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Chapter 1

Introduction

1.1 From microelectronics to nanoelectronics

The rapid growth of microelectronics has been based on the continuous miniaturization of
electronic components over decades. Since the invention of the transistor, electronic circuits
have evolved at an amazing pace from the early integrated circuits (ICs), with tens of com-
ponents, to nowadays very-large-scale-integrated (VI.ST) systems with hundreds of millions
of components. This evolution is commonly referred to as being governed by Moore’s law,
which states that the number of electronic components per chip doubles every 18 months.
Today’s VST circuits are based on the complementary metal-oxide-semiconductor (CMOS)
field-effect-transistors (FETs), and the state-of-the-art fabrication process of CMOS has
reached a node dimension of 90 nm. However, as CMOS technology enters the nanoelec-
tronic realm (tens of nanometers and below), where quantum mechanical effects start to
prevail, conventional CMOS devices are meeting many technological challenges for further
scaling. A variety of non-classical CMOS structures have been invented and investigated
worldwide. Tt is generally believed that these novel structures will extend the CMOS tech-
nology to 45 nm nodes by the year 2009. If this scaling continues beyond 2009, however,
CMOS technology is anticipated to hit a brick wall and cease to decrease in size around 2019
[1]. This will be due to many reasons such as the physical limitations imposed by thermal
fluctuations, power dissipations and quantum effects, and the technological limitations in
manufacturing methods (e.g. lithography), etc.

Besides the endeavor devoted to the continuous scaling of CMOS by developing advanced
device structure, various novel information processing devices based on new physical phe-
nomena have been proposed and some have been successfully demonstrated at the logic
circuit level. These devices include resonant tunneling devices (RTDs), single electron tun-
neling (SET) devices, quantum cellular automata (QCA), rapid single flux quantum (RSFQ)
and superconducting circuits of Josephson junctions, carbon nanotubes (CNTs) and silicon
nanowire (SINWs), molecular devices, spin-based devices, etc. [2], [3] They share one or
more characteristics such as extremely small dimensions, high switching speed, low power
consumption, ease of fabrication and good scaling potential. Many of these devices fall into
the scope of nanoelectronics, such as those based on coulomb blockade tunneling and mole-
cules. Some devices, mainly employing superconducting quantum effects, are, however, in
the microscopic regime, such as RSFQ and superconducting circuits of Josephson junctions.
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In the near term, one or more of these devices are expected to be integrated on a CMOS
platform, possibly serving as complementary components to CMOS. In the long term, the
research in nanoelectronics may provide opportunities for alternative technologies to the

electronics beyond CMOS [4].

A brief survey of the nanoelectronic and quantum effect devices is presented in Chapter

1.2 From nanoelectronics to nanoelectronic computers

The advances at device and circuit levels have raised design issues for computer architectures
based on nanoelectronic and quantum devices [5], [6]. The developments of nanoelectronics
could eventually lead to extremely large scales of integration, of an order of a trillion (10'?)
devices in a square centimeter. The architectures of the integrated circuits and systems must
be suitable for implementations in nanoelectronic devices. In other words, architectures
must optimally make use of the properties and at the same time deal with the drawbacks
of the devices. There are many features in nanoscale devices that impose limitations on
nanoelectronic architectures, while the most prominent ones have been recognized as: the
devices’ poor reliabilities, the difficulties in realizing interconnects and the problem of power
dissipation [7], [8].

The unreliability of nanoelectronic devices comes from two sources. One is the bottom-
up manufacturing process of self-assembly, which will be used at dimensions below those
for which conventional top-down fabrication techniques can be used. Since imprecision and
randomness are inherent in this self-assembly process, it is almost inevitable that a large
number of defective devices will appear due to this fabrication process. The other source
of errors is the environment, in which the devices will be operating. Due to a reduced noise
tolerance of low thresholds of state variables, malfunctions of devices may be induced by
external influences such as electromagnetic interference, thermal perturbations, cosmic radi-
ation, etc. Hence, permanent faults or defects may emerge during the manufacturing process,
while transient errors may spontaneously occur during operation. The issue of defect- and
fault-tolerance is therefore critical for any large integration of unreliable nanoelectronic de-
vices. Several techniques, such as NAND multiplexing, N-tuple modular redundancy (NMR)
(e.g. triple modular redundancy (TMR)) and reconfiguration, have been investigated for
fault-tolerant implementations in nanocomputer architectures.

The problem of interconnects is partly due to the imperfect manufacturing process, which
makes it, difficult to produce precise alignments between wires. Another challenge lies on how
transformations of interconnects can be made from nanoscale dimensions to the macroscopic
world of realizable systems. In addition, long-distance communication seems a problem
for nanoelectronic systems, because of the properties of many devices such as low drive
capabilities and easy local interactions. For these reasons, the parallel architectures that are
highly regular and locally connected have been proposed for nanocomputer implementations.
Among those, the single instruction and multiple data (STMD) computers, quantum cellular
automata (QCA) and cellular nonlinear networks (CNNs) have been the subjects of intense
research activities.

Thermal power dissipation comes from the device switching energy and the energy needed
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to drive signals through circuits. The minimum energy needed to switch a bit and the
switching frequency are limited by the uncertainty principle. In other words, the power-
delay product (minimum power dissipated x switching time) cannot be less than Planck’s
constant, in the quantum limit [9]. This indicates that a trade-off of clock speed versus device
density has to be made, i.e. clock speeds will need to be decreased for very high densities
and densities will need to be decreased for very high clock speeds. This implies that a
nanocomputer will rely on massive parallel processing rather than on fast operation speed.
The problem of power dissipation sets in general a limit to any electron transport device.
The strategies to overcome this are to employ novel devices that use alternative variables
for logic states, such as spin-based devices, and to search for computing architectures based
on novel physical principles, such as quantum mechanical computers.

A brief review of these nanoelectronic and quantum computer architectures is presented
in Chapter 2.

1.3 Contributions of this dissertation

e In research on fault-tolerant architectures, the NANID) multiplexing technique, as ini-
tiated by von Neumann, has been comprehensively studied. In particular, the NAND
multiplexing technique is extended from a high degree of redundancy to a fairly low
degree of redundancy; the stochastic Markovian characteristics in a multi-stage mul-
tiplexing system are discovered and investigated. Tt has been shown that the Markov
chain model presents a general framework in the study of systems based on multiplex-
ing techniques. (Chapter 3)

e A defect- and fault-tolerant architecture, with the multiplexing technique implemented
into the fundamental circuits and a hierarchical reconfigurability mapped to the overall
system, is proposed. It has been shown that the required redundancy could be brought
back to a moderate level by reconfigurability. This architecture is efficiently robust
against both manufacturing defects and transient faults, tolerating a gate error rate of
up to 10 ?, which is in general nnacceptable for any current VISI system. (Chapter

)

e A novel fault-tolerant technique, the triplicated interwoven redundancy (TTR), is pro-
posed as a general class of triple modular redundancy (TMR), but implemented with
random interconnections. The TIR, is extended to higher orders, namely, the N-tuple
interwoven redundancy (NTR), to achieve higher system reliabilities. The TTR/NIR. is
in particular suitable for implementation in molecular nanocomputers, which are likely
to be fabricated by a manufacturing process of stochastically chemical assembly. Our
study suggests that the randomness inherent, in the process of molecular self-assembly
might not be an obstacle that prevents one from implementing fault-tolerant measures
into a molecular architecture, and that a low overhead fault-tolerant architecture might
be possible for a future nanosystem. (Chapter 4)

e A classical SIMD computer architecture and an array-based quantum computer struc-
ture have been studied as possible applications of superconducting circuits of Josephson
junctions. The classical computer may serve as a pre- and post-processor for the quan-
tum computing performed in the heart of the Josephson circuit array, establishing a
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heterogeneous quantum /classical computer for, e.g. an implementation of Shor’s fac-
toring algorithm. A quantum CNN architecture using the Josephson circuits has also
been proposed, presenting a novel computing paradigm for Josephson circuits. Since
classical computing architectures (STMD arrays), quantum computing architectures
and semi-quantum computing architectures (quantum CNNs) can be simultaneously
studied on the same device, it has been shown that the Josephson circuit is a good
vehicle for investigating the architectural issues of quantum and nanoelectronic com-
puter systems, independently from the question which device will be the ultimate
implementation vehicle. (Chapter 5)



Chapter 2

Computing Architectures for
Nanoelectronic and Quantum Devices

2.1 The current status of nanoelectronics

2.1.1 Resonant tunneling devices (RTDs)

Resonant tunneling devices (RTDs) are usually two terminal devices of vertical semicon-
ductor heterostructures with two insulating layers separating the conducting regions. A
negative differential resistance (NDR) is produced by the double barrier structure, which
has a resonance peak enabling the resonant tunneling of electrons through the barriers. Due
to the fast tunneling process, the RTDs have inherently a very high switching speed (up to
700 GGHz), which makes them potentially attractive for high speed switching applications,
such as very high frequency oscillators, amplifiers and ADCs [1].

Three terminal devices have been demonstrated by integrating R'T'Ds with conventional
FETs (RTD-FETs) [2]. Various designs, including digital logic, threshold logic and memory,
were proposed based on the heterostructures of RTD-FETs [10], [11]. However, the com-
bination of RTDs and transistors introduces delays to the intrinsically fast switching speed
of RT'Ds. The operating speed of the hybrid devices can be an order of magnitude slower
than the switching speed of RTDs. Furthermore, the complexity of the integrated structure
imposes a limit on the scaling properties of the devices, compared with CMOS. Resonant
tunneling transistors (RTTs) have been obtained by adding a control terminal to the RTD
[12] and RTT-based logic circuits have been demonstrated [13].

A major problem with RTDs is the extreme sensitivity of the device characteristics
to the layer thickness, as the tunneling current depends exponentially on the thickness of
the tunnel barrier. Difficulties in manufacturing, to produce large-scale RTD circuits with
uniform thickness of tunnel barriers, remain. This and other challenges in fabrication may
limit the usefulness of RTDs in certain niche applications of high speed switching, digital
signal processing, ADC, DAC, etc.
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2.1.2 Single electron tunneling devices (SETSs)

Single electron tunneling devices (SKTs) are three terminal devices where electron movement
is controlled with a precision of an integer number of electrons. An electron can tunnel from
and to an island (or quantum dot) through a tunneling barrier, which is controlled by a
separate gate based on Coulomb blockade. This electron island can accommodate only an
integer number of electrons. This number may be up to a few thousand. A single electron
transistor is composed of a quantum dot connected to an electron source and to a separate
electron drain through tunnel junctions, with the electron injection controlled by a gate
electrode. Single electron transistors can be implemented in logic circuits by operating on
one or more electrons as a bit of information [14].

SET circuits usually operate at very low temperatures. It is estimated that the maximum
operation temperature for 2nm SKTs is 20 K, with an integration density of approximately
10" em ? and a speed of the order of 1 GHz [15]. Various logic applications of SFETs,
including inverters [16], [17], OR and a 2-bit adder [18], have been demonstrated. However,
due to the high impedance required for Coulomb blockade, a SK'T gate would not be able
to drive more than one other gate. This has two implications. First, SET logic would have
to be based on local architectures, such as cellular arrays and cellular nonlinear networks
(CNNs). Second, although SETs may not be suitable for implementations in logic circuits,
they could be used for memories. SE/T-based memory structures have been proposed and
experimentally demonstrated [19]-[21].

Background charge fluctuations remain a major issue for the successful operation of a
SET-based circuit [14]. Due to electrostatic interactions, correct device functions can be
destroyed by impurities and trapped electrons in the substrate. In order to tackle this
problem, besides the endeavor to develop novel computing schemes, such as the multi-value
SET logic, fault-tolerant architectures, implemented at higher levels of circuits and systems,
might be a direction for investigation [46].

2.1.3 Quantum cellular automata (QCA)

Cellular automata (CA) are computing architectures inspired by complex natural and phys-
ical systems [22]. CA systems are usually based on regular arrays of simple cells. Fach cell
in an array interacts with its neighbors and evolves from an initial state into a final state.
The evolution of a cell is determined by the cell’s initial state and the interactions with its
neighbors. A computation can be mapped to such a dynamic process in a CA system.

The concept of quantum cellular antomata (QCA) was first proposed as a cell structure
of quantum dots coupled via quantum mechanical tunneling [23]. Tn a typical 4-dot cell,
the quantum dots are in the corners of a square cell. Due to electrostatic repulsion, free
charges will occupy the dots in diagonally opposite corners of the cell and form two bistable
states representing binary bits. T.ogic states are thus encoded in the spatial distribution of
electric charges in a cell and a computation can be performed by the mutual interactions of
cells in an array. Basic circuits of logic [24], a latch [25] and shift registers [26] have been
experimentally demonstrated for electronic QCA implementations.

The potential advantages of QCA are high switching speed, low power consumption and
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good scaling capability. Tt is estimated that the inter-dot distance in a solid state QCA
cell would be approximately 20 nm and the inter-cell distance would be 60 nm [27]. In a
recently proposed scheme for a molecular QCA cell [2R], the inter-dot distance is expected
to be about 2 nm, and the inter-cell distance about 6 nm. An optimistic evaluation shows
that the intrinsic switching speed of an individual QCA cell can be in the THz range [27].

However, it was shown that by a comparative study of QCA and CMOS circuit perfor-
mance a practical circuit of solid-state QCA will only have the maximum operating speed
of a few MHz [29]. This frequency might be a few (Hz for the circuits based on molecular
QCA. Tt was also shown that the maximum operating temperature for a standard solid state
QCA cell is about 7 K, indicating that room temperature operation is not possible for solid
state QCA systems [27]. Molecular QQCA systems might be the only possibility for room
temperature operation. Another serious drawback of QCA devices is that they suffer from
the problem of background charge fluctuation, because QCA are single electron devices.

Besides the widely studied electronic QCA, the concept of magnetic QCA based on
small ferromagnetic structures has been proposed for room temperature operation [30)]. For
magnetic QCA, logical states are represented by the directions of the cell magnetization
and cells are coupled through magnetostatic interactions. The minimum size of magnetic
QCA cells is estimated to be about 100 nm, and the maximum switching speed is about
200 MHz. T.ogic devices including a shift register have been demonstrated for the use of
nanoscale ferromagnetic devices [31].

2.1.4 Rapid single flux quantum (RSFQ) and superconducting
circuits of Josephson junctions

RSFQ devices are based on the effect of flux quantization in superconducting circuits of
Josephson junctions [32]. The Josephson junctions serve as switching elements and binary
bits are represented by the presence or absence of flux quanta in the superconducting circuits.
A voltage pulse is generated when a magnetic flux quantum is transferred from one circuit, to
another by switching the Josephson junctions. Complex circuit functions are realized by the
propagation and interaction of the voltage pulses in RSFQ circuits. Current RSFQ devices
are mainly built on low temperature superconductors (~ 5 K), while high temperature
superconductor (~ 50 K) technology may eventually be possible for implementations of

RSFQ circuits.

The main advantage of the RSFQ circuit is the very high operating speed of up to
approximately 770 (GHz, which has been achieved in flip-flop circuits [33]. More complex
circuits, such as random access memories, adders and multipliers, have been demonstrated
[34]. As the superconducting quantum effect occurs at a microscopic scale, the typical
dimension of RSFQ devices is a few microns. Tt has been shown that it might be able to
scale the RSFQ circuits down to 0.3 ym and a frequency of 250 GHz [35]. However, further
scaling of RSFQ into nanoscale will be a challenge, due to many limiting factors associated
with this technology.

The main drawback of the RSFQ technology is the need for cryogenic cooling [36]. A
broad scale of applications will strongly depend on the availability of low cost, highly reliable
and compact cooling systems. Before great technical progress is made for cryogenic coolers,
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the RSFQ technology is likely to be limited to niche applications where speed is the dominant
requirement.

Superconducting circuits of Josephson junctions can also be used for quantum informa-
tion processing. A superconducting loop of three Josephson junctions has been proposed
and demonstrated as a quantum bit or qubit [37]-[40]. A coherent superposition of two
persistent-current states can be obtained when the two classical states are coupled via quan-
tum tunneling through an energy barrier. The classical states of persistent currents can also
be used as two binary bits [41]. T.ogic functions can be realized by coupling two or more bits,
i.e. the circuit loops [42]. The interaction between loops is via magnetic interference of the

superconductors. A cellular array architecture based on the Josephson circuits is discussed
in Chapter 5.

2.1.5 Carbon nanotubes (CNTs) and semiconductor nanowires

(NW5s)

Carbon nanotubes and semiconductor nanowires are often considered as molecular devices,
while they are referred to as one-dimensional (1D) devices in [1]. The potential advantages
of 1D structures include enhanced mobility and phase-coherent transport of the electron
wavefunctions. These properties may lead to faster transistors and novel wave interfer-
ence devices. Carbon nanotubes and semiconductor nanowires are important, subsets of 11
structures.

A carbon nanotube is a molecular cylinder formed by rolling up an atomic sheet, of carbon
atoms [52]. Carbon nanotubes typically have diameters of less than 20 nm and lengths of up
to several microns. A CN'T can be a semiconductor or a metal, which is determined by the
tube diameter and the way it is rolled up. The tubes can be doped to make p-n junctions.
Transistors have been obtained from CNTs [53]-[55], and logic circuits, such as NOT, NOR,
a flip-flop and ring oscillators, have been demonstrated [56], [57]. However, it is still not
possible to precisely control whether CN'T's are semiconducting or metallic, which makes the
fabrication of CN'T's a random process.

Semiconductor nanowires could also function as building blocks for nanoscale electronics,
and can be fabricated through a directed assembly process [58], [59]. A nanowire, usually
with a diameter of 10 — 20 nm, can be doped as a p- or n-type device. NW FETs have
been obtained by making structures of crossed p- and n-type nanowires separated by a thin
dielectric [60]. Various logic gates with gains have been demonstrated [61]. More complicated
circuits such as address decoders have recently been reported [62]. These results present a
step toward the realization of integrated nanosystems based on semiconductor NWs.

The problems associated with 11 structures (CNTs and NWs) include their low drive
capability of individual devices, their contact resistance limited by quantum effects, their
interconnect problems and yield of fabrication.
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2.1.6 Molecular nanoelectronics

Molecular electronic devices are assumed to be based on electron transport properties
through a single molecule [63]. The exact mechanism of charge transport in molecules is not
yet well understood. T.ogic circuits based on two-terminal devices [64] and programmable
molecular switches [65] have been experimentally realized. A three-terminal FET structure
based on a C-60) molecule has been demonstrated, but with a very high contact resistance
[66]. The most complicated molecular circuit to date is a 64-bit random access memory,
which has been experimentally realized on a 2-dimensional (2D)) crossbar circuit [67].

lLarge-scale molecular circuits can in principle be fabricated through self-assembly, a
stochastically chemical or biological process of low cost. The progress of molecular electronics
may eventually lead to large-scale integrated circuits, possibly with a density of 10'%bits/cm?
[68]. However, there are many technological challenges in building large-scale molecular
circuits [69]. For examples, there are no or very low gains in molecular circuits, and most
molecular devices have low “on-off” current ratios, which make molecular devices fragile to
perturbations and noise. The problems of yield in fabrication and reliability in operation
due to the stochastically self-assembly process indicate that molecular computer systems
would require defect- and fault-tolerant architectures for reliable operations.

2.2 Computing architectures for nanoelectronic and
quantum devices

2.2.1 Defect- and fault-tolerant architectures

The very small sizes of molecular and nanoelectronic devices make it possible to build
a trillion (10'?) devices in a square centimeter. However, for such a densely integrated
circuit to perform a useful computation, it has to deal with the inaccuracies and instabilities
introduced by fabrication processes and external influences. Permanent faults may emerge
during the manufacturing process, while transient ones may spontaneously occur during
the computer’s lifetime. Tt is therefore likely that the emerging nanoelectronic devices will
eventually suffer from more errors than classical CMOS devices in large-scale integrated
circuits. In order to make future systems based on nanoscale devices reliable, the design of
fault-tolerant architectures will be necessary.

Fault-tolerant approaches have been of interest since the first generation of electronic
computers when computers were constructed from such unreliable components as vacuum
tubes. In the 1950s von Neumann initiated the study of using redundant components to ob-
tain reliable synthesis from unreliable components, namely, the multiplexing technique [70)].
It has been shown that the multiplexing structure, based on a massive duplication of imper-
fect devices and randomized imperfect interconnects, can be reliable with a high probability,
provided that the failure probability of a component is sufficiently small. Since this study of
von Neumann, various fault-tolerant techniques have been developed and successfully imple-
mented in modern computer systems. These includes N-tuple modular redundancy (NMR)
(e.g. triple modular redundancy (TMR)), reconfiguration and error correcting codes [71].
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NMR. and TMR. designs, as implied in the multiplexing technique, have been imple-
mented in VI.SI systems for high reliability applications, and have been used as benchmarks
for evaluating fault-tolerant approaches. In TMR, the most general form of NMR, three
identical circuit modules perform the same operation, and a voter accepts outputs from all
three modules, producing a majority vote at its output. A reconfigurable architecture is a
computer architecture which can be configured or programmed after fabrication to imple-
ment a desired computation. Faulty components are detected during testing and excluded
during reconfiguration.

Recently, these fault-tolerant techniques have been studied for potential use in nanoelec-
tronic systems [72], [73]. The main results were that the multiplexing technique and NMR
generally require a large amount of redundant components and an extremely low error
rate of nanoelectronic devices, and that the reconfiguration may be efficient for protection
against manufacturing defects if defective devices can be located. In [46], von Neumann’s
NAND multiplexing technique was extended from high degrees of redundancy to fairly low
degrees of redundancy, and the characteristics of a Markov chain is discovered and investi-
gated in a multi-stage multiplexing system, as presented in Chapter 3. Tt was shown that
this multiplexing might be an effective fault-tolerant technique for protection against the
increasing transient faults in nanoelectronic systems. Further, a CAD method based on
probabilistic model checking has been proposed to evaluate the reliability of fault-tolerant
architectures and, in particular, the multiplexing systems [74]; Monte Carlo simulations have
been performed to study the error behavior in a multiplexing nanosystem [75]; and a better
understanding of the error behavior in the Markov chains of multiplexing systems is obtained
through a study using bifurcation theory [76]. For reconfiguration, the Teramac computer
[77], though built with conventional CMOS technology, is a successful proof-of-principle
model for nanocomputers. The basic components in Teramac are programmable switches
(memory) and redundant interconnections. High communication bandwidth is critical for
both parallel computation and defect tolerance. Array-based reconfigurable architectures
have also been proposed for the applications of two-terminal molecular devices [78] and

carbon nanotubes (CNTs) and silicon nanowires (SINWs) FFETs [79].

