. Ran, C. Ma, and D. J. Lilja, “A hardware implementation
of a radial basis function neural network using stochastic logic,” in
Proceedings of the Design, Automation & Test in Europe Conference
(DATE), 2015, pp. 880–883.

[11] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rosselló,
“A new stochastic computing methodology for efficient neural network
implementation,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 27, no. 3, pp. 551–564, 2016.

[12] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“VLSI implementation of deep neural network using integral stochastic
computing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 10, pp. 2688–2699, 2017.

[13] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan,
“SC-DCNN: Highly-scalable deep convolutional neural network us-
ing stochastic computing,” in Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017, pp. 405–418.

[14] V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient
hybrid stochastic-binary neural networks for near-sensor computing,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, pp. 13–18.

[15] R. Hojabr, K. Givaki, S. Tayaranian, P. Esfahanian, A. Khonsari, D. Rah-
mati, and M. H. Najafi, “SkippyNN: An embedded stochastic-computing
accelerator for convolutional neural networks,” in Proceedings of the
56th Annual Design Automation Conference (DAC), 2019, pp. 1–6.

[16] Y. Liu, L. Liu, F. Lombardi, and J. Han, “An energy-efficient and noise-
tolerant recurrent neural network using stochastic computing,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 9, pp. 2213–2221, Sep. 2019.

[17] R. Cai, A. Ren, O. Chen, N. Liu, C. Ding, X. Qian, J. Han, W. Luo,
N. Yoshikawa, and Y. Wang, “A stochastic-computing based deep
learning framework using adiabatic quantum-flux-parametron supercon-
ducting technology,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA ’19. New York, NY, USA: ACM,
2019, pp. 567–578.

[18] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s, pp. 92:1–92:19, May 2013.

[19] A. Zhakatayev, S. Lee, H. Sim, and J. Lee, “Sign-magnitude SC: getting
10x accuracy for free in stochastic computing for deep neural networks,”
in Proceedings of the 55th Annual Design Automation Conference
(DAC), 2018, pp. 1–6.

[20] P. K. Gupta and R. Kumaresan, “Binary multiplication with PN se-
quences,” IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 36, no. 4, pp. 603–606, 1988.

[21] A. Alaghi and J. P. Hayes, “Fast and accurate computation using stochas-
tic circuits,” in Proceedings of the conference on Design, Automation &
Test in Europe (DATE), 2014, pp. 1–4.

[22] S. Liu and J. Han, “Energy efficient stochastic computing with Sobol
sequences,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, pp. 650–653.

[23] H. Niederreiter, Random Number Generation and quasi-Monte Carlo
Methods. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 1992.

[24] P. Bratley and B. L. Fox, “Algorithm 659: Implementing Sobol’s
quasirandom sequence generator,” ACM Transactions on Mathematical
Software (TOMS), vol. 14, no. 1, pp. 88–100, 1988.

[25] S. Liu and J. Han, “Toward energy-efficient stochastic circuits using
parallel sobol sequences,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 7, pp. 1326–1339, July 2018.

[26] A. Alaghi and J. P. Hayes, “STRAUSS: Spectral transform use in
stochastic circuit synthesis,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 11, pp. 1770–
1783, 2015.

[27] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. Riedel, “The synthesis
of complex arithmetic computation on stochastic bit streams using
sequential logic,” in Proceedings of the International Conference on
Computer-Aided Design (ICCAD), 2012, pp. 480–487.

[28] P. Mars and W. J. Poppelbaum, Stochastic and deterministic averaging
processors. Peter Peregrinus Press, 1981, no. 1.

[29] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, “DSCNN: Hardware-
oriented optimization for stochastic computing based deep convolutional
neural networks,” in IEEE 34th International Conference on Computer
Design (ICCD), 2016, pp. 678–681.

[30] A. Ren, Z. Li, Y. Wang, Q. Qiu, and B. Yuan, “Designing reconfigurable
large-scale deep learning systems using stochastic computing,” in IEEE
International Conference on Rebooting Computing (ICRC), 2016, pp.
1–7.

[31] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in Proceedings of the 53rd Annual Design Automation Conference
(DAC), 2016, pp. 124:1–124:6.

[32] H. Sim and J. Lee, “A new stochastic computing multiplier with
application to deep convolutional neural networks,” in Proceedings of
the 54th Annual Design Automation Conference (DAC), 2017, pp. 1–6.

[33] Y. Liu, Y. Wang, F. Lombardi, and J. Han, “An energy-efficient online-
learning stochastic computational deep belief network,” IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 3,
pp. 454–465, Sep. 2018.

[34] J. F. Keane and L. E. Atlas, “Impulses and stochastic arithmetic for
signal processing,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), vol. 2, 2001, pp. 1257–1260.