A hierarchically reconfigurable architecture with multiplexing technique implemented
into the fundamental circuits has been studied as a system that is robust against both
manufacturing defects and transient faults [47]. In this architecture, the required redundancy
could be brought back to a moderate level — no larger than 10? by reconfigurability. A
new form of interwoven redundant logic, the triplicated interwoven redundancy (TTR), has
been proposed as a general class of triple modular redundancy (TMR)), but implemented with
random interconnections [50)]. The TIR, is extended to higher orders, namely, the N-tuple
interwoven redundancy (NIR), to achieve higher system reliabilities. The NIR/TIR is in
particular suitable for implementation through the manufacturing process of stochastically
molecular assembly. This study suggests that a low overhead fault-tolerant architecture may
be possible for an implementation of future nanosystems. These are presented in Chapter

4.

The redundancy technique, originating from von Neumann, is basically an error correct-
ing code [R0]. Frror correcting codes provide a way to cope with the corruption of bits by
encoding messages as code words that contain redundant information. The multiplexing
construction boils down to the use of a so-called repetition code, in which each symbol of a
message is repeated many times to create redundancy. The use of error correcting codes in
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fault-tolerant nanosystems has also been explored [81].

2.2.2 Locally-connected (coupled) computing architectures

The advances in nanoelectronics have also raised design issues for novel computation struc-
tures for nanoelectronic and quantum effect devices. The study of computer architectures
started before the first electronic computer. Some fundamental issues were then thought
about computation, such as what can, in principle, be computed or effectively computed
and how to realize it on a computer, and extensively studied. A remarkable achievement
in computation theory was made in 1936 when Turing developed in detail a mathematical
model for computation now known as the Turing machine. Turing showed that there is
a Universal Turing Machine that can do anything that any specific Turing machine can
do. Furthermore, he asserted that, if a computation can be effectively performed on any
computer hardware, it can then be effectively done by a Universal Turing Machine. This as-
sertion established a connection between computer hardware that carries out computations
and the equivalent theoretical model of a Universal Turing Machine.

Later in the 1940s an architecture model was developed by von Neumann for the practi-
cal realization of a computer functional as a Universal Turing Machine. The von Neumann
architecture is commonly defined as a computer architecture that sequentially executes a
single stream of instructions stored with data in an addressable memory. Farly computers
were mostly sequential computers based on von Neumann architecture. Sequential comput-
ers are however slow due to sequential execution of instructions in programs. Functional
parallelism was therefore explored and, with the advancement of VI.ST circuits, massively
parallel computers have been built and used in various areas of data processing, in particular
in the field of high performance image processing (see, for examples, [82]-[85]).

This evolution of computer architectures has been, and will continue to be, driven by
the development of underlying technologies of computer hardware. For computers based
on nanoelectronic and quantum devices, due to the characteristics of these devices such
as low power consumption, low drive capability and easy local interactions, the parallel
architectures that are highly regular and locally connected, such as the single instruction
and multiple data (STMD) computers [86], quantum cellular automata (QCA) [87] and
cellular nonlinear networks (CNNs) [88], have preferences to be the prototype architectures.

Although they have been studied separately, SIMD computers, the QCA architecture and
CNNs all belong to the category of cellular array architectures. SIMD computers consist
of assemblies of identical, simple processor elements (PFEs), usually associated with local
memories and connected to its nearest neighbors in a linear or square array. SIMD processor
arrays have been successfully used in various areas of high-performance image and data
processing [89]. Cellular automata (CA) represent an alternative computing paradigm to
the conventional von Neumann architecture, albeit that the study of CA was also initiated by
von Neumann [90]. Typically the QCA architecture has been studied as an implementation
of arrays of electrostatically coupled quantum dots [87]. The computing issues of a magnetic
QCA based structure has also been investigated [91]. Recent study has shown that the QCA
paradigm may also have applications in molecular structures [28]. For a regular and uniform
network of QCA, various computation algorithms can be implemented by using the theory
of cellular automata. An adiabatic clock scheme can be employed in the operation of a non-
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uniform layout of QCA to carry out general logic functions [92]. The architectural issues
of a cellular array have been discussed in [93] for the implementations of quantum cellular
automata (QCA) and resonant tunneling diodes (RTDs).

Cellular nonlinear networks (CNNs) represent a circuit architecture that is capable of
high-speed parallel signal processing [88]. A cellular nonlinear network (CNN) is usually an
array of identical dynamical systems, or cells, and has mainly local interactions within a finite
radius and analog signals as state variables. As a real-time signal processing architecture,
CNNs have important applications in image processing and pattern recognition. TIf local
memories are attached, a CNN can be used to build a universal CNN machine, which is as
universal as a Turing machine [94]. Because of the local connectivity, which is independent of
the number of cells, the CNN architecture is in principle scalable and reliable. The potential
applications of CNNs using resonant tunneling diodes (RTDs) [95], single electron transistors
(SETs) [96] and tunneling phase logic [97] have been investigated. A quantum CNN has
been proposed for the use of quantum dots by exploring their local quantum dynamics
and global interactions [98]. Tn Chapter 5, we present a classical cellular (STMD) array
[42] and a quantum CNN architecture [44] based on superconducting circuits of Josephson
junctions. In the quantum CNN architecture, the quantum dynamics of the Josephson circuit
is formulated as the state dynamics of a CNN cell and the quantum states of neighboring
cells interact with each other only via classical couplings, which distinguishes a quantum
CNN architecture from a quantum computer.

2.2.3 Quantum computers

Classical computing models derived from the Turing Machine operate in two distinguishable
states False or True, or simply 0 or 1, and produce a deterministic output. Quantum
mechanics however tells us that if a bit can be in one or the other of two distinguishable
states, then it can also exist in coherent superpositions of these states [99]. Inspired by the
laws of physics that are ultimately quantum mechanical, Deutsch proposed a computing
model working upon the principles of quantum mechanics in 1985 [100]. There came the
concept, of quantum computer. Because of the quantum mechanical superpositions, which
suggest a massive parallelism in computation, a quantum computer may be more powerful
than any classical computer [101].

In 1994 Shor discovered a quantum algorithm for factorization that is exponentially faster
than any known classical algorithm [102]. This algorithm would have immediate applications
in cryptography, e.g. in the quick determination of keys to codes such as RSA. There are also
other algorithms, such as fast searching [103] and equation solving [104], which suggest that
quantum computers could perform certain tasks that are intractable for classical computers.
Various physical systems have been proposed to realize a quantum computer, including those
using nuclear magnetic resonance (NMR), optical photons, optical cavities, ion traps and
solid-state quantum systems [105]. A 5-bit quantum computer for the factoring of 15 has
been experimentally realized using NMR, [106].

Decoherence is a major issue for quantum computing [107]. Quantum bits or qubits
are extremely sensitive to the perturbations from their external environment, and thus may
lose their quantum properties before any operation is performed. Among various proposed
devices, mesoscopic superconducting circuits of Josephson junctions, produced by modern
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lithography, appear promising for integration in electronic circuits and for large-scale appli-
cations [37], [38]. Recently, the coherent superposition of two macroscopic persistent-current
states on a superconducting Josephson circuit has been observed [39], and the coherent quan-
tum dynamics of this Josephson flux qubit has been demonstrated [40]. A sufficiently high
quality factor of quantum coherence has been obtained in a superconducting tunnel junction
circuit [108]. This may imply that decoherence need not be an obstacle in building quan-
tum computers with macroscopic Josephson circuits [109]. The superconducting circuits of
Josephson junctions may be well suited for the realization of an array-based quantum com-
puter architecture [110]. The issues of quantum computing with superconducting circuits of
Josephson junctions are briefly presented in Chapter 5 [43].






Chapter 3

Fault-Tolerance in Nanocomputers:
The Multiplexing Approach

3.1 Introduction

"This chapter presents an evaluation of the NAND multiplexing technique as originally
introduced by von Neumann [70]. Our evaluation leads to the possibility at calculating
optimal redundancies for nanoelectronic system designs, using statistical analysis of chains
of stages, each of which contains many NAND circuits in parallel. Basically, a single NAND
(or NOR) gate design is sufficient for the implementation of a complex digital computer.
Currently, logic gates are made of reasonably reliable Field Effect Transistor (FET) circuits,
future logic circuits may however be built up from less reliable devices, among which the
Single Flectron Tunnelling (SET) technology is one of the most likely circuit candidates.
In order to make future systems based on nanometer-scale devices reliable, the design of
fault-tolerant architectures will be necessary.

In the 1950s von Neumann initiated the study of using redundant components to obtain
reliable synthesis from unreliable components [70]. He first addressed the question that,
given a malfunction probability of € for unreliable basic gates, can a network be constructed
from these gates to compute a Boolean function that deviates with a probability of at most
d while 6 < 1/27 The main features of von Neumann’s study are that the construction is
only possible when the failure probability per gate has a limit strictly smaller than 1/2, that
the minimum must not be less than e, i.e. & > ¢ for all possible €, and that the network
of unreliable gates may have greater depth (a measure of the layers of gates in a network)
than a network of reliable gates computing the same function. It has later been shown by
others that ¢ is bounded by 1/2 and that computations with failures due to noise proceed
more slowly than in the absence of failures, since a fraction of the layers has to be devoted
to correction [111], [112].

In order to improve these results, von Neumann went on assessing the reliability of
a network of unreliable components by expanding the size of the network, namely, the
multiplexing technique [70]. In this construction, von Neumann considered two sets of basic
logic circuits, the Majority Voting and NAND logic. Fach logic gate was duplicated N times,

"The content of this chapter has been published in [45] and [46].
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and each input was replaced by a bundle of N lines, thus producing a bundle of N outputs.
For NAND logic, the inputs from the first bundle are randomly paired with those from the
second bundle to form the input pairs of the duplicated NANDs. Instead of requiring all
or none of the lines of the output bundle producing correct answers, a certain critical (or
threshold) level A is set: 0 < A < 1/2. A number of larger than (1 — A)N lines carrying
the correct signal is interpreted as a positive state of the bundle and a number of less than
AN lines carrying the correct signal is considered as a negative state. By using a massive
duplication of unreliable components, von Neumann concluded that the construction can
be reliable with a high probability if the failure probability of the gates is sufficiently small.
This construction however requires a large amount of redundancy (N is no less than 10%),
which makes the theory of little use in practice.

As to computational complexity, von Neumann came to the conclusion that a function
computed by a network of n reliable gates could be computed by a network of O(nlogn)
unreliable gates. In 1977 Dobrushin and Ortyukov provided a rigorous proof to improve
von Neumann’s heuristic result, showing that logarithmic redundancy is actually sufficient
for any Boolean function [113] and, at least for certain Boolean functions, necessary [114].
This argument was later strengthened by Pippenger, Stamoulis and Tsitsiklis [115]. In the
1980s, Pippenger proved that a variety of Boolean functions may be computed reliably by
noisy networks requiring only constant multiplicative redundancy [116]. Tt has also been
shown that the complexity measures could be affected by at most constant multiplicative
factors when the sets of Boolean functions or the error bounds are changed [117]. For a
good literature review on this respect, please refer to [118].

Since nanometer-scale devices will be much smaller than current CMOS devices, the
device failure rate increases due to the limit of manufacturing and less amiable operat-
ing environments. The unreliability of devices is crucial in that in some cases it prevents
promising nanometer-scale devices from being used in any large-scale applications, such as
the Single Flectron Tunnelling (SE'T) technology influenced by random background charges
[14]. We seek architecture solutions for the integration of unreliable nanoelectronic devices.
In this chapter von Neumann’s NANTD multiplexing is reviewed and extended to a low degree
of redundancy; the stochastic Markov nature in the heart of the system is discovered and
studied, leading to a comprehensive fault-tolerant theory. The problem of the random back-
ground charges in ST circuits is addressed to study a system based on NAND multiplexing
as a fault-tolerant architecture for the integration of unreliable nanometer-scale devices.

The structure of the chapter is as follows. In section 2, von Neumann’s NANT) multiplex-
ing theory is briefly reviewed and, in section 3, it is extended to a low degree of redundancy.
We then study the stochastic Markov characteristics of multi-stage multiplexing systems
in section 4. In section 5 we present a discussion. In section 6 the application of NAND
multiplexing in a SK'T based nanoelectronic computer architecture is presented. Section 7
summarizes this chapter. This chapter is based on [45] and [46].
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Figure 3.1: The scheme of NAND multiplexing technique.

3.2 von Neumann’s theory on NAND multiplexing

3.2.1 A NAND multiplexing unit

The structure and the question

Consider a NAND gate. Replace each input of the NAND gate as well as its output by a
bundle of N lines, and duplicate the NAND N times, as shown in Figure 3.1. The rectangle
U is supposed to perform a “random permutation” of the input signals in the sense that
each signal from the first input bundle is randomly paired with a signal from the second
input bundle to form the input pair of one of the duplicated NANDs.

Tet X be the set of lines in the first input bundle being stimulated (a logic TRUF, or “ 1
™). Consequently, (N — X) lines are not stimulated (they have the value FAT.SE or “ 0 7).
T.et Y be the corresponding set for the second input bundle; and let 7 be the corresponding
set for the output bundle.

Assume that the failure probability of a NAND gate is a constant & and assume that
the type of fault the NAND makes is that it inverts its output; i.e. acts as an AND gate (a
von Neumann fault). T.et (X,V,7) have (- N, y- N, z- N) elements. Clearly (7,7, Z) are
relative levels of excitation of the two input bundles and of the output bundle, respectively.
The question is then: what is the distribution of the stochastic variable zZ in terms of the
given T and 7 7

The theory without errors

Assume first that e = 0. T.et Z° be the complementary set of 7. Tet (p, §,7) be the numbers
of elements of (XY, 7°) respectively, so that p=7- N, G=14- N and 7 = (1 — 2) - N. The
problem is then to determine the distribution of the stochastic variable 7 in terms of the
given p and g, i.e., to determine the probability of a given 7 in combination with given p
and q.

Considering that /¢ = X -V, then /¢, X — Z° Y — Z°and N — X —Y 4 7° form the
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X Y 7

0 0 1

0 0 1 N-X-Y+7°
0 0 1 N—-p—qg+r
0 1 1

0 1 1 Y - 7°
0 1 1 g— 7

0 1 1

1 0 1 X -7
1 0 1 T

1 1 0

1 1 0

1 1 0 7

1 1 0 T

1 1 0

Table 3.1: A possible realisation with N=14.
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four disjoint sub-sets of the entire output bundle, with 7, p — 7, g —7and N —p — g+ 7
elements, see Table 3.1.

At the input side, there are

N N!
Cx = <> = 0 (3.1)
p) p-(N-p)
possible permutations of the set X with p elements and
N N!
Cy=|_|=———— 3.2
" <Q> gt- (N —q)! 32

possible permutations of a the set ¥ with ¢ elements. These sets offer at the output side
the following joint permutations

o= (-G ()

= — (3.3)

Co 1s given by Multinomial coefficients. The probability P of /¢ having 7 elements is then:

p__Co _ PN —p)lgi(N — ¢)! (3.4)
Cx-Cy  rllp—r)g—r)(N—p—qg+r)N! o
Substituting the z, ¢, Z expressions for p, g, 7 and using Stirling’s formula give
1 — N
P ~ Vae (3.5)
2N
with 1 el a
o 7ﬂifﬂm iw I (3.6)
EF+r-DE+y-1)A-2)2-72-y—2)
0=0CE+z—DnE+z-1)+E+y—Dn(z+y—1)
+(1—2)In(l—-2)+2—-2—g—2)In(2—7— 7y — %)
—ZInz—(1—-2)In(1 —2) —glng — (1 — ) In(1 — 7). (3.7)
From this we have
00 4z —-1)(z+y—1
Poplxr YEts Y 35)
0z 1-22—7—7y—2)
9?0 1 1 1 1
— + — + + — (3.9)

Pz z4z-1 zH+y—-1 1-2 2-z—-9—2

and hence § = 0 and% =0 for
z=1— 1y [70]. (3.10)
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Consequently § > 0 for all valid Z in the problem but z = 1 — Zy, as g—zz > 0. This

implies that for all zZ that significantly deviate from 1 — zy, i.e. 2 # 1 — 7y, P tends to go
to 0 very rapidly when N grows large. Tt is therefore sufficient to evaluate for z ~ 1 — zy.

If z~1—2zy, then

1 _ 7 — (1 — zy))?
G~ - ’ N EZ (7 77“?/)) (3.11)
(1 — )g(1 — g) 22(1 — 2)y(1 — y)
and hence
z 2y))?
P 1 N e i (3.12)

T Vema(l - o)yl gN

As N is assumed to be very large, the set 7/ with z - N elements is so dense that a
continuous domain can be assumed. The distribution of Z can then be described by a
probability density @, with P = ddz. Since the minimum variance of Zis 1/N,i.e. dz = 1/N,
we have 0 = PN.

Therefore:

1 1 z (1 =»y) 2
o e 2(\/ﬂ"(1 =)y(1 y)/N)

T Var /a1 -2yl g)/N

(3.13)

This means that z is approximately normally distributed with mean 1 — 2y and a disper-
sion (standard deviation) \/77(1 — 7)y(1 — ¢)/N. The normal distribution decreases rapidly
when Z is near to 1 — zy.

As

z=(1—75) +0/z(1 — 2)g(1 — 7)/N, (3.14)

with § a stochastic variable, normally distributed with mean 0 and standard deviation 1, it
can be seen that z is approximately given by 1 — zy, i.e. Z = 1 — Zy with a high probability,
when N is large.

The theory with errors

Next, consider the error rate of a NAND ¢ # 0. The number of errors committed by the N
logic units is then a random variable that is approximately normally distributed with mean
eN and standard deviation 1/ (1 —&) N.

Assume that the number of actual stimulated output lines now is /. For the 7 correctly
stimulated outputs, hence, each faulty NAND effectively reduces 7/ by one line in the output
bundle. Thus also the number of errors in the output bundle is approximately normally
distributed, with mean &7 and standard deviation y/e (1 — &) 7. For the N —7 not stimulated
outputs, each error increases ¥ by one. The number of these errors is also approximately
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normally distributed with mean (N —7) and standard deviation \/5 (1 —¢&)(N —7). Thus
¥ — 7 is also approximately normally distributed with mean

e(N —7)—er =e(N —27) (3.15)

and standard deviation

\/< o1 5)7“)2 + <\/g(1 (N - 7"))2 — /=(1 - 2)N. (3.16)

Consequently,
N B
f':f—l—Qe(E—f)—l—(?\/e(l—g)N, (3.17)

where 0 is normally distributed with mean 0 and standard deviation 1.

From above (actually Z = 7/N here and let z’ = 77 /N), we have
1 _
2’:2+26(§—2)+5\/5(1—g)/]v. (3.18)

Finally, taking (3.14), we have

= (U ag) oy ) 40/ (0 Al e ) Fe( )N, (319)

with 0 a stochastic variable, normally distributed with mean 0 and standard deviation 1.

For large N, von Neumann thus concluded that z is a stochastic variable, approximately
normally distributed. He also gave an upper bound for the failure probability per gate
that can be tolerated, ¢y = 0.0107, when A = 0.07. In other words, if € > &g, the failure
probability of the NAND multiplexing network (with the threshold A = 0.07) will be larger

than a fixed, positive lower bound, no matter how large a bundle size N is used.

3.2.2 The restorative unit

If we assume that the two input bundles have almost the same stimulated or non-stimulated
levels (which is likely in circuits), i.e. & == 7, it is then intuitively known that

e if almost all lines of one input bundle are stimulated and almost all lines of the other
bundle are non-stimulated, then the error probability of the output bundle (NAND:
hence the probability of the number of lines that are non-stimulated) will approxi-
mately be the same as the error probability in either one of the input bundles;

e if almost all lines of both input bundles are non-stimulated, then the error probability
of the output bundle (NAND; hence the probability of the number of lines that are
non-stimulated) will be smaller than the error probability in either one of the input

bundles;

e if almost all lines of both input bundles are stimulated, then the error probability
of the output bundle (NAND; hence the probability of the number of lines that are
stimulated) will be larger than the error probability in either one of the input bundles.
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Figure 3.2: The function of a NAND multiplexing unit with non-stimulated inputs as errors.

For this last case, we need a unit that restores the original stimulation level without
destroying the NAND function. This can be seen as follows.

If ZN of the N incoming lines are stimulated, then the probability of a NAND being
stimulated (by at least one non-stimulated input) is approximately (assuming & is small or
e=0)

7 =1z (3.20)

This indicates that, at a high probability, approximately z’' N outputs will be stimulated,
provided N is large.

Tet 7' be the non-stimulated (error) level of the inputs, i.e. ¥ = 1—Z. Replacing 7 with
7' in (3.20):
7 =2z — " (3.21)

The function (3.21) is plotted in Figure 3.2. Tt shows that, when the error level 7’ varies
from 0 to 1/2, Z’ is monotonically increasing and z’ > 7’. This means that the non-stimulated
inputs give rise to more stimulated outputs, i.e. the error level is amplified. If, for example,
the original error probability was 0.2, the output error probability is 0.36. Consequently, we
need a unit that restores the original stimulation level.

The restorative unit, can be made by using the same NAND multiplexing technique while
duplicating the outputs of the executive unit as the inputs. This is shown in Figure 3.3.

If ZN of the N incoming lines are stimulated and e is very small, the probability of the
output of the restorative unit being stimulated z’ is approximately given by (3.20).

We now plot, Z’ against 7 as in Figure 3.4. Tt shows that instead of restoring the excitation
level, the restorative unit inverts the output of the executive unit, i.e. it transforms the most
stimulated bundles to most non-stimulated and vice versa. In addition it produces for a value
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Figure 3.3: A restorative unit.
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Figure 3.4: The function of a single restorative unit.

of T close to 1 a value of z’ less close to (), and for Z close to 0 a 2’ much closer to 1. This
suggests that the operation needs to be iterated to construct a proper restoration.

Now let, the restoring unit consist of two of the restoration units in series, as shown in
Figure 3.5. This unit transforms an input excitation level Z/N into an output excitation level
of (approximately):

7=1-(01-2")=2"—2" (3.22)

The Z' is plotted against T as shown in Figure 3.6, with 0 < 7 < 1. The curve intersects
the diagonal Z/ = ¥ three times at: £ = 0, 5 = 0618 and £ = 1. If 0 < T < Ty, then
0 < Z < 7; while 5 < T < 1 implies that & < zZ’ < 1. This indicates that the restorative
unit brings every ¥ nearer to either (), when ¥ is not larger than 0.618, or 1, when x is not
smaller than 0.618. This process has the required restoring effect and hence the unit shown
in Figure 3.5 gives an effective restoration mechanism.



24 CHAPTER 3 FAULT-TOLERANCE IN NANOCOMPUTERS: THE MULTIPL EXING APPROACH

Figure 3.5: A 2-stage restorative unit.
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Figure 3.6: The function of a 2-stage restorative unit.

In summary, von Neumann had built a multiplexing system with two types of units,
the first being the executive unit, which performs the NAND function and the second a
restorative unit which annuls the degradation caused by the executive unit. The restorative
unit was made by using the same NAND multiplexing technique by duplicating the outputs
of the executive unit as the inputs. To keep the NAND function, the multiplexing unit was
iterated to give the effective restoring mechanism, see Figure 3.7.

Here is the end of presentation of von Neumann’s work; new results from our investiga-
tions start in the next section.
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The executive ur The restorative ur

Figure 3.7: A NAND multiplexing system with the executive and restorative units.

3.3 Error distributions in a multiplexing unit — an
alternative method

3.3.1 Theoretical analysis

The NAND multiplexing unit was constructed as in Figure 3.1. In this section an alternative
method is given to extend the study of the NAND multiplexing technique from a high degree
to a fairly low degree of redundancy.

et us consider a single NAND gate in the NAND multiplexing scheme. If we still assume
that there are ZN and y/N input lines stimulated, then the probability of the output of the
NAND gate that is found stimulated (by at least one non-stimulated input) is approximately
zZ' = 1—7zy (assuming that the NAND gate is fault-free). If each NAND gate has a probability
e of making an error, the probability of its output being stimulated is given by:

P = P(stimulated| NAN D defective) P(NAND defective)
+P(stimulated| NAN D not defective) P(NAN D not defective).

For gate errors of von Neumann type, this probability is:

Zy=(1—2y)(1 —e)+ Tye = (1 —e) — (1 — 2e)7y. (3.23)
For more common fault models such as Stuck-at-0) and Stuck-at-1, the probabilities become
respectively
Zo=(1—zy)(1 —e) (3.24)
and
Z=1—(1—¢)zy. (3.25)

For each NAND gate, thus, the probability of the output to be stimulated (event 1)

is z, Z € {Z,,%0,21}, and the probability to be non-stimulated (event 0) is 1 — z. For
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given numbers of stimulated inputs (i.e. ZN and §N), the probability that an output is
stimulated or not is actually not independent, but rather relevant to others. When N is
relatively large, however, this relevance has little significant effect such that it can be ignored.
If the N NAND gates function independently, therefore, the occasion whether an output is
stimulated or not in the NAND multiplexing unit can be modeled by a Bernoulli sequence.
Hence the probabilities of stimulated outputs are given by the binomial distribution. The
probability of k& out of N outputs being stimulated is then:

P(k) = <JZ> -2V k. (3.26)

When N is large and z is small, the Poisson Theorem gives:

N
N Ne ?
P(k) ~ lim <k>zk(lz)N 2% (3.27)

where

A= Nz (3.28)

Given N very large and z very small, therefore, the distribution of probability of &
outputs from the N output lines of the NAND multiplexing unit being stimulated is ap-
proximately a Poisson distribution.

If both inputs of the NAND gates are expected to be in stimulated states, the stimulated
outputs are then considered to be faulty. To evaluate the effect of faults, the probability of
possible errors below an acceptable threshold level, i.e. P(k < n), needs to be computed.
Since the number of the stimulated outputs is a stochastic variable, which is described by the
binomial distribution, the De Moivre-T.aplace Theorem [120], when N islarge and 0 < z < 1,
applies:

k— Nz mo 2

lim Pl " <) = / e dt, (3.29)

N—o00 Nz(1—2) J o V2
replacing

, — Nz
me= = (3.30)
VNz(1—2)

then

1 t N
5( t 4 )2

NEETENr 3 (3.31)

" 1
P(k<n)%'/m\/%\/me

Since N is very large, the set of k outputs is so dense that a continuous domain can be
assumed. T.et k = @-N and f(u) be the probability density, then di = 1/N and P = f(u)da.
The probability density of 4 can now be obtained as:

1 1(w =z 2
(i) = e 2o (3.32)

V2or\/z(1 — 2)/N

This shows that the probability of the number of stimulated outputs of the NAND mul-
tiplexing unit could be approximated by a normal distribution with mean Nz and standard
deviation \/NZz(1 — z), when N is large and 0 < z < 1.
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Figure 3.8: The error distributions (von Neumann: ¢ = 10 *).

3.3.2 Numerical evaluation

Consider next the fault distribution of the NAND multiplexing unit for different N and e
within certain range. We assume that the largest possible error rate € for a future nano-
electronic system is 0.1, meaning that one of ten devices is faulty on average. Consequently,
the & under investigation will be in the range of [0,0.1]. We further assume that the input
excitation rates are identical to each other, i.e., T == 7. This is often true for circuits using
similar devices.

For von Neumann faults, hence, the error probability of one output of the NAND mul-
tiplexing unit, i.e. the probability of an output line being stimulated, becomes:

z=(1-¢)— (1-2e)7". (3.33)

For simplicity, we assume ' = 1 — Z. Replacing 7 with 7’ in (3.33):
2= (217" +2(1 —2)7 +e. (3.34)

For e € [0,0.1], the formula (3.34) is monotonically-increasing as 7’ varies from 0 to 0.5.
For a typical 7', say, 0.1, z € [0.19,0.25]. This condition does not favor a conclusion in the
direction of a Poisson distribution.

We proceed with a study on the approximation of the Poisson and the normal distribution
to the binomial distribution for different sizes of the NAND multiplexing unit, i.e. for
different N. We first take N = 1000. Specifying # = 0.8 and ¢ = 10 *, for different types
of gate errors (von Neumann, Stuck-at-0 and Stuck-at-1), the probability (density) of the
binomial, Poisson and normal distribution against the number of faulty outputs are plotted

in Figures 3.8, 3.9 and 3.10.
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Figure 3.9: The error distributions (Stuck-at-0: ¢ = 10 ).
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Figure 3.10: The error distributions (Stuck-at-1: e =10 *).
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Figure 3.11: The cumulative error distributions (von Neumann: e = 10 ).

As the probability of possible errors below an acceptable threshold level P(k < n) is an
important feature to evaluate the approximation, the cumulative probability distribution
P(k < n) for the binomial, Poisson and normal distribution are plotted as well, in Figures
3.11, 3.12 and 3.13 for different types of gate errors.

As can be seen in both sets of the figures, the normal distribution is in good accordance
with the binomial distribution, while the Poisson distribution is not. Further study shows
that the approximation for the normal distribution is very well kept when Z varies in the
range [0.7,0.9] and e varies in the range [0,0.1]. Since the gate error rate (¢ = 10 %),
compared to the input error level (7 = 0.8), is relatively small, the output error distribution
is largely determined by the input error level. As revealed in the figures, the variance of
either the probability distributions or the cumulative distributions for these three types of
gate errors (von Neumann, Stuck-at-0 and Stuck-at-1) is hardly discernable.

Now consider the case that N = 100. We still let # = 0.8 and £ = 10 *. The fault proba-
bility distributions are shown in Figures 3.14, 3.15 and 3.16, and the cumulative distributions
are in Figures 3.17, 3.18 and 3.19.

As can be seen, though the samples of probability density of the normal distribution fits
in quite well with the binomial distribution, the discrete binomial distribution is no longer
appropriately described by the normal distribution in terms of the cumulative distribution,
due to the declined bundle size N. This indicates that neither normal nor Poisson gives
good approximation to the binomial for cumulative probability distribution.

Hence, in terms of probability (density) and cumulative probability distribution, the
faulty probability of the NANTD multiplexing unit can be given by the normal distribution
when N is large (typically N > 1000). For modest N, the error distribution can be described
with the binomial distribution. Obviously, the larger N is, the better the approximation.

If N is very small, however, neither a normal nor a binomial distribution is appropriate for
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Figure 3.12: The cumulative error distributions (Stuck-at-0: ¢ = 10 *).
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Figure 3.13: The cumulative error distributions (Stuck-at-1: ¢ = 10 *).
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Figure 3.14: The error distributions (von Neumann: ¢ = 10 *).
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Figure 3.15: The error distributions (Stuck-at-0: e =10 *).
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Figure 3.16: The error distributions (Stuck-at-1: e =10 *).
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Figure 3.17: The cumulative error distributions (von Neumann: & = 10 *).
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Figure 3.18: The cumulative error distributions (Stuck-at-0: ¢ = 10 *).
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the modelling of the output errors in the NAND multiplexing unit, because of the increased
significance of the input errors’ dependency on the reduced bundle size. In this case the
fault analysis results in a significant increase in complexity and we propose a simulation
based method to investigate the fault-tolerance. This is presented in Chapter 4.

3.4 Error distributions in multi-stage systems

3.4.1 For modest N

The 3-stage multiplexing system

We have discussed the set-up of a NAND multiplexing system with an executive unit and a
restorative unit, as depicted in Figure 3.7. If there are kg of the N incoming lines stimulated
for both inputs of the executive unit in the NAND multiplexing system, and each NAND
gate has a definite probability ¢ of making an error (the von Neumann type; without the loss
of generality), according to equations (3.23) and (3.26) the probabilities of the stimulated
outputs k1, ko9 and k3 of the three multiplexing units in cases of the corresponding stimulated
inputs kg, ky and ks are given by:

Pilinlio) = () )4G0 = 20 (3:35)

N
Py (ks k) = <k

2

)@ )Y > (330

Pulialio) = )81 = za) (337)
where
z1(ko) = (1 P RTLUL 3.38
k) = (-2~ (1 - 2l 339
] ki
Hk) = (1)~ (1 2)(5)% (3.39)
salks) = (1—2) — (1 — zg)(’iN?)?. (3.40)

Noting the stochastic nature of kq, ky and k3, the probabilities of them being stimulated
in all cases are then obtained by:

Pi(ki) = Z Pi (k1 [ko) Pr (Ko), (3.41)
Po(ks) = > Polkalka) Pr(ka), (3.42)
Ps(ks) = XN: Ps(ks|ks) Py (k). (3.43)

ko—0
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In equations (3.41), (3.42) and (3.43) the most significant parts are the conditional
probabilities, Ps(k3|ks), Pa(kalk1) and Py(kq|ko) (which is Py(ky) with fixed kg). For any
identical set of inputs and outputs, all the three conditional probabilities are the binomial
distribution with identical parameters, i.e.,

Plllky 1) — <Z> 1 (1 2 )Y M, (3.44)
where
Z(ky 1) =(1—¢)— (1— zg)(kl—]\;)?. (3.45)

Therefore a (N + 1) x (N + 1) matrix W, whose elements are P(k|k; 1), k,k 1 €
[0,1,2,...N], can be made as shown in (3.46), so that all conditional probabilities for any
set of (k;, k; 1) are included.

P(0]0) P(1]0) P(2[0) .... P(N|0)
P0|1) P(1]1) P(2[1) ... P(N|1)
W= PO2) P(12) P22) ... P(N]2) (3.46)

P(O|N) P(1|N) P(2|N) ... P(N|N)

Accordingly, given a fixed input distribution:

Py = [Poa P, D2 - pN]a (3-47>

where p; is the probability of 7 inputs being stimulated, the stimulated output distributions
of (3.41), (3.42) and (3.43) are given by:

P, = [P(0), P (1),...P(N)] = Py, (3.48)
Py, = [P(0), Py(1),...Py(N)] = PyW?, (3.49)
P; = [(0), P(1),...P3(N)] = PoWw. (3.50)

If N =100 and £ = 10 2, for example, the output error distributions of the 3 stages are
depicted as Figure 3.20, given 90% of input lines being stimulated.

As can be seen in Figure 3.20, the error level is amplified after the first stage of the
multiplexing, so that the error rates are distributed at the scale of approximately 10% ~
30%. The error distributions are then shifted to the other side of the diagram by the second
stage, and, after the third stage, the correct output distribution is elevated to a new level.
This is in agreement, with previous discussion.

A stochastic Markov chain

The number of stimulated outputs of each NAND multiplexing stage is actually a stochastic
variable and its state space is A = [0,1,2,...N — 1, N]. If we name this variable £, , where n
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Figure 3.20: The output error distributions in a 3-stage multiplexing system (e = 10 ?).

is the index of the multiplexing unit, the evolution of £, in the NAND multiplexing system
is a stochastic process. With fixed N and ¢, the distribution of £, for every n is totally
determined by the number of stimulated inputs of the nth multiplexing unit. This can be
mathematically described by:

P(En € A|§1 = ]{71752 = kQa'“En 1= kn 1)
= P&, € Alg, 1= kn 1) (3.51)

Fquation (3.51) shows a Markovian behavior, the condition for a stochastic process to
be a Markov process. The evolution of £, in the NAND multiplexing system, therefore, is a
Markov process, or a Markov chain for discrete states and parameters.

In a stochastic Markov chain, the transition probability, which indicates the conditional
probability from one specified state to another, is the most significant factor. Since the
transition probability matrix W for each &, is identical and irrelevant with regard to n, &,
evolves as a homogeneous Markov chain. Therefore an initial probability distribution and
a transition probability matrix as (3.46) are sufficient to get all output distributions. If a
NAND multiplexing system has n individual stages in series and its transition probability
matrix is given by (3.46), the output distribution of it is then:

P, — Py0". (3.52)

The NAND multiplexing system with one executive and two restorative stages can be
described as three stochastic variables &,,€&, and &;. In principle a system with arbitrary
number of NAND multiplexing stages, say, n = 5,7,9, ..., can be built (note that an odd
number is necessary to keep the NAND function). When n gets large, W" approaches a
constant matrix m, i.e.,

lim ¥ = 7. (3.53)

n—o0
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Figure 3.21: The output error distributions in an n-stage multiplexing system (s = 10 ?).

Fach row of 7 is identical. This indicates that, as n becomes extremely large, not only the
transition probabilities in a NAND multiplexing system will get, stable, but also the output
distribution will become stable and independent of the number of multiplexing stages.

Tet us take an example, a NAND multiplexing system with N = 100 and ¢ = 10 ?
(for a von Neumann error). We study the output distribution of this system with different
restorative stages, 1.e. n = 3,5,7,9,.... With the transition probability matrix computed
(we do not show the 101 x 101 matrix) and given that the 90% of the inputs are stimulated,
the stimulated output distributions of systems with various stages n, are plotted in Figure

3.21.

As can be seen, the output error distributions move to the lower end as the number of
multiplexing stages increases, indicating a reliability improvement resulting from the use
of more multiplexing units. Actually, it appears that there is a high probability that the
system gives only a few faulty outputs as the number of stages goes up. Further evaluation
shows that, when the NAND multiplexing system consists of 3 stages, the probability that
less than 10% of the outputs is faulty (stimulated) is approximately 0.49; when the number
of multiplexing stages in a system rises to 7, this probability increases to 0.93. A more
thorough study of this is given in Section 5.

3.4.2 For large N

If N is rather large (typically N > 1000), the output error of each NAND multiplexing
stage is approximately normally distributed. If for the Ith multiplexing stage there are k; 4
stimulated inputs and accordingly &; stimulated outputs, according to equation (3.32) the
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probability density of u; (u; = k;/N) is given by:

1 1, 2(u; 1)\9
e 2w )’

fluglu, ) = W /
Sl 1

(3.54)

where

s(uy 1) = \/Z(H,l (1 —z(w 1))/N, (3.55)
2l 1) =(1—¢)— (12w (3.56)

Then the probability of the multiplexing stage having k; stimulated outputs under the
condition of k; | inputs is approximately:

P(l{?]|]{?] 1) = f(“’l|“’l 1)A7Ll, ...A/(l,l ~ 1/N (357)

The probability of k; outputs being stimulated in all cases for 0 < k; 1 < N is then:

N
Pllk) = Pllalk )Pk 1). (3.58)
k; 1—0
Replacing
P(k)) = fu) Ay, (3.59)
and
P(l{?] 1) :f(“’l 1)A7Ll 1, (360)

we have in all cases that the probability density of k; outputs being stimulated is:

flu) = Z fluglug 1) f(u 1) Ay . (3.61)

U —0

In the limit we obtain:

flu) = /0 fluglug 1) f (g 1)dug . (3.62)

Fquation (3.62) is an inductive expression, from which conclusions on the outputs of
any NAND multiplexing system can be derived from its initial inputs. As the number of
NAND multiplexing stages increase, however, it, becomes extremely hard to be computed. A
practical way is to use the mean of the previous outputs as the fixed inputs of the successive
stage. We show this as follows.

Consider the 3-stage multiplexing system in Figure 3.7, for instance. If N is large, the
probability density of the outputs 13 in term of the fixed inputs uq is given by:

flug) = /0 f(71,3|71,2)(/0 [ (ua|uy) f (uy)duey ) dug

1 p
= / / [ (ualug) f (ug|uy) f (1 |1g) dugdu (3.63)
Jo Jo

where the initial condition is given by:

flur) = /0 [ (urlug) f(uo)dug = f(ur|uo) (3.64)
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While the equation (3.63) is hard to be computed, it is practical to use the mean of the
previous outputs as the fixed inputs of the successive stage. The output distribution of the
system in Figure 3.7 is then:

. 1 %(%)2
o) = et e 35
with
2(ug) = (1 —¢) — (1 —28)z(ur)” (3.66)
() = (1 —¢) — (1 —2e)22 (3.67)

If, for example, there is a 3-stage NAND multiplexing system with N = 1000 and
e = 10 ®, given that 90% of the initial inputs are stimulated, i.e., zo = 0.9, the relative
excited level of outputs is approximately normally distributed, with a mean of 0.071 and a
standard deviation of 0.008. Using equation (3.65), a probability of less than 10% of the
outputs being faulty (stimulated) can be easily evaluated as being approximately 0.9998. Tf
the NAND multiplexing system consists of more stages of restorative units, i.e., n. > 5, this
probability approaches 1.

3.5 Discussion

We now study the fault-tolerance of a NAND multiplexing system while we vary the 1/0
bundle sizes. It might be interesting to evaluate the performance of a NAND multiplexing
system with € = 10 ® and 90% of its inputs stimulated, and the probability that no more
than 10% of its outputs is stimulated. Systems with various restorative stages have been
investigated. The probability distributions versus the number of multiplexing stages are
shown in Figure 3.22 for different bundle sizes: N = 10, N = 100 and N = 1000. T.et
us take as example N = 100. The probability that less than 10% of the outputs is faulty
(stimulated) is approximately 0.70 in a 3-stage system while this is 0.99 in a 7-stage system.
As the number of multiplexing stages increases, it shows that the reliability of the signals
greatly improves, but, on the other hand, the rate of the improvement is getting smaller.

If we pick the number of multiplexing stages to be n = 7, then the system has a good
performance while the required redundancy (7N) is not too high. The fault tolerance of
the system for a varying number of error rates ¢ of the NAND circuits can be studied in
this specific case. In Figure 3.23 the probability distribution of errors less than 10% are
drawn against the error rate of an individual NAND gate, with n = 7. Tt is obvious that
the NAND multiplexing system has a better fault-tolerance when the bundle size N grows.
The trade-off, however, has to be made between performance and redundancy. Another
conclusion is that the NAND multiplexing technique hardly works when the error rate of
basic logic devices approaches 0.1.

3.6 Application

To give an example of how the suggested fault-tolerant architecture is applicable to nano-
electronic system, we address the problem of random background charges in SK'T circuits.
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Figure 3.24: An unreliable NAND implemented into SET circuits.

SET devices and circuits have been extensively studied as one of those prospective substi-
tutions to CMOS in digital logic and memory [14]. With appropriate configuration a simple
SET circuit can function as NAND logic, as shown in Figure 3.24 [121].

The SET NAND gate consists of a single tunnel junction C; and one capacitor Cy as well
as two input capacitors. When properly functioning, the output voltage is either low when
both the inputs are high, or high in other cases. A so called island is created, so that the
single electron can tunnel from and to it through the junction. The island can be made as
small as a few nanometers, thus an ultra dense system could be integrated. Unfortunately,
the SET circuit suffers from random background charges. Impurities and trapped electrons
in the substrate induce image charges (Jg on the surface of the island. If Qg is comparable
to e (a single electron charge), the correct device function is destroyed. Optimistically, with
a minimum device density of 10'?/em?, about one in 1000 devices will have a considerable
background charge fluctuation (|Qq| > 0.1¢) [14], i.e. a gate error rate of ¢ = 10 *. This is
generally unacceptable for any VI.ST system.