[35] R. Kuehnel, “Binomial logic: extending stochastic computing to high-
bandwidth signals,” in Conference Record of the Thirty-Sixth Asilomar
Conference on Signals, Systems and Computers, vol. 2, 2002, pp. 1089–
1093.

[36] N. Yamamoto, H. Fujisaka, K. Haeiwa, and T. Kamio, “Nanoelectronic
circuits for stochastic computing,” in 6th IEEE Conference on Nanotech-
nology (IEEE-NANO), vol. 1, 2006, pp. 306–309.

[37] K. K. Parhi and Y. Liu, “Architectures for IIR digital filters using
stochastic computing,” in IEEE International Symposium on Circuits
and Systems (ISCAS), 2014, pp. 373–376.

[38] B. Yuan, Y. Wang, and Z. Wang, “Area-efficient scaling-free DFT/FFT
design using stochastic computing,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 63, no. 12, pp. 1131–1135, 2016.

[39] R. Wang, J. Han, B. F. Cockburn, and D. G. Elliott, “Stochastic circuit
design and performance evaluation of vector quantization for different
error measures,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 10, pp. 3169–3183, 2016.

[40] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, “Compact
and accurate digital filters based on stochastic computing,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 7, no. 1, pp. 31–43,
2016.

[41] T. Hammadou, M. Nilson, A. Bermak, and P. Ogunbona, “A 96/spl
times/64 intelligent digital pixel array with extended binary stochastic
arithmetic,” in Proceedings of the International Symposium on Circuits
and Systems (ISCAS), 2003.

[42] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proceedings of the 50th Annual
Design Automation Conference (DAC), 2013, pp. 136:1–136:6.

[43] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 3, pp. 449–462, 2014.

[44] M. H. Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel, K. Bazargan,
and R. Harjani, “Time-encoded values for highly efficient stochastic
circuits,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 5, pp. 1644–1657, 2017.

[45] S. R. Faraji, M. Hassan Najafi, B. Li, D. J. Lilja, and K. Bazargan,
“Energy-efficient convolutional neural networks with deterministic bit-
stream processing,” in 2019 Design, Automation Test in Europe Confer-
ence Exhibition (DATE), 2019, pp. 1757–1762.

[46] S. Liu and J. Han, “Dynamic stochastic computing for digital signal
processing applications,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2020.

[47] I. L. Dalal, D. Stefan, and J. Harwayne-Gidansky, “Low discrepancy
sequences for Monte Carlo simulations on reconfigurable platforms,” in
International Conference on Application-Specific Systems, Architectures
and Processors (ASAP), 2008, pp. 108–113.

[48] W. G. McCallum, D. Hughes-Hallett, A. M. Gleason, D. O. Lomen,
D. Lovelock, J. Tecosky-Feldman, T. W. Tucker, D. Flath, T. Thrash,
K. R. Rhea et al., Multivariable calculus. Wiley, 1997, vol. 200, no. 1.

[49] S. S. Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and
W. J. Gross, “Majority-based tracking forecast memories for stochastic
LDPC decoding,” IEEE Transactions on Signal Processing, vol. 58,
no. 9, pp. 4883–4896, 2010.

[50] N. Saraf, K. Bazargan, D. J. Lilja, and M. D. Riedel, “IIR filters
using stochastic arithmetic,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2014, pp. 1–6.

[51] F. Maloberti, “Non conventional signal processing by the use of sigma
delta technique: a tutorial introduction,” in Proceedings of IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), vol. 6, 1992, pp.
2645–2648.

[52] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equa-
tions: Runge-Kutta and General Linear Methods. USA: Wiley-
Interscience, 1987.

[53] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

[54] S. Liu and J. Han, “Hardware ODE solvers using stochastic circuits,” in
Proceedings of the 54th Annual Design Automation Conference (DAC),
2017, pp. 1–6.

[55] S. S. Haykin, Neural networks and learning machines. Pearson Upper
Saddle River, NJ, USA:, 2009, vol. 3.

[56] S. Liu, H. Jiang, L. Liu, and J. Han, “Gradient descent using stochastic
circuits for efficient training of learning machines,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2530–2541, Nov 2018.

[57] R. Nishihara, P. Moritz, S. Wang, A. Tumanov, W. Paul, J. Schleier-
Smith, R. Liaw, M. Niknami, M. I. Jordan, and I. Stoica,
“Real-time machine learning: The missing pieces,” in Proceedings
of the 16th Workshop on Hot Topics in Operating Systems,
ser. HotOS ’17. ACM, 2017, pp. 106–110. [Online]. Available:
http://doi.acm.org/10.1145/3102980.3102998

[58] J. P. Hayes, “Introduction to stochastic computing and its challenges,” in
Proceedings of the 52nd Annual Design Automation Conference (DAC),
2015, pp. 59:1–59:3.