However, if in future SET chips with 10" devices are eventually realizable, we could
use the NAND multiplexing to achieve fault-tolerance. Although it is difficult to speculate
on the architecture of future nanochips, it seems plausible to make it a massively parallel
computer consisting of a large number of rather simple processors with associated memories
[72], [73]. Within a digital computer, the bulk of the logic gates is spent on memory and
caches. The processor itself is made from a number of functional units, each of which can be
separated into function blocks. T.et us assume that the function block on the most refined
level evaluates its inputs and produces a stable output within one clock cycle. Within this
function block, many logic circuits may be cascaded, however to avoid timing problems
(hazard) usually the number of circuits cascaded and hence the possible paths from inputs
to outputs through the various logic circuits is kept within bounds, and hence their path
lengths are similar. Such function blocks are found everywhere in the processor and in
memory. In this section we make an abstraction of such a function block and assume at
first, to be able to make a statistical analysis, that it is made entirely out of n stages of N
parallel NAND gates. In a design with unreliable logic, the upper bound is that we must
replace each logic gate with n- N unreliable gates. However, we will show in Chapter 4 that,
due to the logic design of the function block, we may end up with less redundancy.
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To evaluate the reliability, we assume that each processor has a 10-bit output and for each
bit 40 logic devices are required. If we implement the multiplexing with N = 250 in such
processors, then in each processor there are 10” devices. We further assume that a processor
has a logical depth of 10, which is sufficient for general computation tasks, resulting that the
NAND multiplexing will be repeated 10 times. In this implementation, which has 10 stages
of multiplexing units, the restorative mechanism is achieved by the successive multiplexing
units, therefore the special restorative units would not be necessarily present and, hence, the
redundancy level reduces to N from n- N in a n-stage system. For circuits with a few stages
of logic, additional restorative stages could be needed to reach the required error bounds.

In such a processor, if no more than 10% of the outputs being faulty is regarded as
reliable and perfect inputs are given, then the unreliability of the 1-bit NAND multiplexing
output after 10 stages is approximately 10 ®. Since each processor only works reliably if
none of the output bits fails, the reliability of the processor is then given by:

R,=(1-U,), (3.68)

where U, is the unreliability of 1-bit NAND multiplexing output and the processor has an
I-bit output. If on the chip there are m processors, the reliability of the whole chip is then
given by:

R.= R (3.69)

We assume that 10% of the total 10'* devices are allocated to processors (others for mem-
ories, communications, etc.), therefore the number of processors on the nanochip is about
109, i.e. m = 10%. Thus the ultimate reliability of the conceived nanochip can be calculated
to approximately be 0.9, at the expense of hundreds of redundant components. This indi-
cates that future nanochips with 10'? devices, implemented using the NAND multiplexing
technique, might be working at an acceptable reliability level, virtually having 109 ~ 10'°
effective devices. This could be competitive in future nanoelectronics.

3.7 Summary

A fault-tolerant technique, based on a massive duplication of imperfect devices and random-
ized imperfect interconnects, had been comprehensively studied. With a given number of
identical NAND gates N, input error rate , and the error rate of the NAND logic e, the
probability of the number of faulty outputs within a NAND multiplexing unit is proposed
to be modeled by a binomial distribution for modest N and by a normal distribution for
large N. When N is small, neither of these distributions gives a good approximation due to
the dependence of input errors. In this case we propose to study the error behavior through
the conducting of simulations.

The error distributions in a multi-stage multiplexing system evolve as a stochastic ho-
mogeneous Markov process (chain). The NAND multiplexing system can have more stages
to improve the capacity of fault-tolerance. However, the rate of improvement decreases as
the number of multiplexing stages increase. When the number of stages becomes large, the
output error distribution will become stable and independent of the number of multiplexing
stages.
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A system architecture based on NAND multiplexing is investigated by studying the
problem of random background charges in SET circuits. Although the conceived fault-
tolerant architecture requires a rather large amount of redundant components, which makes
it inefficient for the protection against permanent faults normally compensated by re-
configuration techniques, it might be a system solution for ultra large integration of highly
unreliable nanometer-scale devices affected by dominant transient errors.

Nevertheless the reliability evaluation of the SET-based architecture is sketchy. This is
partially due to the adoption of a highly abstract system model. In the next chapter, we
propose a defect- and fault-tolerant architecture based on the multiplexing and reconfigu-
ration technique. A prototype processor structure is presented and used in fault-tolerant
implementations. A fault injection simulation is proposed to investigate the error distribu-
tion in the structure and the evaluation is carried out through a simulation based reliability
model.






Chapter 4

A Defect- and Fault-Tolerant
Architecture and Its Implementation
for Nanocomputers

4.1 Introduction

'Recent progress in molecular electronics has motivated much effort in the research of ar-
chitectures that are suitable for the implementation of a nanoelectronic computer. One of
the factors that make a molecular architecture different from today’s CMOS architecture
lies on the way how molecular circuits will be fabricated. As opposed to current top-down
fabrication approaches, it appears likely that molecular circuits will be assembled through a
bottom-up manufacturing process. This bottom-up assembly provides an approach to make
large-scale circuits composed of extremely small devices at a low cost, while it imposes many
limitations on nanoelectronic architectures. The most prominent of these is the imprecision
and randomness in the self-assembly process. This means that it will be difficult to create
devices at precise locations and to make precise alignment between wires. The randomness
due to the stochastic nature of chemical self-assembly will inevitably raise the densities of
defects occurring in molecular devices and interconnects. Defect tolerance is thus a major
issue in nanoarchitecture design [69].

There are basically two ways of handling this randomness in molecular assembly. One
relies on reconfigurability. The idea is to build spares into a fairly regularly manufactured
array architecture and to design the architecture, incorporated with defects, to be recon-
figurable. After fabrication, the architecture is tested to locate defective components. The
detected defects are then avoided during reconfiguration and good resources are configured
to perform computation. Teramac, though built with conventional CMOS technology, is
such a successful proof-of-principle model [77]. Array-based reconfigurable architectures
have also been proposed for the applications of two-terminal molecular devices [78] and car-

bon nanotubes (CNTs) and silicon nanowires (SiINWs) FETs [79]. The testability of the

structure and fault diagnosis remain a major challenge for such architectures.

"The content of this chapter has been published in [47], [48], [49] and [50]. To keep its integrity, some
results obtained from previous chapters are summarized and rewritten in this chapter.

45
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The other way of handling is to train the stochastically assembled, generally disordered
structure to useful logical functions. These architectures place little precision requirements
on manufacturing while substantial training and configuration time is required postfabri-
cation. The Nanocell, based on the random assembly of molecular switches, is such an
architecture [122]. In a Nanocell once the internal topology is formed by random assembly,
it remains static, yet disordered. The Nanocell is then trained by changing the states, on
or off, of the molecular switches. Some logical functions such as inverters, NAND gates,
half-adders and full adders have been obtained from simulated Nanocells. Another example
of this is the two-dimensional crossbar based demultiplexor proposed by HP [123]. The
address lines of the demultiplexor are accessed by a set of nanowires by randomly forming
contacts between the wires and the address lines. After fabrication the random connections
are determined through measurements and, by using more address lines, the circuit can
be used as a demultiplexer with a good probability. Due to the general presence of re-
dundant components or connections, these architectures of random assembly are inherently
defect-tolerant.

In this chapter, we first present a defect- and fault-tolerant architecture combining the
multiplexing and reconfiguration technique, through which we show that the required redun-
dancy could be brought back to a moderate level — no larger than 102 by reconfigurability.
We further propose a fault-tolerant technique suitable for implementations by the manufac-
turing process of stochastically molecular assembly, the triplicated interwoven redundancy
(TTR), in which logic gates are triplicated and randomly interconnected. A processor struc-
ture is presented for the implementation of the TIR. as well as the quadded logic, both with
the use of NAND logic. A fault injection simulation is used to investigate the reliability of the
TIR as well as that of the equivalent quadded circuit. The TTR, is extended to higher orders
of redundancy, namely, the N-tuple interwoven redundancy (NIR). The system performance
of these architectures are evaluated by studying the reliability, defined as the probability of
system survival, through a simulation based reliability model. Our evaluation shows that
the suggested architecture is efficiently robust against both permanent and transient faults
for the integration of highly unreliable nanometre-scale devices.

This chapter is organized as follows. In section 2 we review the developments of fault-
tolerant techniques. In section 3 the NAND multiplexing is briefly presented and developed
to account for correlated gate errors. Section 4 gives the reliability analysis of reconfigurable
architectures. In section 5 we present the implementation of a defect- and fault- tolerant
architecture based on NAND multiplexing and reconfigurable architectures. In section 6
we present the ideas of TMR, quadded and TTR techniques. The experimental studies on
the fault-tolerant implementations of a 1-bit processor structure are presented in section 7.
In section 8 the TIR is extended to higher orders of NIR. Section 9 presents a discussion.
Finally, section 10 summarizes the chapter. This chapter is based on [47], [48], [49] and [50].

4.2 The developments of fault-tolerant techniques

In von Neumann’s multiplexing structure, each logic gate was duplicated N times, and each
input was replaced by a bundle of N lines, thus producing a bundle of N outputs. A restoring
organ was then placed after each logic operation to provide more reliable information on the
output bundle by using the redundant information available. In the multiplexing structure
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a restoring organ was a duplication of the same circuits that performed the logic, whereas it
can be any collection of decision elements or switching circuits. Tt has been shown that the
structure can be reliable with a high probability by using a massive duplication of unreliable
components, provided that the failure probability of a gate is sufficiently small [70].

As implied in von Neumann’s theory, N-tuple modular redundancy (NMR) designs (e.g.
triple modular redundancy (TMR)) have been used as benchmarks for evaluating fault-
tolerant approaches and were implemented in VI.ST for high reliability applications [71].
NMR, techniques, generally implemented at modular level instead of gate level, use redun-
dant components to mask the effect of faults. In TMR, the most general form of NMR,
three identical modules perform the same operation, and a voter accepts outputs from all
three modules, producing a majority vote at its output. This majority voter functions as a
restoring organ, bringing the outputs to a more reliable level.

In the 1960s a different redundant technique, quadded logic, was introduced by Tryon
for use with AND, OR and NOT logic [124], and later by Jensen for use with NOR. logic
[125]. Quadded logic requires four times as many circuits and corrects errors without using
restoring organs. A quadded logic circuit thus corrects errors and performs the desired logic
function at the same time. In quadded logic, a gate is replaced by a stage of four gates and
each has twice as many inputs as the nonredundant one. The four outputs of each stage
are divided into two sets of two outputs each, connected in a systematic way to the gates in
a succeeding stage. These redundancies in logic gates and interconnections give a quadded
logic circuit the capability of error correction.

In 1965, these ideas on fault-tolerant logic were generalized by Pierce to a theory termed
interwoven redundant logic [126]. Although a procedure for obtaining upper bounds for
an interwoven logic network’s failure probability was given, the numerical evaluation of a
network’s reliability seemed to be complicated. The reliability analysis of a quadded network
was proposed by using a minimum cut method in [125]. In the 1970s a combinatorial
procedure was developed to calculate the reliability of an interwoven logic network [127],
and an algorithm was given for the accurate reliability evaluation of a TMR, network [128)].
Nevertheless, the analytical methods are either extremely complex or present inaccurate
predictions for practical designs. In 1989, a systematic approach was proposed to the general
design of a fault-tolerant system using redundancy [129], and, in 1994, a fault injection
simulation method was proposed to investigate the effect of transient faults in VI.SI circuits

[130].

More recently, TMR has been examined for potential use in nanoelectronic systems [131],
[132]. Von Neumann’s NAND multiplexing has also been studied as a possible fault-tolerant
technique for the integration of nanoelectronic devices [73], [46], as extensively presented
in Chapter 3. The main results are that von Neumann’s NAND multiplexing technique is
extended to a fairly low degree of redundancy; that the stochastic Markov characteristics
of a multi-stage multiplexing system is studied; and that in a large multiplexing network
the restoring organs might not be needed. An architecture based on NANTD) multiplexing is
briefly discussed for the use of SET circuits, showing that multiplexing might be an effective
fault-tolerant technique for protection against the increasing transient faults in nanoelec-
tronic architectures, while it appears to be less efficient for protection against manufacturing
defects or permanent faults, which are normally compensated for by reconfiguration tech-
niques.
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A reconfigurable architecture is a computer architecture which can be configured or
programmed after fabrication to implement a desired computation. Faulty components are
detected during testing and excluded during reconfiguration. Reconfigurable architectures
have been investigated as well for the solution of integration of highly unreliable nanometer-
scale devices, in particular as defect-tolerant architectures against manufacturing errors.

The Teramac computer [77], built at HP laboratories, is such a defect-tolerant reconfig-
urable machine. The basic components in Teramac are programmable switches (memory)
and redundant interconnections. High communication bandwidth is critical for both parallel
computation and defect tolerance. With about 10% of logic cells and 3% of total resources
defective, Teramac could still operate 100 times faster than a high-end single-processor
workstation for some of its configurations.

The Embryonics architecture [133] is inspired by the biological growth and operation
of all living beings. Tt is based on four hierarchical levels: a molecule (a multiplexer-based
element of a programmable circuit), a cell (a small processor with an associated memory),
an organism (an application-specific multiprocessor system), and the population of identi-
cal organisms. Fach cell contains complete sets of instructions, the genomes, which make
each cell universal and potentially apt for self-repair and self-replication. The objective of
developing highly robust integrated circuits capable of self -repair and self-replication makes
the Fmbryonics architecture a potential paradigm for future nanometer-scale computation
systems.

4.3 The NAND multiplexing technique for correlated
errors

4.3.1 FError distributions in a multiplexing unit

In von Neumann’s construction of NAND multiplexing, a NAND gate, as well as its inputs
and output, is duplicated by N times, as depicted in Figure 4.1. A “random permutation”
of the input signals is performed in the sense that each signal from the first input bundle is
randomly paired with a signal from the second input bundle to form the input pair of one

of the duplicated NANDs.

If X,V and 7, with (- N, - N, z-N) elements, are the sets of lines being stimulated
in the input and output bundles, then (Z, ¢, Z) are relative levels of excitation of the two
input bundles and the output bundle. T.et 7 = 1 — z. Clearly 7 is the relative level of the
non-stimulated outputs. Assuming that the NAND gate is fault-free, the probability of
the output of a NAND gate that is found non-stimulated (by both stimulated inputs) is
approximately 7 = gy . If each NAND gate has a probability ¢ of making a von Neumann
error, the probability of its output being non-stimulated is:

T, = 2y + (1 — 227); (4.1)
for more common fault models Stuck-at-() and Stuck-at-1, the probabilities become:

ro=¢c¢+ (1—¢)xy (4.2)
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Figure 4.1: A NAND multiplexing unit.

and

= (1—¢)zy. (4.3)

For modest N, as has been seen in Chapter 3, where similar results were obtained for the
relative stimulated level Z, the probability distribution of the outputs being non-stimulated
can approximately be given by the binomial distribution, if the N NAND gates function
independently. Thus the probability of k out of N outputs being non-stimulated is:

R(k) = <]]Z>7"k(1 — )N (4.4)

with 7 € [, To, T1]-

If both inputs of the NAND gates are expected to be in stimulated states, the non-
stimulated outputs are then considered as reliable ones. If the faulty devices in the mul-
tiplexing circuits are independent and uniformly distributed, formula (4.4) could be used
to evaluate the output reliability. This may be reasonable when the dominant faults are
transient ones. For manufacturing defects or permanent, faults, however, the binomial dis-
tribution model is not sufficient to describe the actual manufacturing imperfections. The
device components are then not statistically independent but rather correlated since defects
tend to cluster on a chip [134]. Formula (4.4) is therefore not appropriate for reliability cal-
culations. (Although it is not yet clear what the future nanocomputers will be based on and
how they will be built, it might be helpful to learn from present manufacturing processes.)

Variability of the manufacturing defects can be modeled with a continuous probabil-
ity distribution function f(r) of an estimated component reliability . Compounding the
formula (4.4) with respect to this distribution function results in

R(k) = '/01 <JZ> (1 — 7)Y P fr)dr. (4.5)

The success of the approach depends on finding appropriate parameters for the formula.
Here we follow Stapper’s beta distribution model [135], which gives:

N ko1 : N ko1 (]
B(k) _ sz H H +.77 « (1 o 7;)]\7 k :U’+7T/7( jn) ’ (46)
k e U o w+ kr 4 g7
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Figure 4.2: A multi-stage NAND multiplexing system.

where p is a variable parameter and 7 is the average or expected single output reliability.
This formula calculates the probability that k& out of N identical NANDs give reliable out-
puts. The parameter p is a measure of the amount of fault clustering. Small values of
indicate high levels of clustering. As u approaches infinity the formula becomes the case of
independently distributed faults that can be described by the binomial distribution.

4.3.2 FError distributions in a multi-stage system

If the outputs of a NAND multiplexing unit are duplicated as the inputs of the succeeding
one, a multi-stage system can be built as depicted in Figure 4.2. In such a system the number
of stimulated (or non-stimulated) outputs of each NANT) multiplexing stage is actually a
stochastic variable; it evolves as a Markov chain since the outputs of one stage are totally
determined by the inputs and device error distribution of the same stage.

If there are k; ¢ of the N incoming lines stimulated for both inputs of the Ith unit and
each NAND gate has a fixed probability ¢ of making an error, according to the formula
(4.6), the probability of having &, non-stimulated outputs in case of the corresponding &; 1
stimulated inputs is given by:

B
N\ ’ pAti
R(k|k, = < >7"kl k; —
( l| 1 1) k; ( ! 1) ;l_JO: Iu—l—?ﬂ“(/ﬁ 1)
N k1

) Nk p gk 1) /(1 —7(k 1))
(L= rlk )" " p+ k(e q) + gk 1)

ki 4
N -

where 7(k; 1) is a variation of the equation (4.1), (4.2) or (4.3) with & =7 =

If we are interested in the outputs that give faulty signals, then the probability of having
k; stimulated outputs, i.e., k, = N — k] | is given by

P(kilk 1) = R((N = E)[ky 1) (4.8)
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Noting the stochastic nature of k; ¢, the probability of k; outputs being stimulated in
all cases is obtained by:

N
P(k) = Z P(kilky 1) P(ki ) (4.9)
ki 1—0

The formula (4.9) is inductive in the sense that, given an initial probability distribution
and conditional probabilities, the output probability at any stage can be obtained. In
this Markov chain an (N + 1) x (N + 1) transition probability matrix ¥, whose elements
are P(ki|k; 1), ki, k 1 € [0,1,2,...N], can be obtained as (4.10), so that all conditional
probabilities for any set of (k;, k; ) are included.

W= po]2) P12 P2?2) ... P(N]2) (4.10)

| POIN) P(1IN) P(2IN) ... P(N|N),

Since the transition probability matrix W for each stage is identical and irrelevant with
regard to [, this is a homogeneous Markov chain. With the transition probability matrix
and a fixed input distribution:

Py = [Po, P1,P2---PN] (4-11>

where p; 1s the probability of 7 inputs being stimulated, the stimulated output distribution
of a NAND multiplexing system with n stages is then:

P, — P,0" (4.12)

When n gets large, " approaches a constant matrix m, i.e.,

lim ¥" = . (4.13)
This indicates that, as n becomes extremely large, the system output distribution will be-
come stable and independent of the number of multiplexing stages.

4.4 Reliability analysis of reconfigurable architectures

The idea behind reconfigurable architectures is that the defects due to manufacture can
be detected, located and then avoided. The reconfigurable computer concept is greatly
assisted by the use of field programmable gate arrays (FPGAs) [136]. Fundamentally a
FPGA contains a regular array of logic units, which are called configurable logic blocks
(CT.Bs). Each CI.B can communicate with its neighbors, and the CT.Bs are further grouped
in blocks, then clusters of blocks. The CI.Bs can be individually reprogrammed so that a
wide variety of logic or memory structures can be mapped onto the array of CI.Bs. When a
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part (or all) of a CT.B is not working, the defective components are easy to locate and exclude
from the working components. The Teramac machine [77], as a successful example of the
reconfiguration concept, uses 864 identical FPGA chips, among which 75% (647) are partially
defective. The first task of Teramac after it was built was to run self-diagnostic software,
by which the defects were detected and located, and a defect database was generated. By
reading the database, user applications are mapped onto good resources. Teramac “has
been successfully configured into a number of parallel architectures and used for extremely
demanding computations”.

In processor arrays, the basic logic circuit blocks are referred to as processing elements
(PEs), which are usually associated with local memories. In very large chips, the reliability
can be improved by adding spare PFEs to the design. Clearly, the more spares added, the
higher the resulting reliability will be. Instead of trying to achieve complete fault tolerance,
defined as survival to a number of faults equal to the number of spares, most research aims at
optimizing probability of survival, defined as the percentage of fault configurations that can
be successfully overcome by the reconfiguration approach [137]. Reconfiguration approaches
may be local or global. In local approaches, arrays are divided into subarrays. Spare
elements are added to each individual subarray and reconfiguration is performed internally
to each subarray. In global approaches, a set of spare elements is added to the whole array
(usually as spare rows and columns along the edges of the array). Global approaches usually
involve far more complex reconfiguration algorithms than local solutions [137].

For simplicity, we refer to logic blocks, clusters or PEs as modules and assume that all
modules in the array are identical, so that any spare module can substitute any failed one,
provided there exists a sufficient number of interconnection paths. If in an array there are n
identical modules, out of which r are spares, then at least n—r must be fault-free for proper
operation. We define R, as the probability of exactly m out of the n. modules fault-free,
then the reliability of the array is given by

R, = Z R - (4.14)

m—n r

If each module has the same failure rate, or the same reliability Ry, and modules are
statistically independent, we obtain the following binomial probability for the number of
fault-free modules m:

n m n m
Ry = <m> RM(1— Ro)” ™ . (4.15)

Once again the defective modules in an array are not uniformly distributed but rather
correlated, therefore the binomial distribution formula (4.15) is not sufficient for reliability
evaluation. Stapper’s model can be used to improve the reliability calculation of correlated

modules [135]:

. <;>B0m (m 1,U7+7> . (1 B R())n N (n ™ 1u+jﬁ0/(1 — BO)) ’ (4.16)

0 12 + 7?0 0 12 + m,R() + 7B0

where y is a variable parameter indicating the amounts of fault clustering and Ry is the
average or expected single module reliability. Typical values of p are dependent upon the
other parameters in formula (4.16).
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Formula (4.16) calculates the probability that exactly m out of n identical modules
operate correctly. Tt can be applied to the reliability analysis of parallel processors with
redundancy and fault-tolerant VI.ST systems.

4.5 A hypothetical architecture for defect- and fault-
tolerance

4.5.1 Basic circuits implemented with NAND multiplexing

The fact that a NAND gate is a universal logic device makes it possible to use the NAND
multiplexing technique on any logic operation, even though the multiplexing theory can
be easily extended to application of other specific logic. In processors, function blocks or
modules, many logic circuits may be cascaded. The function blocks or processors can be
composed of Arithmetic and T.ogic Units (AT.Us), T.ook-Up Tables (memories), or simply
multiplexers. In this section we make an abstraction of such a function block and assume,
as we did in Chapter 3, that it is made entirely out of stages of parallel NAND gates.

If a processor is implemented using NAND multiplexing, then the obtained structure
will be a NAND multiplexing system with a lower bound of redundancy of N, as all the
components are duplicated N times. The performance of a multiplexing system can be
evaluated by investigating the probability that the number of faulty outputs is or is not
within a critical threshold level A. In other words, those outputs with errors less than this
threshold will be regarded as reliable and their complementaries will be unreliable. The
threshold level, together with N, may have impact on the maximum tolerable value of the
device failure rate €. To make a reasonable analysis, we will take a bundle size of 50 and a

threshold of 10%, i.e. N =50 and A = 10%.

If each processor has a logical depth of 11, which is sufficient for general computation
tasks, then the reliability of the 1-bit NAND multiplexing output after 11 stages can be stud-
ied with various device error rates e, using the NAND multiplexing theory. With perfectly
fault-free inputs, the probability distributions of output errors (unreliability distribution)
are evaluated against the error rate of an individual NAND with u = 5,10, 15, 25,50, 100
and in finity. The results are shown in Tables 4.1, 4.2 and 4.3 for the fault models of von
Neumann, Stuck-at-() and Stuck-at-1.

As revealed in the tables, the output reliability varies due to u, i.e. the amount of fault
clustering, indicating the influence of fault distributions on system reliability. Tt can also
be seen that von Neumann fault model brings the largest system performance degradation
(system unreliability). Since we are interested in the maximum device error rate that can
be tolerated in general, we will take = 50 and e = 10 ? for the von Neumann fault; then
the reliability of the 1-bit output can be obtained from Table 4.1 as Ry = 0.868. In the
following section we will take Ry = 0.868 as the average reliability of a 1-bit multiplexing
circuit.
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u =10 u =25 u =50 w =100 U= 00

e=10 %|1.516-10 ® | 1.042-10 ° | 7.264-10 % | 5.271-10 ¢ | 2.984-10 ©

e=10 % |1.518-10 * | 1.043-10 * | 7.293-10 ® | 5.302-10 ® | 2.991-10

e=10 *|1.519-10 * | 1.047-10 * | 7.349-10 *| 5.360-10 * | 3.055-10 *

e=10 *|1.539-10 | 1.093-10 ? [ 7.929-10 * | 5.987-10 * | 3.703-10 *

=10 ? 0.1686 0.1479 0.1315 0.1194 0.1036

Table 4.1: Output unreliabilities of a 1-bit NANT multiplexing circuit (von Neumann fault).

u =10 u =25 u =50 w =100 U= 00

=10 %|1.081-10 ® | 8.382-10 ¢ | 6.497-10 % | 5.026-10 ¢ | 2.923-10 ©

e=10 % |1.082-10 * | 8.386-10 ° | 6.501-10 ® | 5.029-10 | 2.927-10 °

e=10 *|1.082-10 * | 8401-10 * | 6.525-10 *| 5.059-10 * | 2.965-10 *
=10 *|1.089-10 % | 8.580-10 * | 6.777-10 * | 5.367-10 * | 3.347-10 *
=10 ? 0.1142 0.1009 8.964-10 ? | 8.062-10 ? | 6.744-10 ?

Table 4.2: Output unreliabilities of a 1-bit NAND multiplexing circuit (Stuck-at-0 fault).

u =10 u =25 u =50 w =100 U= 00

e=10 %|4.346-10 | 2.041-10 ¢ | 7.668-10 " | 2.448-10 7 | 6.140-10 ®

e=10 " |4.360-10 ® | 2.038-10 * | 7.892-10 | 2.694-10 % | 6.135-10

e=10 *|4.361-10 *|2.044-10 * |[7.931-10 ® | 2.693-10 * | 6.217-10 ©

e=10 *|4.395-10 * | 2.104-10 * | 8.450-10 * | 3.000-10 * | 7.065-10

e=10 ?|4.726-10 2| 2.720-10 ? | 1.441-10 ? | 7.239-10 * | 2.142-10 *

Table 4.3: Output unreliabilities of a 1-bit NAND multiplexing circuit (Stuck-at-1 fault).
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4.5.2 Hierarchical reconfigurability at processor, cluster and chip
levels

We further assume that each processor has a 32-bit processing capacity. For a 32-bit proces-
sor, if no redundant circuits are applied, it is only reliable as all of the output bits are reliable.
Instead of exactly making a 32-bit circuit we build in the processor some redundant process-
ing circuits, so that the spares can be configured to replace defective ones (Figure 4.3 (c)).

If each 1-bit circuit has a similar structure, the reliability of the 32-bit processor with
redundant circuits can be evaluated against the number of spare bit circuits, using the
formulae (4.14) and (4.16), as plotted in Figure 4.4. The left-most data in the figure indicate
the reliability of a processor with no redundancy. The effect of the variability parameter
here is rather significant. The improvement of reliability by using redundancy is explicit;
in particular, when p is large, i.e. when faults are barely correlated. Assuming that errors
are not strongly correlated in processor and upper levels (due to the relatively large circuit
area), we take u = 20 for further evaluations. Thus a 32-bit processor with 16 redundant
bit circuits will have a reliability of approximately 0.981.

The development of nanotechnology makes it eventually possible to realize extremely
large-scale integration, of the order of 10'? devices per chip. If on such a chip each processor
has about 10% devices (logic, memory, communications, etc.), the number of processors on
the chip will be about 10% (2'® x 2'%). Tnstead of being connected globally, the processors
can be assembled into 1024 (2'%) processing clusters, each containing 1024 (2'?) processors
and executing tasks independently. The clusters further compose the chip. Both clusters
and processors can be connected in a 2-dimensional (32 x 32) array, in which some columns
are redundant, as depicted in Figure 4.3 (a and b). The reconfigurable strategy therefore
can be implemented on both chip and cluster level.

Similarly, the performance of a cluster (chip) with redundant processors (clusters) can
be evaluated using the formulae (4.14) and (4.16). The reliability of a cluster against the
number of spare columns is plotted as Figure 4.5, with ¢ = 20. The left-most points indicate
the reliability of a cluster with no spares. By using 4 columns of processors as redundant,
the reliability of the cluster is elevated from 0.215 to 0.985, i.e., a cluster having 128 (4 x 32)
redundant processors has a reliability of approximately 0.985.

The reliability of a chip with 1024 clusters is plotted against the number of spare columns
of clusters with y = 20 as shown in Figure 4.6. Tt can be seen that the reliability of a chip
will be greatly improved by using redundant components. Tf 128 of the 1024 total clusters
(4 out of 32 columns) are used as spare ones, then the reliability of the chip will reach a
level of approximately 99%, provided that faulty components can be effectively substituted
by spare ones.

4.5.3 Summary and issues

In summary, we have discussed the setup of a massively parallel fault-tolerant architecture.
The NAND multiplexing technique is implemented in the fundamental circuits and recon-
figurable structures are mapped to the processor, cluster and chip level. Containing up to
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10" devices the conceived chip can have about 10% medium-sized processors and tolerate a
device error rate of up to 10 2, which is generally nnacceptable for any current VI.SI system.
Redundant components are used at various levels and, as our evaluation shows, they are
critical for the survival of the architecture.

In contrast with the architecture presented in Chapter 3 where plain NAND multiplexing
was used to recover from transient errors, resulting in a massive redundancy, we now accept
a higher error rate on the lowest level with considerably less redundancy, but compensate
for this using a hierarchical reconfigurability. This leads to an acceptable failure rate of
permanent, defects for the entire system, and simultaneously forms a protection against
transient errors (online error detection might be needed). The error detection problem
remains open for further research.

The system is expected to have a total redundancy factor of (50 x % X % X % x (the
fraction of other necessary spare components)) ~ 100. This indicates that the future
nanochips with 10'? devices might be working at an acceptable reliability level, virtually

having about 10'? effective devices.

In this architecture, however, there were two issues. First, the numerical analysis em-
ploying the multiplexing theory gives an approximate evaluation of the output reliability of
the circuit that consists of chains of multiplexing stages. A larger bundle size N presents
a better approximation. When N becomes small, however, the deviation resulting from
this analysis could be large. This limitation means that the analytical approach using the
multiplexing theory cannot be applied to the study of circuits in which fewer redundancies
are involved (e.g. N < 10). To solve this problem, a CAD method based on probabilistic
model checking has been proposed to evaluate the reliability of fault-tolerant architectures
and, in particular, the multiplexing systems [74]; Monte Carlo simulations have also been
performed to study the error behaviors in a multiplexing nanosystem [75]. Second, in order
to make a statistical analysis, a highly abstract circuit model consisting of chains of identical
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Figure 4.7: A typical configuration of TMR.

multiplexing stages has been adopted. This is obviously not true in a practical implementa-
tion. To improve these, we propose a new form of interwoven redundant logic, the N-tuple
interwoven redundancy (NTR), and present an experimental study through the simulation
of a realistic processor model. Before turning to the study of simulations, we present in the
next section the ideas of triple modular redundancy (TMR), the interwoven redundant logic
and the triplicated interwoven redundancy (TTR).

4.6 Triple modular redundancy (TMR), quadded logic
and triplicated interwoven redundancy (TIR)

4.6.1 Triple modular redundancy (TMR)

In a TMR system, a nonredundant circuit is divided into smaller modules, each module is
“triplicated” and majority gates are used to collect outputs from all of the three modules,
producing majority votes at their outputs. A typical TMR structure with a simple config-
uration is shown in Figure 4.7. In a serial circuit the majority gate for each output is also
triplicated and serves as an intermediate restoring device. The TMR, circuits of triplicated
modules followed by triplicated voters has been widely studied as an important redundancy
technique (see e.g. [138], [128] and [71]). Tt has also been used as a benchmark against
which other redundancy schemes are evaluated.

For TMR systems, various reliability evaluation algorithms have been proposed, but most
involve expensive computation. For a simple network, as the one in Figure 4.7, a classical
model has been widely used for reliability evaluation. This reliability modeling assumes
that a TMR network continues to operate as long as at least two of the circuit modules are
fault-free. If all three of the modules work independently, the reliability is then given by

3 3
Rrvr = <%> R+ <2> RY(1 — Ry) = 3R2 — 2R}, (4.17)

where Ry is the reliability of a circuit module. If a module has N components, each of which
has a failure rate of py, and if it works as long as all of its components work correctly, the
reliability of the module is then given by

Ro=(1—ps)". (4.18)
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When the reliability of a module falls in a certain range (with a limit of lower bounds
strictly larger than 1/2), as implied in equation (4.17), a TMR. system behaves as one of
its constituent modules, but with an improved reliability, but also at the expense of three
times the number of components plus the majority gates. As implied in equation (4.18),
however, the reliability of a module imposes a demanding requirement on a module’s size -
the modules involved in TMR, should be modest in size in relation to the error rate of an
individual component in the circuits, or, in other words, a module with a large number of
components will present a serious limit on the upper bound of the device error rate that
could be tolerated by the use of TMR, [132]. In principle, using the modules with the lowest
complexity gives the best system reliability of TMR, provided with perfect majority gates
[138].

A TMR circuit can be further triplicated. The obtained circuit thus has nine copies of
the original module and it requires two layers of majority gates to collect information at
outputs. This process can be repeated if necessary, resulting in a technique called cascaded
triple modular redundancy (CTMR). A study on the use of CTMR. in nanoelectronic circuits
was presented in [131]. Tt was shown that the use of CTMR in a nanochip with a large
number (e.g. 10" or 10'?) of nanoscale devices would require an extremely small error
rate of nanoelectronic devices. However, the method may be effective for use in modest or
small circuit modules. Another disadvantage of the CTMR, scheme is that it introduces an
exponential growth in redundancy as the cascaded layers increase.

In CMOS circuitry the assumption that the majority gates are ideally fault-free can be
realized by using larger and more reliable components. However, it will be highly unlikely or
inefficient to implement the majority gates with other technologies in future circuits made up
of nanoelectronic or molecular devices. Instead it is straightforward to envision that all the
circuit elements are made from similar technologies. Thus the majority gates are also prone
to errors, with a device error rate as the same as that of the working modules. Assuming
a majority gate is composed of M components and it works only when it is fault-free, its
reliability is given by

Ry = (1—pp)™. (4.19)

If a TMR. only gives reliable outputs when both of the majority gates and modules are
fault-free, the reliability of a TMR, circuit becomes

Rrwn = Ry (3R:E — 2RY), (4.20)

where N,, is the number of a module’s outputs, i.e. the number of majority voter circuits.

If the majority gates are not perfectly reliable, then the reliability of a majority gate
should be larger than that of a module in a TMR, circuit. Otherwise, if Rjs is comparable
with or less than Ry, we have Rryrp < R(])V”” (3R2—2R3). Since Ry < 1 and (3RZ—2R3) < 1,
Rrarg, the reliability of the TMR, can never be better than Ry, the reliability of the original
circuit. This indicates that, when circuit modules and majority gates are made of similar
devices, a module must be larger in scale than a majority circuit in a TMR to get a reliability
improvement.
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4.6.2 The interwoven redundant logic and quadded logic

The concept of the interwoven redundant logic derived from the reliability theories as devel-
oped by von Neumann and his contemporaries [126]. The faults considered in the interwoven
redundant logic are interpreted as the 0 — > 1 and 1 — > 0 faults, without a distinction
between the von Neumann and stuck-at types. The error correction mechanism in the inter-
woven redundant logic depends upon asymmetries in the effects of these two different types
of binary errors. The effect of a fault is determined by the value of the fault and the type
of the gate. Consider a NAND gate, for instance. If one of its inputs is in the binary 0
state while it should nominally be in the binary 1 state, possibly caused by a faulty gate or
faulty interconnection, then the NAND’s output will be static at the 1 state regardless of
the values of other inputs. If an input is in the 1 state while it should be in the 0 state, the
output will not be stuck but dependent on other inputs. Thus, there are two types of faults
for a logic gate. One is critical in the sense that its occurrence on one of the inputs leads to
a stuck output; the other is subcritical in the sense that its occurrence alone does not cause
an output error. Hence, a 1 — > 0 fault is critical for a NAND gate, while it is subcritical
for a NOR gate. A 0 — > 1 fault is critical for an OR logic, while it is subcritical for an
AND gate.

If it is not possible to ensure that all errors are subcritical errors, one way to improve
the reliability of an interwoven logic circuit is to arrange the logic so that a critical error
occurring in one layer of logic becomes a subcritical error in the second layer. Then, at
the output of the third layer, the effect of the subcritical error from the second layer may
be reduced; it is therefore likely that there are no or fewer errors in the end of the circuit.
For instance, the output error caused by a critical fault of an AND gate is the subcritical
input error for an OR, gate, and the output error caused by a critical fault of an OR gate
is the subcritical input error for an AND gate. Alternating layers of AND and OR, gates
therefore corrects errors by switching them from critical faults to subcritical ones. Similarly,
the output error caused by a critical fault of a NAND (or NOR) gate becomes the subcritical
error in the next layer of NAND (or NOR) gates.

Quadded logic is an ad hoc configuration of the interwoven redundant logic. Tt requires
four times as many circuits, interconnected in a systematic way. It corrects errors and
performs the desired computation at the same time. Quadded logic has been studied re-
spectively for use with AND, OR and NOT logic [124], and for use with NOR logic [125].
To illustrate it, we show the schematics of a complementary half adder (computing the
complements of carry and sum, denoted as cc and c¢s) in Figure 4.8 and its quadded form in
Figure 4.9, both implemented with NANT gates (including inverters, which can be seen as
a special form of NANDs).

In the quadded implementation in Figure 4.9, each NAND gate in Figure 4.8 is replaced
by a group of four NAND gates, each of which has twice as many inputs as the one replaced.
The four outputs of each group are divided into two sets of two outputs, each providing
inputs to two gates in a succeeding stage. The interconnections in a quadded circuit are
hence eight times as many as those used in the nonredundant form.

In this pattern of interconnection, any single error introduced in the network can be
corrected by the network itself, provided that the network is large enough. To show this in
Figure 4.9, assume that B1 in stage B is wrongly in the 0 state when it should be in the
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Figure 4.8: A nonredundant complementary half adder implemented with NAND logic.

1 state (a critical 1 — > 0 error for NAND). Due to this error, the outputs of D1 and D3
of stage 1) must be 1; this can be erroneous, but it would be a subcritical 0 — > 1 error.
Since the outputs D2 and D4 of stage 1) are not in error (thus in the correct 0 state), the
subcritical errors at outputs )1 and 13 are masked at stage F/, producing the expected
(correct) 1 state at all the outputs of stage F. As has been seen, a subcritical 0 — > 1
error is even more promptly corrected in the NAND network. In general, a single critical
error in a quadded circuit will be eliminated after passing through two stages and a single
subcritical error will be corrected in the next stage after its occurrence.

The interconnection patterns in a quadded network are important to the network’s ca-
pability of error correction, yet the rules are simple. The outputs of four gates, numbered
from 1 to 4 as in Figure 4.9, are divided into two sets. Fach set forms a pair of inputs and
each pair feeds the two gates with the same numbers as the set in succeeding stages. If the
four outputs are divided into two sets of (1,3) and (2,4), for instance, the set (1,3) will
provides inputs to gates 1 and 3 in the next stage and the set (2,4) will provides inputs
to gates 2 and 4. There are three possible ways to break four inputs into two sets to form
an interconnection pattern: (1,2) and (3,4), (1,3) and (2,4), (1,4) and (2,3). The rule to
arrange these patterns is that the interconnection pattern at the outputs of a stage must be
different, from the interconnection patterns of any of its input variables.

The principle of quadded logic is also applicable to the circuits of storing devices. In
Figure 4.10 a clocked D-type flip-flop is drawn and the quadded implementation is shown in
Figure 4.11. For a quadded circuit containing loops, as the flip-flop in Figure 4.11, a critical
error is possibly corrected in one layer. For example, any critical error in stage B will not
appear in stage F. For interconnections, however, special attention is needed so that the
rules are followed everywhere in the circuit loops.

The error correction property of a quadded NAND network is in fact due to its logical
characteristics. T.et us take a look at the outputs of stage B: B1, B2, B3 and B4 in Figure
4.9. After passing through two NAND stages, the outputs of stage B can be represented at
stage I/ by the Boolean function:

B1B3 4+ B2B4.

All B’s in this function should be the same in the absence of errors, but any single error in
the B’s will not, affect the correct value of the function.

In a quadded circuit, a single error can be corrected in at most two logic layers. For the
errors occurring on the edge of a circuit, however, they may not be eliminated at outputs
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Figure 4.9: A gquadded implementation of the complementary half adder.

(more specifically, a critical error within the last two layers or a subcritical error in the last
layer will not be corrected at outputs). Because a single error is corrected within a rather
short logical path, many multiple errors do not interact. Hence multiple errors can also be
corrected in many cases. This is a particular merit of the quadded logic.

4.6.3 Triplicated interwoven redundancy (TIR)

The idea of triplicated interwoven redundancy (TTR) originates from von Neumann’s multi-
plexing technique and the general concept of the interwoven redundant logic. We illustrate it
via the TIR implementations of the complementary half adder in Figure 4.8 and the clocked
D-type flip-flop model in Figure 4.10, shown in Figure 4.12 and 4.13 respectively. In the TIR
complementary half adder and the TIR, flip-flop each NAND gate in the nonredundant forms
is replaced by a triplication and all the interconnections are accordingly triplicated as well.
A TIR circuit thus has three times as many gates and interconnections as the corresponding
nonredundant circuit.

Unlike the quadded logic, where systematic interconnections are required, the intercon-
nections in a TIR circuit are in principle arranged in a random way. In practical implementa-
tion the random interconnections can be substituted by arbitrarily selected static ones that
have specific routes. In a TIR circuit made up of 2-input NAND gates, for instance, there are

six possible pair connections {(1,1), (2,2), (3,3)}, {(1,1), (2,3), (3,2)}, {(1,2),(2,3), (3, 1)},
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{(1,2),(2,1),(3,3)}, {(1,3),(2,1),(3,2)} and {(1,3),(2,2),(3,1)} (by (i,7) we mean here
the output of gate 7 in a triplication is paired with the output of gate j in another trip-
lication to form the inputs of a gate in the next stage). The total interconnect patterns
become 36 (6 x 6) if a distinction is made among the gate orders of a triplication in the
next stage. One method to arrange interconnections is to randomly adopt one of the 36
connection patterns for all connecting pairs in adjacent layers. As shown in Figure 4.12,
the interconnect patterns used in the three layers from inputs to outputs of the circuit are
{(1,1),(2,2),(3,3)}, {(1,2),(2,3),(3,1)} and {(1,3),(2,1), (3,2)}, while the circuit can be
with any other interconnect patterns. We shall show in the next section through experimen-
tal studies that, in most cases, there is little difference in error correcting capacity by using
one specific interconnect pattern or another.

Tt is interesting to notice that, if the pattern {(1,1), (2,2), (3,3)} is used in all layers for all
interconnections, the three modules in Figure 4.12 will independently perform computation,
actually working as a TMR circuit, as depicted in Figure 4.14. The TIR. is hence a general
class of TMR, implemented with random interconnections and the TMR, is a particular
configuration of TTIR with regular interconnections. The randomness in interconnects of TIR,
is particularly interesting to the integration of molecular electronics, for which stochastic
chemical assembly is most likely to be used as the manufacturing method.

Similarly as in TMR, a decision element is needed in a general TR, circuit as a restoring
device. In Figure 4.15, a design of a 2-out-of-3 voter with NAND logic is shown. This voter
can be connected to each set of the output triplication and produces a majority signal as
the final output.

In a TMR circuit, due to the use of a majority voting mechanism, the failure of only one
output signal would not cause the circuit as a whole to fail. Hence the effect of any single
error in the working circuit can be eliminated by the voters, provided that the majority
gates are fault-free. If the majority gates are subject to errors too, the errors in the circuit
may not be effectively corrected by the voters. Furthermore, the errors in the voter circuits
can be fatal, even when the operating circuits are fault-free.

In a general TIR circuit (i.e. a TTR with random interconnections), all components are
interwoven and therefore an error is not confined to affect only one or one set of outputs.
For instance, the effect of an error can be amplified via a fanout or branch circuit. Hence,
a single error in a TIR circuit could cause the circuit to fail, in spite of the use of majority
voters. This may intuitively imply that a general TIR. circuit might be less reliable than an

Figure 4.10: A clocked D-type flip-flop implemented with NAND logic.
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mv

Figure 4.15: A 2-out-of-3 majority gate implemented with NAND logic.

equivalent TMR circuit. However, we shall show in the next section that this variation in
reliability is in most cases negligible.

Furthermore, the occurrence of multiple errors in a TIR circuit does not necessarily
cause the failure of the circuit. The multiple errors in the operating circuit may contribute
to the same faulty signal of an output or they may each produce a faulty signal for different
outputs such that the majority of any output still gives a correct signal. Also, the errors in
the voter circuits may compensate for the effects of errors in the operating circuit such that
an increased number of faults can be tolerated in a TIR circuit. In the next section, the
error behaviors of a TIR circuit are studied by using a simulation based reliability model.

4.7 Experimental studies on fault-tolerant processor
architectures

4.7.1 A processor prototype for array architectures and its fault-
tolerant implementations

A typical processor structure for a processor array consists of an arithmetic and logic unit
(AT.U), registers and a multiplexer, as shown in Figure 4.16. Upon the arrival of clock signals,
the input signals are latched in the registers and a computation procedure is triggered. At
the end of the computation, results are sent to memory and neighbors. This processor
prototype has been widely used to model processor arrays, and many variations based upon
it have been successfully implemented in parallel processors for image processing and pattern
recognition (see, for example, [82]-[85]).

In this processor, local memories are usually attached and connected to the inputs and
outputs for data processing. The quadded and TIR structures can in principle be employed
in memories to deal with errors while commonly used fault-tolerant measures for memory
are reconfiguration and error correcting codes. In this study the fault-tolerance issues for
memories are not specifically addressed.

In a 1-bit processor, the AT.U is basically composed of a full adder, which can be con-
structed from the circuits of the semi-half adder in Figure 4.8 plus a few auxiliary gates.
The registers, used to store the inputs from memories and neighboring processors, can be
realized by the clocked flip-flops shown in Figure 4.10. The fault-tolerant implementations
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Figure 4.17: A 4-to-1 multiplexer.

of the AT.U and registers can thus be obtained from quadded and TIR circuits of the com-
plementary half adder and flip-flop discussed in the previous section.

The design of a 4-to-1 multiplexer is shown in Figure 4.17. Which one of the four inputs
is selected at the output is dependent upon the combination of the two instruction bits
Il and 72. For a linear processor array, however, a 2-to-1 multiplexer requiring only one
instruction bit [ is sufficient for the design, as shown in Figure 4.18. For simplicity, we only
show the schematics of the quadded and TTR, implementations of the 2-to-1 multiplexer, in
Figure 4.19 and 4.20 respectively.

Hence, all the elements composing the processor structure in Figure 4.16 are available
in their fault-tolerant implementations of quadded and TIR circuits. In the next section a
fault injection simulation is proposed to study the reliability of these fault-tolerant processor
structures.
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4.7.2 A fault injection simulation

The reliability of an interwoven logic network has been evaluated by using the minimal cut

[125] and a combinatorial method [127]; they were however both extremely cumbersome,

especially for large circuits. In this study, a fault injection simulation procedure has been

performed to investigate the effects of multiple component failures in quadded and TIR

structures. In the simulation, faults were considered to appear in logic gates, thus producing

possibly faulty signals at the outputs of the erroneous gates. In manufacturing, errors can

also occur on interconnections. Interconnection faults, though not considered in this study,

can readily be modeled in the simulation by taking into account possible errors on both input

and output lines. This simulation procedure is in principle applicable to any fault-tolerant

circuit. It goes as follows:

1. Start at all good states. A number of faulty gates (the number, m, starting from 0

and up to the maximum number of faulty gates in the circuit) is randomly selected
from all of the gates in the fault-tolerant circuit and a randomly selected stuck-at-()
or stuck-at-1 fault is emulated at the output of each faulty gate.

. A set of input pattern is applied to the fault-tolerant circuit, in which faults have been

injected. The outputs produced in the circuit are then compared with the correct
ones. If the fault-tolerant circuit provides the correct outputs, repeat Step 2 until the
complete set of input patterns have been tested. Otherwise, increase the number of
failed simulations, k,,, by 1.

. Increase the number of simulations performed thus far, n, by 1. If n is less than the

total number of simulations to be performed, N, go to Step 1. Otherwise, go to Step
4.

. Compute the failure rate of the simulated fault-tolerant circuit by the number of

injected faults, F,, = k,,/N. Increase the number of faults injected into the fault-
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tolerant circuit, m, by 1. If m is no larger than the maximum number of faulty gates
in the fault-tolerant circuit, go to Step 1. Otherwise, end the simulation.

In this procedure, a simulation is carried out with all possible input patterns of the
simulated circuit. In other words, a circuit is only reliable when it succeeds in producing
correct outputs for all input patterns. Faults are injected at once before the circuit is put
into operation. This is likely to be the case for manufacturing defects. This fault injection
simulation can be modified to account for clustered or correlated defects for reliability mod-
eling [134], [135]; random faults are however assumed in this investigation as has been the
case in most of the reliability models [71]. A simulation procedure was proposed in [130] for
the modeling of transient faults that spontaneously appear during system operation.

This simulation procedure has been applied to the quadded and TIR as well as the
nonredundant implementations of the processor structure in Figure 4.16. At the end of each
simulation, a failure rate by the number of faults injected into the fault-tolerant circuit, Fy,,
is obtained as the number of times the fault-tolerant circuit fails, k,, divided by the total
number of fault injection simulations performed, N (N = 10000 in all simulations performed

here) .

4.7.3 The effects of critical gates (CGs) in voters

The failure rates obtained for the nonredundant, quadded and TTR circuits are shown in the
first two rows of data in Tables 4.4 and 4.5 for up to 8 faults. As can be seen from the tables,
the failure rates obtained for the quadded and TIR circuits are significantly lower than that
of the nonredundant circuit. Tt can also be seen, however, that the quadded circuit has a
failure rate of nearly 20% and that the TIR. circuit also has a non-zero failure rate in the
presence of a single fault. This might not be surprising because in both of the quadded and
TIR circuits there are certain critical gates (CGs) in the sense that the failure of any CG
will with a high probability cause the failure of the whole circuit.

In general, the number of CGs a fault-tolerant circuit has, is approximately the sum of
the number of CGs related to each output. If any CG is only connected to one output and
each output has the same number of C(Gs, the number of CGs in a fault-tolerant circuit is
given by

Neg = Nop N, (4.21)

where N,, is the number of outputs and N, is the number of CGs related to each output.

In a quadded circuit, for instance, N, is the number of gates within the last two layers of
an output (considering the case of critical errors). For the quadded processor circuit in this
study, the number of CGs is obtained by 2-(4-3) (2 outputs-4 times of the 3 nonredundant
gates including the output gate and the two gates providing inputs to it). The failure rate
of a quadded circuit in the presence of a random single error is basically dependent on the
fraction of the CGs to the total gates of that circuit. One way to improve the reliability of
a quadded circuit is therefore to lower the fraction of the CGs in it.

A restorative device, made up of two layers of 2-input NAND gates as shown in Figure
4.21, can be attached to each output of a quadded circuit. In any circuit containing these
restoring devices, the C(s become the gates in the restoring layers and the number of CGs is
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Figure 4.22: A 2-level majority voter.

thus reduced to the constant minimum N,,-(4-2). For the processor model in this study, the
number of CGs (and thus approximately the fraction of CGs to the total gates) is reduced
by 1/3 and the failure rates are lowered through the use of the restorative devices, as the
data show in Table 4.4. This structure of restoring devices can be applied to any quadded
circuit.

In a TTR circuit, the majority voters function as restoring devices. Since the reliability
of any voter is critical to the survival of the whole circuit (though in some cases the failures
of gates in a voter may compensate for the failures of other gates and thus an imperfect
voter may still produce a correct output), the number of CGs in a TIR circuit is obtained
through equation (4.21), in which the parameter N, indicates the number of gates in a voter
circuit. Thus the reliability of a TIR, circuit could be improved by reducing the complexity
of restorative circuits. A simpler design of a 2-level majority voter, consisting of four NAND
gates, is shown in Figure 4.22. As our simulations reveal in Table 4.5, however, the use of
this voter does not produce a better performance. Instead, it increases the failure rates,
compared to that obtained by using the voter in Figure 4.15, which consists of four NAND
gates and two inverters (or six NAND gates). Hence, a degradation caused by a slightly
increased complexity of a voter design can simultaneously be compensated for by a better
fault-tolerance this specific structure affords. This exhibits a compensating effect of faults
in the voters of a TIR, circuit.

The designs in Figures 4.15 and 4.22 are favorable for applications based on “conven-
tional” transistors. In quantum and nanoelectronic regime, however, the implementation
of majority logic could be greatly simplified. A simple structure of a single majority gate,
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Table 4.4: The failure probabilities of the nonredundant processor structure and the quadded
implementations without restorative devices, with unreliable restorative (UR) devices and
perfect restorative (PR) devices. (m: the number of random faults in a circuit)

m=1\m=2|m=3|m=4|m=5|m=6|m=7| m=28

Nonredundant | 0.775 | 0.949 | 0.988 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000

Quadded 0.191 | 0.392 | 0.564 | 0.700 | 0.808 | 0.880 | 0.931 | 0.960

Quadded (UR) | 0.115 | 0.260 | 0.418 | 0.568 | 0.690 | 0.793 | 0.868 | 0.915

Quadded (PR) | 0.000 | 0.061 | 0.165 | 0.301 | 0.432 | 0.565 | 0.678 | 0.771

as schematically shown in Figure 4.23, has been proposed for possible implementations us-
ing quantum-dot cellular automata [87], single electron tunneling (SET) devices [139] and
superconducting circuits of Josephson junctions [42]. Apparently the best way to improve
reliability is to use highly or “perfectly” reliable components in restorative circuits. The
quadded and TTR circuits with these various designs of restoring devices have been studied
using the fault injection simulation, and the results are shown in Tables 4.4 and 4.5.

As can be seen, the TIR circuit using single majority voters presents a better reliability
than those using more complex voter designs. Both of the quadded and TIR, structures
provide best performance with the use of perfect restoring circuits (by which the numbers
of CGs are reduced to 0). The failure rates of the quadded circuits are lowered with the use
of restoring devices and the gate reliability in restoring circuits is in particular significant
for a quadded implementation. In general, the number of CGs (as well as the fraction of

Table 4.5: The failure probabilities of the nonredundant processor structure and the TIR
implementations with the unreliable voters (UVs) in Figure 4.15, the 2-level voters (2Vs) in
Figure 4.22, the single gate voters (SVs) in Figure 4.23 and perfect voters (PVs). (m: the

number of random faults in a circuit)

m=1\m=2|m=3|m=4|m=5|m=6|m=7| m=28

Nonredundant | 0.775 | 0.949 | 0.988 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000

TIR(UVs) 0.057 | 0.498 | 0.788 | 0.924 | 0.974 | 0.992 | 0.997 | 0.999
TIR (2Vs 0.079 | 0.523 | 0.799 | 0.925 | 0.974 | 0.991 | 0.998 | 0.999
TIR (SVs 0.022 | 0.453 | 0.757 | 0.906 | 0.966 | 0.987 | 0.996 | 0.998
TIR (PVs) 0.000 | 0.428 | 0.738 | 0.900 | 0.963 | 0.986 | 0.994 | 0.998

)
)
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CGs to the total gates) in a fault-tolerant circuit is reduced with the use of a simpler design
for restorative devices and thus the failure rate of the circuit is expected to be lowered.
This thought of minimizing the fraction of CGs in design is in principle applicable to the
restorative construction of any fault-tolerant circuit. In the next subsection we present a
simulation based reliability model, which is used to further investigate these fault-tolerant
constructions.

4.7.4 A simulation-based reliability model and results

If in a fault-tolerant circuit each logic gate has the same error rate, and errors are ran-
domly and independently distributed, the probability of a number of faulty gates follows
the binomial distribution, i.e.

P(m) — <Z>p??’(1 —p)Y ™ (1.22)

where py is the error rate of a logic gate in the circuit, m and N are respectively the number
of faulty gates and the total number of gates in the circuit.

By considering the number of faults, m, to be a random variable, the failure rate 1, can
be used as a failure distribution in m, and F,,, = k,,/N. A reliability distribution R,,, which
gives the probability that the fault-tolerant circuit survives as a function of the number of
faults in the circuit, m, is obtained from the failure distribution F,,, as follows:

Ry=1—Fy=1—ky/N. (4.23)

The reliability distribution R,, gives the probability that a fault-tolerant circuit will
continue to properly operate in the presence of m faults. The reliability of the fault-tolerant
circuit is therefore obtained by summing over all conditional reliabilities with the presence
of faults, i.e.

Rer = ﬁ:RmP(m) (4.24)
- <Z> (1 ka/N)PF (1 p)™ ™ (4.25)

Hence, the reliability of a fault-tolerant circuit can be obtained from the simulation based

formula (4.25).

In the simulation the random interconnections in TTR, circuits are substituted by ran-
domly selected static ones, of which TMR is a specific configuration with regular intercon-
nects. We have simulated the TIR processor structures with various interconnect patterns
(including the one of TMR). Fach pattern is obtained by arbitrarily selecting the inter-
connects among gates, except for the one particularly specified for TMR. The reliabilities
obtained from the simulation based formula (4.25) are plotted against the error rate of a
NAND gate in Figure 4.24 for six sets of different interconnect patterns.
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Figure 4.24: The reliabilities of TIR circuits with random interconnects (including the TMR
with regular interconnects).

As revealed in the figure, the TIR structures with randomly selected interconnections
present slightly lower probabilities of system survival than the TMR, structure. In most
cases, however, these differences in reliability are hardly discernable. For a small fraction
of interconnect patterns (e.g. interconnect pattern 6 in Figure 4.24), this variation becomes
noticeable. Our further investigations show that this is due to a fanout effect of erroneous
signals and a malicious interconnect combination of the output gates in the flip-flop (gates
D and F in Figure 4.13) of Register C (in Figure 4.16). As a result, any single error in
the multiplexer (MUX in Figure 4.16), if propagated into the flip-flop through the fanout
circuit, causes failures of two outputs of the flip-flop. These failures present a majority and
thus cannot be corrected by the voters attached to the circuit.

Fortunately, there is just one of 36 possible interconnect combinations of the output gates
that would cause the failure of the flip-flop (and thus the processor) due to a single error in
the multiplexer. (Generally, the variations in reliability obtained from various configurations
of TIR (including TMR) are small so that they are negligible. These TIR circuits are
virtually equivalent in terms of reliability without a distinction in interconnect patterns.
This randomness in interconnects is a prominent feature of TIR, albeit in some cases it may
introduce a decrease in reliability improvements. For simplicity, we take a configuration
with fixed interconnects (specifically the one with interconnect pattern 2 in Figure 4.24) as
a typical TIR structure for further simulations.

Next we made a comparison of the TTR model by simulations and the classical TMR,
model by theory. The TIR reliabilities obtained from formula (4.25) and the TMR reliabil-
ities obtained from formulae (4.17) and (4.20) are plotted against the error rate of a single
gate in Figure 4.25 with the gate error rate p; varying in (10 #,10 '). As can be seen, the
classical TMR model gives a rather pessimistic estimation of the system reliability, since it
does not take into consideration the compensating effects of critical and subcritical faults.
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Figure 4.25: The reliabilities of TTR, circuits by simulations and TMR, circuits by theory,
with unreliable voters (UVs) and perfect voters (PVs).

So far the simulations of TR, circuits were carried out with the voter circuit in Figure
4.15. We further present the results obtained by using different voter designs. The reliabil-
ities of the TIR circuits, as well as those obtained from the nonredundant form, are plotted
against the error rate of a single NAND gate in Figure 4.26 with p; varying in (10 4,10 ).
Tt can be seen that the TIR circuit with perfect voters performs the best, while the circuit
with single majority gates for voters presents a better performance than those using more
complex designs. In general, better reliabilities are obtained for TR, circuits by using sim-
pler designs in restorative devices. However, a performance degradation due to a complex
voter structure could be compensated by an error correction capacity this structure may
provide. The voter structure in Figure 4.15, implemented with NAND gates, is such an
example. It presents a nearly equivalent fault-tolerance as the simpler voter structure in
Figure 4.22. Though the TIR structures are more reliable than the nonredundant one, this
is only true when the gate error rate is strictly not larger than a threshold. For the TIR
processor model in our study, this value is approximately 10 ? for the voters in Figures 4.15
and 4.22, while it increases with the use of a more compact voter design.

The reliabilities of the quadded circuits, as well as those obtained from the nonredundant
form, are plotted against the error rate of a single NAND gate in Figure 4.27. Somewhat
surprisingly, the performance of the quadded form without any restoring devices is inferior
to that of the nonredundant circuit. This is largely due to the relatively large number of
CGs in the original quadded circuit, as we discussed in the previous section. With the use
of restorative devices, the quadded circuits present better performance and, in particular,
a fairly large boost in reliability is obtained with the use of “perfectly” reliable devices in
restoring circuits.

To compare their performance, the reliabilities obtained from the quadded and TTR
circuits are shown in Figure 4.28. The voter in Figure 4.15 is used for the simulations of
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Figure 4.26: The reliabilities obtained by simulations of the nonredundant and TTR, circuits
with the unreliable voters(UVs) in Figure 4.15, the 2-level voters (2Vs) in Figure 4.22, the
single gate voters (SVs) in Figure 4.23 and perfect voters (PVs).
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Figure 4.27: The reliabilities of nonredundant and quadded circuits by simulations, without
restorings, with unreliable restorings (URs) and perfect restorings (PRs).
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Figure 4.28: The reliabilities of TTR, and quadded circuits by simulations, with unreliable
voters or restorings (UVs or URs) and perfect voters or restorings (PVs or PRs).

the TTR structures. In the region that is of practical interest (roughly where the module
reliability is no less than 0.5), as revealed in Figure 4.28 the TIR circuit with unreliable
voters is more robust in the protection against errors than the quadded circuit without any
restorative devices, and its reliability is comparable with that of the quadded circuit with
unreliable restorative devices. For those with perfect voters or restoring devices, however,
the quadded implementation is superior in reliability to the TIR implementation.

4.8 N-tuple interwoven redundancy (INIR)

Implementing critical components with larger reliable devices is in principle possible in
present CMOS technology. In nanoelectronic or molecular implementation, however, it
would be highly unlikely or inefficient to use CMOS devices in restorative circuits. This
is for two reasons: first, CMOS transistors are large and would decrease the density of the
molecular or nanoelectronic circuit [132], and second, the interconnects between CMOS and
molecular electronics would be a technical challenge [123]. However, the reliability of a TIR,
circuit can still be further improved without employing perfect critical components. One
approach is to use higher-order redundancies. The TIR, as a general class of TMR, can
readily be extended to, say, N-tuple interwoven redundancy (NIR), similarly as TMR. to
NMR. (in contrast, the quadded logic is hardly scalable to higher orders). Thus, the NIR is

a general class of NMR, but with random interconnections.

The degree of redundancy R used to construct an NMR system is determined from the
desired number of faulty circuit modules to be masked, F, by [129]

2+ 1< R<(FE+1). (4.26)
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A grouping parameter, K, is used to design the voter circuit of an NMR. For a 2-level voter
circuit, K indicates the number of inputs of a gate in the first level of the voter [129], and

E+1<K<R-FE. (4.27)

For TMR. and the 2-level voter circuit in Figure 4.22, for instance, we have ¥ =1, R = 3
and K = 2. For a general NMR system, the number of gates in the first level of a voter can
be obtained by selecting K-out-of-R. elements, and is given by

.- <§> _ K!(RL!K)!. (4.28)

In practice, applications of NMR, systems are mainly restricted to odd numbers of replica-

tions, i.e. R =3,5,7,9,....

To investigate the fault-tolerance of NIR, systems, we have studied the NIR, implementa-
tions of the processor structure in Figure 4.16, with R = 3 (i.e. TIR),5,7 and 9. Similarly
to TIR, an NIR voter circuit can follow a design of the 2-level structure in Figure 4.22 or a
design of the single majority gate structure in Figure 4.23. For the 2-level voter design, the
numbers of NAND gates in NTR voters for R = 3,5,7 and 9 (F = 1,2,3 and 4) are 4,11, 36
and 127, according to equation (4.28). We can see that the size of a voter grows faster than
the increase of the redundancy in an NIR circuit. This implies that the performance gain
by a higher degree of redundancy may be degraded by an increased complexity of an NIR
voter. For a single majority gate design, however, the complexity of an NIR voter is kept
the same or slightly increased due to an increase in gate interconnections in a higher order

of NIR.

The reliabilities obtained by simulations are plotted against the gate error rate in Figure
4.29, for the NIR circuits using these two types of voters. As can be seen, indeed, the use
of a higher order of redundancy (R = 5,7 or 9) does not offer a better fault-tolerance if a
2-level voter design is used in an NIR system. In fact, the system degenerates to a level
that is less reliable than the nonredundant one. The higher the degree of redundancy is,
the worse the reliability. If a single majority gate is used as a voter, however, a higher
reliability results in an NIR system with a higher degree of redundancy, i.e., an improved
system reliability is obtained by using a higher order of NIR. These indicate the significance
of voter implementations in an NIR system.

With the use of single majority voters, a reliability improvement can only be obtained
when the gate error rate in an NIR system is lower than a threshold. As revealed in Figure
4.29, this threshold has a higher value in a higher-order NIR, system. For instance, a TIR
system (R = 3) does not afford an advantage over the nonredundant structure until the error
rate of a gate reaches approximately 0.02, while an equivalent NIR, structure with R = 9
provides a better performance as long as the gate error rate is not larger than approximately

0.05.

4.9 Discussion

In section 4 an abstract processor model of chains of multiplexing layers is given and it is
analytically shown that, with a bundle size of 50, the multiplexing processor has a probability
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Figure 4.29: The reliabilities obtained by simulations of the nonredundant and NIR, circuits
with 2-level voters (2Vs), following the design in Figure 4.22, and the single gate voters
(SVs), following the design in Figure 4.23, for R=3 (i.e. TIR), 5, 7 and 9.

of survival of 0.868 for a gate error rate of ¢ = 10 2. Then it is further demonstrated
that a hierarchically reconfigurable architecture of these processors will have an overall
reliability of approximately 99%. In section 7, we present a realistic processor design and
the reliabilities of its quadded and NIR (TTR) implementations are investigated through
a simulation based approach. The proposed simulation procedure has been performed on
various circuit configurations.

With a gate error rate of 10 2, for example, the nonredundant structure of the processor
has a reliability of 0.800 while the TTR structure has a reliability of 0.810 with the use of the
unreliable voters shown in Figure 4.15 and a reliability of 0.875 with the use of perfect voters.
If these TIR processors are used as the building blocks of the reconfigurable architecture as
discussed in section 4 and the majority circuits are made from the same unreliable devices as
the operating circuits, the overall reliability of the architecture would be significantly worse
than that obtained in section 4. The outcome would be that only a smaller error rate could
be tolerated in such an architecture. With the use of TIR with unreliable voter circuits the
largest boost occurs at the gate error rate of 0.005 where the reliability is raised from 0.895
t0 0.928. The system reliability of the architecture cannot be improved by employing higher
orders of NIR with the use of unreliable 2-level voters.

If the critical voter circuits are made of single majority gates or “perfectly” reliable
devices, however, the reliability level of the architecture would be achieved with a TIR
implementation and the required redundancy would be substantially reduced. This system
reliability can further be improved by using a higher order of NIR, with single majority gates.
If we apply 5-tuple interwoven redundancy (5IR) with single gate voters, for example, a
processor reliability of 0.916 will be obtained for a gate error rate of 10 2. Thus, a better
system reliability results than that obtained in section 4. This indicates that the redundancy
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required in the reconfigurable architecture can be reduced by a factor of 10, i.e. from 10?
down to approximately 10, through the implementation of H-tuple interwoven redundancy
in the basic circuits.

4.10 Summary

We have presented a hypothetical defect- and fault- tolerant architecture, in which von Neu-
mann’s NAND multiplexing is implemented in basic circuits and reconfigurable architectures
are hierarchically mapped to the overall system. The system is expected to be working at an
acceptable reliability level at the expense of having about 10? times redundant components.
The triplicated interwoven redundancy (TTR) has been proposed as a general class of triple
modular redundancy (TMR), but implemented with random interconnections. The TIR
implementations of a 1-bit processor element, as well as the quadded implementations, are
presented, and a fault injection simulation is performed to investigate the fault-tolerance,
aiming at a low redundancy design in fault-tolerant architectures. Tt is shown that the simu-
lated TIR circuits present better reliability evaluations than theoretical TMR models, due to
the compensating effects of multiple errors. The TIR. is extended to higher orders, namely,
the N-tuple interwoven redundancy (NIR), in order to achieve higher system reliabilities.
The use of 5-tuple interwoven redundancy leads to an economical redundancy factor of less
than 10 for the system architecture proposed in section 4.

The critical components are very important to the reliability of a quadded processor
structure. The quadded processor structure affords little or no advantage without the use of
any restorative devices or with unreliable restorative devices, but presents a great advantage
with the use of perfect restoring devices. In general, the reliability of a TIR circuit is
comparable with that of an equivalent TMR, circuit while, for certain interconnect patterns,
the TIR structure may present an inferior performance to TMR, due to its interwoven nature
in gate interconnections. The percentage of these configurations that present relatively low
reliabilities depends on the specific structure of a TIR circuit, though in our study this
occurs only at a small probability. In this regard, further measures might be needed to raise
the reliability of a TTR, circuit.

The design and implementation of restorative devices (voters) are important for the
NIR (TTR) structure. In general, a better reliability results in an NIR circuit by using a
simpler design of restorative devices, while a performance degradation due to a complex
voter structure could be compensated by the specific structure itself. With the use of
conventional 2-level voters, as shown in our study, a higher order of NIR presents a degraded
system reliability, because of a significantly increased size of the voters. With the use of
single majority voters, which are favorable for implementations in nanotechnology, the NIR,
structure offers an advantage over the nonredundant form when the device error rate is not
larger than a threshold value, while the optimal gain in reliability is dependent on the circuit
size and component error rate. With the single gate voter design, a better system reliability

is obtained by using a higher order of NIR.

The NIR (TTIR), derived from von Neumann’s multiplexing technique, is particularly
interesting for the physical implementation of molecular nanocomputers. First, an NIR cir-
cuit, unlike NMR, does not require a systematic interconnect pattern. Instead any randomly
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formed static interconnect pattern is workable. This is highly favorable to the stochastic
process of chemical assembly in which randomness is inherent. Second, any logical gate or
even higher level of functioning blocks, e.g. half adders, full adders, or latches, can in prin-
ciple be the basic elements of an NIR structure. (The consideration to arrange critical and
subcritical errors in an alternate order, as we do in the study using NAND gates, is likely
to give the structure a better fault-tolerance.) Third, the components of an NIR. circuit do
not have to be defect-free, because the structure itself, as has been seen, is defect-tolerant.
Hence the NIR structure presents minimum precision requirements on the manufacturing of
devices and interconnects. Moreover, since it might be easy, i.e. with a high probability, to
train a randomly assembled molecular circuit to an NIR or NIR-like circuit, only a modest
configuration time is required after fabrication. Finally, if an NIR circuit module is used as
the building block of a reconfigurable architecture, the reconfigurability can then be limited
to the module or higher levels, instead of gate or device level. This would greatly lower
the difficulty in system testing and fault diagnosis. Since the NIR simultaneously provides
the architecture protection from transient errors in system operation, an NIR, based recon-
figurable architecture is robust against both manufacturing defects and transient faults for
systems based on molecular or nanoelectronic devices.



Chapter 5

Computing with Locally-Coupled
Josephson Circuits

5.1 Introduction

"Historically, parallel processing offered considerable performance advantages in many areas
of computing. Several approaches have been explored and prototype systems were con-
structed. Due to the characteristics of many nanoelectronic devices, such as low power
consumption, low drive capability and easy local interactions, parallel architectures that
are highly regular and locally connected (typically the single instruction and multiple data
(SIMD) computers [86] and cellular nonlinear networks (CNNs) [88]) have been studied as

candidate architectures for nanocomputers.

The STMD computers consist of assemblies of identical, simple processor elements (PFs),
usually each connected to its nearest neighbors in a linear or square array. Instructions are
fed in a parallel stream to every PE and each instruction is executed simultaneously by
PEs. Memories are distributed uniformly across the array such that each PF can access its
local storage directly. SIMD systems have been successfully used in various areas of data
processing (see, for examples, [86], [140] and [89]). The field of high performance image
processing in particular has brought forward archetypical systems, such as the SPA (square
processor array) CT.IP4 [82], MPP [83], and currently the successful systems of T.PA (linear
processor array ) IMAP-CFE [84] and XETAT. (SPA) [85]. The architectural issues of a STMD
array have been discussed in [93] for the implementations of quantum cellular automata

(QCA) and resonant tunneling diodes (RTDs).

Cellular nonlinear networks (CNNs) represent a circuit architecture that is capable of
high-speed parallel signal processing [88]. A CNN is usually a two or three dimensional
regular array of identical cells with analog signals as state variables. The cells are locally
interconnected and directly communicate with each other through their nearest neighbors.
As a real-time signal processing architecture, CNNs have important applications in image
processing and pattern recognition, such as nonlinear digital filters, noise removal, feature
extraction, etc. [88] Because of the local connectivity, which is independent of the number of
cells, the CNN architecture is in principle scalable and reliable. The potential applications

"The content, of this chapter has been published in [41], [42], [43] and [44].
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of CNNs using resonant tunneling diodes (RTDs) [95] and single electron transistors (SETSs)
[96] have been investigated, and a quantum CNN has been proposed using quantum dots
by exploring their local quantum dynamics and global interactions [98].

Quantum computing has been extensively studied as a computing paradigm employing
quantum mechanics [105]. A quantum computer performs a massively parallel processing
on quantum mechanical superpositions of quantum bits or qubits. To perform a quantum
computation, one must be able to prepare qubits in a desired initial state, to coherently
preserve and manipulate superpositions of qubits’ states, to couple qubits together, to mea-
sure their states, and to keep them relatively free from external interactions that induce
noise and decoherence [141]. Fssentially, any two-state quantum system that can be ad-
dressed, controlled, measured, coupled to its neighbors and decoupled from its environment,
is potentially useful for quantum computing. Various physical systems have been proposed
to realize a quantum computer [105]. Among these, mesoscopic superconducting circuits
of Josephson junctions, produced by modern lithography, appear promising for integration
in electronic circuits and for large-scale applications [37], [38]. Recently, the coherent su-
perposition of two macroscopic persistent-current states on a superconducting Josephson
circuit has been observed [39], and the coherent quantum dynamics of this Josephson flux
qubit has been demonstrated [40]. The Josephson circuit has thus come up as a promising
candidate for realizing a quantum computer. These superconducting circuits of Josephson
junctions can also be designed to work in the classical domain. Classical processing circuits
can be obtained by the same manufacturing process and can thus be used as supplemen-
tary or control circuitry affiliated with the circuits devoted to quantum processing. Boolean
logic can further be obtained from the circuits, establishing a classical parallel computing
architecture.

In this chapter, we first present a close look at the Josephson circuit in section 2, fo-
cusing on the properties we are interested in. In section 3, we present a classical array
architecture based on the Josephson circuits. We start the design with elementary logic
gates and end up with a memory and PFE array. In section 4, we discuss issues of quantum
computing with the Josephson qubits and describe a feasibility study on how an architecture
of a heterogeneous system based on the Josephson circuits could be set up to implement
Shor’s quantum factorization algorithm. Although the necessary classical computing could
as well be done with conventional CMOS technology, the study on the Josephson circuits
might bring insight that cannot easily be achieved with other, e.g. spin based, devices for
quantum computers, because of the problems unsolved in combining them with conventional
technologies. In section 5, we propose a quantum CNN architecture using the Josephson
circuits. In this architecture, the quantum dynamics of the Josephson circuit are formulated
as the state dynamics of a CNN cell. Fach cell is thus a quantum dynamical system. The
quantum states of neighboring cells interact with each other only via classical couplings,
which distinguishes a quantum CNN architecture from a quantum computer. In section 6
some implementation issues are discussed. Section 7 concludes the chapter. This chapter is

based on [41], [42], [43] and [44].
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Figure 5.1: The superconducting circuit of Josephson junctions: a scanning electron micro-
scope (SEM) picture (courtesy of J. F. Mooij) and a schematic representation [37].

5.2 The superconducting circuit of Josephson junc-
tions

The Josephson circuit in principle consists of a loop with three Josephson junctions in series
that encloses a magnetic flux that is provided by an external magnet (Figure 5.1 [37]). In
particular when the enclosed magnetic flux is close to half a superconducting flux quantum
®y (=h/2e, where h is Planck’s constant), the system behaves as a particle in a double-well
potential, where the classical states in each well correspond to persistent currents of opposite
sign.

In the circuit, superconductors are coupled with Josephson junctions. The current
through a Josephson junction is

[;=Tpsin~y (5.1)

with
Io = (4me/h)Fy; (5.2)

Iy 18 the critical current of the Josephson junction, F; is the Josephson energy and ~ is the
gauge-invariant phase difference. Two of the junctions in the loop have equal Josephson
energy F; and the third has aF;. If the applied magnetic flux is f®q with f € [1/2 —
fes 1/2 + fe], where f. < 1/4, this circuit has two stable persistent currents. Fnergy levels
and persistent currents of the circuit as a function of applied flux ®.,; are plotted in Figure
5.2 [38]. The amplitude of the persistent currents I, is

With o« = 0.8, /. is about 0.5uA. The self-generated flux due to persistent currents is about
10 *®q [38]. The states of the persistent currents can be changed by tuning the magnetic
flux and magnetic interaction can be made by inductive coupling. The persistent currents
can be used as classical binary bits when the applied flux is far away from the degeneracy
point at ®g/2. The issues of classical computing with the circuits are discussed in section 3.

When the enclosed flux is close to ®/2, the two classical states of the Josephson circuit
are coupled via quantum tunneling through the barrier between the wells. The circuit is thus
a macroscopic quantum system with two base states |0) and |1) with opposite circulating
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Figure 5.2: Fnergy levels and persistent currents of the Josephson circuit [39].

persistent, currents, corresponding to the two lowest energy levels of the circuit, the ground
state and the first excited state. The separation of the energy levels is controlled by varying

the flux bias (Figure 5.2).

The gquantum state of the circuit is given by:
W) = al0)+51), (5-4)
with
of? + 18 =1, (5.5)

where «, 3 are complex numbers, and |«/|, || are probability amplitudes. With regard to
any measurement, this quantum system behaves as |0) or |1) with a probability of |(J/|2 or

18”.

The quantum dynamics of the circuit is described by the time-dependent Schroédinger

equation:
d |\Il
h——— = H |V 5.6
2 — ) (5.6
with the Hamiltonian:
1 A

where [, is the classical magnitude of the persistent currents, f the magnetic flux in the loop
in units of the flux quantum &g, A the energy level repulsion, and o, the Pauli matrices

[38)].

The quantum states of the circuit can be operated by resonant microwave modulation of
the enclosed magnetic flux by a superconducting control line (as /.. in Figure 5.1). Measure-
ment can be made with superconducting quantum interference devices (SQUIDs) [38]. Two
or more Josephson circuits can be coupled through mutual inductance by means of the flux
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Figure 5.3: An inverter (NOT) circuit.

that the persistent currents generate. A wide variety of potential designs for the couplings
are available. For instance, a coupling can be switched on or off via an external transporter
attached with a SQUID loop, as proposed in [37]. The Josephson circuit is suitable for inte-
grations in electronic circuits and scaling to large arrays. The issues of quantum computing
with these circuits are discussed in section 4.

5.3 Classical computing with Josephson circuits

5.3.1 Circuit topology and simulations

In the classical regime, two or more Josephson circuits can be coupled through interactions
of the magnetic field generated by external control currents or the persistent currents. Ba-
sically, two schemes are possible. One is to make a coupling directly through magnetic
interference. The other is to make a coupling assisted with a superconductive flux trans-
porter. The transporter is placed on top of the circuit loops and insulated by a thin layer.
With the parameters suggested in [38], it has been shown that the coupling between cir-
cuit loops is stronger with the facility of a transporter, by evaluating the coefficients that
describe the effective Hamiltonian and determine the interactions of the Josephson circuits
[142]. To make a robust design, however, the layout and parameters of a circuit need to be
carefully considered.

In this study, we propose a circuit topology with the use of a flux transporter for the
coupling of two Josephson circuits, as shown in Figure 5.3. The inductive influences from
control lines on top of the transporter are also considered. In order to independently manip-
ulate a circuit, a control line should be strongly coupled with one loop while weakly coupled
with the other. A circuit with more loops is proposed in Figure 5.4. This circuit is based on
the same topology as the one in Figure 5.3, and the couplings between neighbor loops are
similar to the coupling of the circuit in Figure 5.3. We show in the next section the circuits
in Figures 5.3 and 5.4 actually work as an inverter (NOT) and a not-majority voter (NMV).

The simulations of these circuits were carried out with a software package named Fas-
tHenry [143], which computes the frequency dependent self and mutual inductances and
resistances between conductors of complex shape. The inductances obtained from the cir-
cuit in Figure 5.3 are shown in Table 5.1. As can be seen, the mutual inductance between
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Figure 5.4: A not-majority voter (NMV) circuit.

Table 5.1: The self and mutual inductances of the inverter circuit (pH).

Transporter T.oop 1 T.oop 2 Control line 1 | Control line 2
Transporter =30 My1=9.7 Mi9=9.7 Mio1=3.1 Mia=3.1
T.oop 1 My=9.7 lh=11 My1=-0.069 Mpja=2.3 Mi100=0.028
T.oop 2 Ms=9.7 M79=-0.070 lo=11 M9 =0.028 Miaeo=2.3
Control line 1 |  M1=3.1 Mpua=2.3 | Mj5.1=0.026 Le1=4.3 Me109=0.28
Control line 2 |  Mp9=3.1 | M;1,90=0.026 | M;9:0=2.3 Me109=0.28 le9=4.3

Table 5.2: The self and mutual inductances of the NMV circuit (pH).

Tran 1 Tran 2 | Tran 3 | Toop 1 | Toop 2 | Toop 3 | Toop Out

Tran 1 Ln=30 | Myuo=89 | Mum=11| 83 | -0.099 | -0.071 | M,;=8.3

Tran 2 | Mum=8.9| Lp=30 | Mpm=11| -0.077 | 64 | -0.079 | M,;»=6.5

Tran 3 | Mum=11 | Mym=11 | Lz=30 | -0.070 | -0.099 | 7.3 | M,3=7.3
Toop 1 8.3 -0.089 0.074 | I,=11 | 0.023 | -0.001 | -0.065
Toop 2 0.10 6.5 0.10 | -0.019 | Ly=11| -0.019 | -0.072
Toop 3 0.073 -0.089 7.3 0.001 | 0.023 | I,=11 | -0.064
Toop Out | My;=8.3 | Myyo=6.5 | Myz=7.3 | -0.062 | -0.066 | -0.063 | L,.=11
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a circuit loop and its control line is 2.3 pH?, about two orders larger than the mutual
inductance between the control line and the other loop, approximately 0.026 - 0.028 pH.
The mutual inductance between the transporter and the loops is 9.7 pH, while the mutual
inductance between the two loops is about 0.069 pH. The unnecessary couplings are thus
effectively suppressed. The simulation result of the circuit in Figure 5.4 is shown in Table
5.2. For simplicity, the inductances of control lines are omitted. In this circuit, the mu-
tual inductances of transporters are approximately 9 - 11 pH and the mutual inductances
between the output loop and the transporters are approximately 6.5 - 8.5 pH. These varia-
tions are induced by the physical asymmetries due to the implementation and topology of
the circuit. In a large-scale circuit, this will imply precision requirements on circuit design
and fabrication process. (Given the inductances, the magnetic interactions of the Josephson
circuits can numerically be analyzed. This is presented in the next subsection.

5.3.2 Elementary logic gates
An inverter and a not-majority voter

Consider first the circuit in Figure 5.3. Prepare an initial magnetic flux threading the two
loops at 1/2®,. The magnetic flux in the superconducting transporter is then ®q. If a flux
change A®, due to external sources (e.g. the control currents) is introduced into a loop
as an input, then a clockwise (or anti-clockwise, depending on the orientation of the flux
change) persistent current is generated in the circuit. Since the transporter tends to keep
the total flux unchanged (i.e. to keep it at multiples of a flux quantum) [144], there will be
a current [; generated on the transporter and it satisfies:

ADy + i ly + T My + Teo Mg = 0, (5.8)

where I,; is the self inductance of the transporter, /., and I are respectively the persistent
currents on the two loops, M;; and M,y are the mutual inductances between the two loops
and the transporter. The magnetic flux change in the second loop is then

ADy = [ My + I My + 1o 1s, (5.9)

where My is the mutual inductance between the two loops and Iy is the self inductance of
loop 2. Because the persistent currents on the loops have similar amplitudes and opposite
directions, we have [ == —1.;, and, as can be seen in Table 5.1, My = My and My = 0.

FEquation (5.8) becomes:

The magnetic flux change in the second loop is then:
A(I)Q ~ [tMtQ + [32 LQ ~ *(Mfg/];f)Aq)T + Aq)p, (511)

where AD, = .51 is the flux change induced by the persistent current on loop 2.

If A®, is relatively large compared to A®, (about 10 *®,), say, Ad, = 0.1®4 (cor-
responding to a control current of approximately 900uA), A®, is then negligible. This is

>Here, pH = pico-Henry, a measure of inductance, not acidity.
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usually true for operating in the classical realm. Taking the data in Table 5.1, we have
then A®y ~ —(1/3)Ad,. This indicates that a fraction of the flux change in loop 1 due to
external sources is transported to loop 2, but with a reversed orientation, the characteristic
of an inverter.

Consider next the circuit in Figure 5.4. If a flux change A®,,; (i = 1,2,3) is introduced
in each of the input loops and the magnetic flux generated by the persistent current on each
loop is small compared to A®,,;, we have:

Ay + Ty Ly + Lo Mgy + Tia Mg = 0, (5.12)
ADyy + Tialug + T Myua + Tia Miars = 0, (5.13)
ADyz + T3z + T Myus + Tro Miars = 0, (5.14)

where [4, I19, 13 are the currents on transporters, 41, 9, i3 are the self inductances of
transporters, and M 49, Miis, Migs are the mutual inductances between transporters. The
flux change in the output loop is then given by:

AD,,p m2 Mopi It + Moo lio + Mogz Iz, (5.15)

where My, Mo, Mys are the mutual inductances between the output loop and trans-
porters. Taking the data in Table 5.2, the flux change in the output loop is approximately
AD,, ~ —(1/8 - 1/6)(AP; + AdDy + Ad3). This indicates that a fraction of the total flux

changes of input loops is transported to the output loop, but with an opposite direction.

If the initial magnetic flux in a Josephson circuit is lower or higher than 1/2®,, a flux
change can be introduced by using microwave pulses to activate or deactivate the circuit’s
state. A flux change is then induced in the loop by the reverse of a persistent current, i.e.
AD, = 2/ M, and a flux change results in the second loop. This change can further be
detected by applying microwave pulses, similar to the method used in manipulating the
quantum processing circuits. This method may be applicable when classical and quantum
computing are simultaneously implemented in the Josephson circuits.

Hence, the Josephson circuit has the states + (clockwise current), — (anticlockwise
current), 0 (no current, i.e. suppressed by external control lines), digitally this can be
associated with +1, —1 and 0, in Boolean T.ogic with TRUE, FATL.SE and Don’t Care. Two
or more circuits can be coupled through the interaction of magnetic field. For the circuit
in Figure 5.3, as has been seen, any flux variation in a loop always causes a reverse change
of the magnetic flux in the other loop, and so does the variation of a persistent current.
Togically, this circuit functions as an inverter (or NOT gate), i.e. B = NOT(A). For the
circuit in Figure 5.4, the output loop obtains an “addition” of the flux changes of those it
is coupled to, but with an opposite orientation. This circuit thus works on the principle
of a not-majority voter (NMV), i.e. B = NMV (A1, A2, A3). As revealed in the analysis,
however, a major issue of the Josephson logic is the lack of a signal gain, which might
suggest that only a limited number of logical gates is possible in a Josephson circuit module
without signal restoration. A potential solution to this is to use an external magnetic field
(via the control lines, for instance) to restore a signal, while this issue will not be adressed
any further in our study.
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Figure 5.5: A NAND gate.

X A2

Figure 5.6: A NOR gate.

A universal gate

Now we have an inverter and a NMV. By setting one of its inputs as an instruction bit, a
NMYV can be configured to a NAND or NOR. gate. In Figure 5.5 we have B = NAND(A2,
A3) and in Figure 5.6 we have B = NOR(A2, A3), as indicated in the truth table (Table
5.3). A NMV is hence a universal logic circuit, with which any logical function can be
constructed. In addition, the topology of the NMV circuit can be configured to a fan-in
or fan-out circuit (in a reversed manner though) by setting the instruction bits and control
currents. In fact, the NMV circuit in Figure 5.4 can serve as a data processing unit, which
can be used as a fundamental element in the construction of a large data processing network.

So far the circuits we discussed are coupled to their nearest neighbors, and long-range
communication seems to be a hard task. With the use of a transporter, however, it may be
possible to realize fast data propagating. Assume that a big transporter is put on the top
of a chain, which consists of a number of Josephson loops (Figure 5.7). If each loop in the
chain interacts equally with others, then all the loops switch simultaneously as soon as a
flux variation is introduced into the input loop. In this way, a signal is propagated to all the
cells in a chain at once. Similarly, the status of an array can be obtained by measurements

with SQUIDs (Figure 5.8).



92 CHAPTER 5 COMPUTING WITH LOCALLY-COUPLED JOSEPHSON CIRC UITS

TJA1 | A2 | A3 | B | Function

0 0 01

0 0 1 | 1| NAND
0 1 01

0 1 110

1 0 01

1 0 110 NOR

1 1 010

1 1 110

Table 5.3: True table of NAND and NOR, from NMV.

5.3.3 A processor element (PE) design

A typical design of a processor element (PFE) is usually an arithmetic and logic unit (AT.U),
registers and local memories. The memory ranges from a few bits up to megabytes. PEs
are connected to a central controller that broadcasts instructions and has data buffers for
inputs and outputs. In this section, we present the designs of a full adder (as a simple
AT.U), a memory array and a PF, array structure, all based on the superconducting circuits
of Josephson junctions.

v v
X A B B B B
+ > > S

Figure 5.7: Fast data propagating in the Josephson circuits.

w

Y|

Figure 5.8: Gathering array status with SQUIDs.

An ALU design

An AT.U can be as simple as a full adder, a schematic drawing of which is shown in Figure 5.9.
This adder consists of three NMV gates and two inverters, clocked by control currents. With
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Figure 5.9: A schematic drawing of a full adder.

appropriate configurations, it performs not only an arithmetic addition, but also many logical
functions. To implement the adder, we map its functional blocks onto a Josephson circuit
array and execute a desired function by configuring instruction bits and injecting input data
into the array. A possible implementation is shown in Figure 5.10. Since instructions and
input data can swiftly be switched into the array through fast propagating paths (as data
buses), a Josephson array can readily be configured to perform desired computations.

clk clk clk

Inst/Data In —>
—> Data Out

—> Data Out

Inst/Data In

—
—>
—>
—
—>
—>

Figure 5.10: An implementation of the full adder in a Josephson circuit array.

A memory array

It is arguable that the most important component of modern computing systems is not the
processor, but the memory. Fortunately, the Josephson circuit possesses natural properties
to be a good memory cell, where a bit of information is stored as a persistent current.
Writing and reading of information are carried out with the control currents. Figure 5.11
shows a 4 X 4 memory array implemented in the Josephson circuits with column (ca) and
row (ra) addressing. A decoder for a row selection is shown as well.



94 CHAPTER 5 COMPUTING WITH LOCALLY-COUPLED JOSEPHSON CIRC UITS

ca ca ca ca
Wa R: Wa R: Wa R: Wa R:

4

[ initial set

PC/DC converter [ ] memorycell [[] databus

Figure 5.11: A 4x4 memory array with a 2-bit row decoder.

For a WRITE operation, a bit is fed into the array via the data buses and a cell is
selected by a row address (ra) and a column WRITE address (Wa). The address lines are
designed in such a way that a memory cell is selected only when both of its row address (ra)
and column WRITE address (Wa) lines are active. A memory cell cannot independently be
refreshed by either a row or a column address line. As soon as a cell is activated, the bit in
the data buses is stored in. Other cells are not affected, because none or only one of their
address lines is active.

For a READ operation, the cell adjacent to the being-accessed memory cell is selected
by both of its row address (ra) and column READ address (Ra). Since other cells in the
same column are suppressed during reading, this cell will get the stored information from
its adjacent memory cell, without interacting with its neighbors in the same column. As
soon as a bit is obtained, it is shifted out via the data bus.

A two-bit address decoder is as well shown in Figure 5.11. This decoder consists of rows
of Josephson cells. Tn each row the left-most cell is fixed in an active state, and each cell
is coupled to its nearest neighbors in the row. Address signals (adl and ad2) arrive at the
PC/DC converters, by which the persistent currents (PCs) are translated into DC signals
carried on control current lines. The control lines are inductively coupled to the cells in the
decoder, and are designed in such a way that a cell is activated or suppressed by positioning
its control line on one or the other side of the cell. The signal in the left-most cell is then
passed through an activated cell while blocked by a suppressed one. By systematically
arranging the control lines, as shown in Figure 5.11, it is possible that, for any address
signal, there is only one row in the decoder, capable of passing a PC signal from one end
to the other. The decoded information, i.e. the passed PC signal, is then transmitted into
a PC/DC converter, by which it is translated to a DC signal that is transmitted into the
memory array as a raw address (ra).
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Figure 5.12: An implementation of a PF, array on the Josephson circuits.

A PE design

If the couplings among the Josephson circuits are well established, then each of them can
be manipulated and addressed by the control currents, and, hence, data processing, storing
and communicating can be realized in a Josephson array with the switchings of control
currents. We present, an implementation of such a Josephson processing network, an array
of PEs attached with local memories, as schematically shown in Figure 5.12. Instructions
and data are fed into the array while intermediate status and outputs are read out, possibly
only via the edges of the array. The advantage of the structure is its extremely simple and
regular topology. The manipulation of the array is accomplished by configuring the circuit
states as inputs and instructions, and by applying the control currents as addressing and
clock signals. The extreme simplicity in structure is thus accompanied by an enormously
increased complexity in configuration or programming after fabrication.

Quantum-effect devices perhaps have more variability in their characteristics than con-
ventional ones. We used a simulation tool, FastHenry, to facilitate the designs of elementary

Figure 5.13: A multi-layer Josephson processing array.
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Gate length (um) | Memory (MBits/cm?) | On-chip clock (GTz)
CMOS in 2002 0.08 700 2.5
Josephson in 2077 4 25 100

Table 5.4: A comparison of the Josephson superconducting and CMOS technology.

logic gates. In a large-scale network, however, more factors are involved, and an increased
complexity in magnetic interference will result. Further fault-tolerant measures will be
needed in order to cope with the inaccuracy induced by fabrication and the imprecision of
magnetic field or microwave pulses applied during operation. In this regard, we envision
a multi-layer Josephson array (Figure 5.13), in which redundancy schemes, e.g. consensus
collecting or error correcting codes, can be incorporated.

Nevertheless, difficulties remain in the manipulation of a Josephson array, due to the
electromagnetic interference among devices. It is unknown if a controller that provides
effective control signals will be available. Furthermore, we compare the properties of the
Josephson superconducting technology with those of current CMOS technology, as in Table
5.4. As can be seen, the proposed Josephson technology does not outperform CMOS in terms
of device densities of logic and memory. This makes the hope to build a computer with the
Josephson circuits rather gloomy. However, the Josephson memory, though bulky, appears
to be a promising candidate for an ultra-fast memory structure, because of the properties of
high switching speed, low power consumption and relatively simple and regular structure. Tt
may be integrated with circuit components based on other technologies in a heterogeneous
architecture or a System-on-Chip (SoC) based architecture.

5.4 Quantum computing with Josephson circuits

5.4.1 Introduction to quantum computing

Classical computation based on Boolean logic acts on classical bits, while a quantum com-
puter composed of quantum logic gates performs operations on quantum bits or qubits. Fach
qubit represents an elementary unit of information. Corresponding to the classical bits of
“0” and “1”, a qubit has a basis {|0),|1)} for computation. However, unlike a classical bit,
which is one of the two distinguishable states “0” or “17, a qubit exists as a superposition of
basis states, represented mathematically as a complex linear combination of the two states

|0) and |1), i.e.
T = a|0) +b1). (5.16)

With regard to any measurement, the superposition above behaves like |0) with a probability
|a,|2 and like |1) with a probability |b|27 and we have

|a|” + |b” = 1. (5.17)
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More generally, while a string of I, classical bits exists in any of the Boolean states x =
000...0 through 111...1, a string of I, qubits exists in any state of the form

11...1

)= > cln), (5.18)

z—00...0

where ¢, are complex numbers such that

>, len” = 1. (5.19)

Consider a register composed of three physical bits, for instance. A classical 3-bit register
can store one of eight, different numbers, i.e. one of the eight possible binary configurations
000,001,010, ...,111 that represent the numbers 0 to 7. A quantum register composed
of three qubits can store up to eight numbers at the same time, in the form of quantum
superpositions as exhibited in equation (5.18). Mathematical operations can be executed
at the same time on all of the numbers held in the register and the initial superpositions of
numbers evolve into different superpositions during a computation. In a quantum computer,
therefore, the same mathematical operation can be performed on, say, 2" input numbers
in a single computational step, and the result is a superposition of all of the corresponding
outputs. Tt is this massive parallelism inherent in a quantum computation that suggests that
a quantum computer may outperform any classical computer for solving some previously
intractable problems.

A quantum computation can be defined as a unitary evolution of a quantum network
that takes its initial state into some final states [145]. A quantum network is a quantum
computing device consisting of quantum logic gates, and each quantum logic gate executes a
unitary operation on one or more qubits. A quantum computer implements a unitary matrix
operation on the quantum state of the quantum computer’s register. Quantum computations
are then always accomplished by building up quantum logic circuits out of quantum logic
gates.

In the Josephson circuit, the persistent currents create a magnetic flux. The flux states
obey all five functional requirements for a quantum bit: (1) The superconducting circuit is
at a sufficiently low temperature that the flux qubits can easily be prepared in their ground
states. (2) The flux states can be manipulated precisely with magnetic fields. (3) Two flux
qubits can be readily coupled inductively, and the inductive coupling can be turned on and
off. (4) The flux of the states can be detected and measured using a SQUID. (5) The flux
states can be made insensitive to background charges and effectively decoupled from their
environment [38].

All the ingredients for quantum computation are now available. The superconducting
persistent current qubits can be initiated, manipulated, coupled to each other, read out
and insulated from the environment. A quantum computer is thus in principle possible.
As in the case of classical computers, certain sets of quantum logic gates are universal in
the sense that any quantum computation can be performed by wiring members of them
together. In the following we start with such a set of universal quantum gates, a single
qubit rotation and a controlled-NO'T' gate, or CNO'T, then present quantum sum and carry,
quantum Fourier transform, and finally propose a draft structure of a quantum computer
for an implementation of Shor’s factoring algorithm [102].
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Figure 5.14: Single qubit rotation.

B =

Figure 5.15: A controlled-NOT (CNOT) gate.
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5.4.2 Elementary quantum gates

0t — costo — isinto for some Pauli

matrix o = ag,, + bo, + co., where a®> + b*> + ¢* = 1. The persistent current qubit can be
rotated precisely by apply a magnetic pulse for a certain duration (Figure 5.14, the unitary
matrix describing the unitary transformation of states is also shown). For example, a pulse
would be at 4 GHz and last for about 125 nsec.

An arbitrary single qubit rotation can be written as e

A controlled-NOT is a two-qubit quantum logic gate that flips the second qubit if the
first qubit is in state 1. That is, it takes [00) — > |00), |01) — > |01), |10) — > |11), |11)
— > |10) (Figure 5.15). By exploring the magnetic interference of two qubits, a so-called
controlled-rotation gate can be constructed, as shown in Figure 5.16. The target bit in a
controlled-rotation gate can be precisely rotated according to the state of the control bit.
This is characterized by a unitary matrix A,. Given a 7 pulse, in particular, a controlled-
NOT operation is obtained from a controlled-rotation gate. It has been shown that a
controlled-rotation gate is universal for quantum computing and the controlled-NOT gates
can be combined with single qubit rotation gates to realize any quantum logic function.

Up to this moment, a single qubit has been measured [39] and the coherent quantum
dynamics have been demonstrated [40] in the quantum transport laboratory of applied
physics at the TU-Delft. A double-qubit circuit has been fabricated and experiments are
being performed [146]. With a controlled operation, it becomes possible to implement a
simple Deutsch-Jozsa (D-J) algorithm, which has been demonstrated in an NMR, quantum

computer [147].
10 O 0
A = 01 O 0
AR 10 0 icowr sinx
@ 0 0 sinr icosx

Figure 5.16: A controlled-rotation gate.
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alblc|a|b|c
010]00]010
0jo0j1(0{0]1
017010110
O(1r(1yof1y1
11010} 1(0]0
1101} 1]0]1
110111
1|1 |1)1|1]0

Table 5.5: The truth table of Toffoli gate.

The Deutsch-Jozsa (D-J) algorithm [148] determines whether an unknown function is
constant or balanced. For a function f(z) that transforms N bits of information to one
bit, it is a constant function if output f(x) = 0 for all x, or f(z) = 1 for all z; it is a
balanced function if output f(x) = 0 for exactly half of its inputs and f(z) = 1 for the
remaining inputs. On a classical computer 2% ' 4 1 function calls are needed to determine
with certainty whether a function is constant or balanced, while the D-J quantum algorithm
determines whether an unknown function is constant or balanced using only one function
call. This algorithm illustrates that a quantum computer can perform a computation in less
steps than any classical computer. Since the simplest case of the algorithm can basically be
carried out on a controlled-NO'T' gate, it can be the first step for the Josephson qubits to
be in practice for a quantum computation.

5.4.3 Quantum sum and carry

Quantum computation performs unitary transformations and any unitary operation is re-
versible. This is the reason that quantum arithmetic cannot be directly deduced from its
classical Boolean counterpart (it is obvious that most of classical logic gates are not re-
versible). Quantum arithmetic must be built from reversible logical components.

Before we turn to quantum sum and carry, we first present a 3-qubit quantum gate, the
Toffoli gate or the controlled-controlled-NO'T' gate. The truth table of the Toffoli gate is
shown in Table 5.5. The target bit ¢ undergoes a NO'T operation when the two control bits
a and b are both in state 1, and is unaffected when the two control bits are in other states.
The Toffoli gate can be constructed from the controlled-rotation and controlled-NO'T' gates
[149], as depicted in Figure 5.17, where time flows from left to right.

The addition of two quantum registers |a) and |b) can be written as |a,b) — > |a,a + b).
As the input (a,b) can be reconstructed from the output (a,a + b) and there is no loss of
information in the process, this computation can be performed reversibly. The quantum
sum of three qubits can be implemented with two CNOT gates while the quantum carry is
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Figure 5.17: The Toffoli gate and its implementation.

obtained by using two Toffoli gates and one CNO'T gate, as shown in Figure 5.18, where
times goes from left to right. During a computation, a sequence of microwave pulses with
different, frequencies and durations is applied on each qubit. Those in resonance will switch
their states. An implementation of such a process for the quantum carry is schematically

shown in Figure 5.19.

Quantum sum and carry are basic elements for a quantum computation. Many func-
tional quantum networks can be based on these two primitives. A modular exponentiation
Upn|a,0) — > |a,2%(mod n)), probably the most significant part in Shor’s quantum factor-
ing algorithm, can be constructed from the networks of quantum sum and carry [150].

5.4.4 Quantum Fourier transform

The discrete Fourier transform modulo ¢ is a unitary transformation in ¢ dimensions. Con-
sider a number ¢ with 0 < a < ¢, we perform the transformation that takes the state |a) to

the state
qg 1

1 .
e Z exp(2miac/q) |c) . (5.20)

c—0

If we take ¢ = 2!, an integer can be represented in binary logic as |a; 1a; 5...aq). For
the quantum Fourier transform, we only need to use two types of quantum gates [141]. One
of these gates is a single qubit rotation X, which operates on the jth bit of a quantum

C, Cn
a a
a, a,
C (o b
b N DN n N b,
Cra ——P——D——
A. Sum B. Carry

Figure 5.18: Quantum sum and carry.
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Figure 5.19: Quantum carry implemented by microwave pulses.
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Figure 5.20: An implementation of quantum Fourier Transform.
computer:
1 |1 1
X;=—= i (5.21)

V2 11 1

Another is a controlled-rotation gate Y}, which operates on the bits in positions j and
k with 5 < k:

100 0
010 0
Yik = , (5.22)
001 0
000 e i

where 0, ; = m/2" 1. To perform a quantum Fourier transform, we apply the gates X; in
reverse order from X; 1 to Xy, and between X, and X, we apply all the gates Y, where
k > j. A part of the transform is implemented as shown in Figure 5.20. By applying this
sequence of transformations, we obtain a quantum state

1 ,
P Z exp(2miac/q) |b) , (5.23)
c—0

where b is the binary number obtained by reading the bits of ¢ from right to left.
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Al | rea Al 2t | )
1 1 0 1 1
1 4 4 1 8 8
2 16 16 2 64 1
3 64 1 3 512 8
4 | 256 4 4 | 4096 1
5 | 1024 16 5 | 32768 8
6 | 4096 1

Table 5.6: Factoring 21: (a) x=4 and (b) x=8.

Since both the X and Y gates can be implemented by single qubit rotation or the
controlled-rotation gates, we estimate that it would eventually be possible to realize the
quantum Fourier transform with the Josephson qubits.

5.4.5 A draft structure of a quantum computer

Although there is still a long way to go before a useful quantum computer comes into
practice, people believe that it can solve problems that are intractable for present classical
computers. One of these problems is the prime factorization of large numbers. For factoring
an integer n, the best factoring algorithm available for classical computing takes a run
time exp(c(log n)'/?(loglogn)??) for some constant c. Tt is an exponential-time algorithm,
which is inefficiently computable with the growing of integer n. The quantum algorithm for
factoring by Shor takes O((logn)?(loglogn)(logloglogn)) steps on a quantum computer,
along with some polynomial (in logn) processing time on a classical computer [102], [145].

To factor an odd number n, Shor’s algorithm first finds the least integer r such that
7" = 1(modn), i.e. the period of f(A) = z? for A from 0 to n — 1, where = is random,
with # < n and ged(xz,n) = 1. Here, gcd(a,b) is the greatest common divisor of a and b
and it can be effectively computed with Fuclid’s algorithm on a classical computer. Then
it finds factors of n by calculating ged(z™/? — 1,n) and ged(z7/? + 1,n) if  is even and
2"/? % +1mod n, otherwise, it repeats the algorithm.

For example, factoring n = 21. First we choose 2 = 4, and calculate f(A) = 44 mod 21
for some A, then we obtain the period = 3, as the data shown in Table 5.6 (a). Here r is
not even, so we repeat the algorithm with 2 = 8. Calculating f(A) = 84 mod 21, we obtain
r = 2, as in Table 5.6 (b). Since r is even and z"/? = 8, we calculate _ch(mr/2 + 1,n) and
ged(x"/? — 1,n), and obtain ged(9,21) = 3 and ged(7,21) = 7, the two factors of 21.

To perform Shor’s factoring algorithm, we start with two quantum registers, one of which
is initiated to be in the superpositions |a) and the other is in the state |0). We compute
2%(modn) in the second register and keep the first register in the |a) state, i.e. performing

the modular exponentiation

Upnla,0) — > |a,2%(modn))
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Figure 5.21: A draft structure of an array-based quantum computer.

which can basically be built on a reversible network of quantum sum and carry [150]. Next,
we perform the quantum Fourier transform on the first register to get period r. Finally, we
calculate the factors of n with Fuclid’s algorithm by classical computing,.

We see that in the realization of Shor’s factoring algorithm classical computing is not
dispensable; in addition, the experimental realization of a quantum network can be signif-
icantly simplified by using classical substitutions. An ultimate architecture for a quantum
computer seems to be an integration of both quantum and classical components. As has been
seen, the superconducting circuits of Josephson junctions can be designed to independently
perform quantum and classical computing. We may eventually be able to build a hetero-
geneous Josephson array computer, with the quantum computing performed in the heart
of the array and accompanied by classical computing components. A possible structure is

shown in Figure 5.21.

Shor’s factoring algorithm is probabilistic. Preliminary computations are needed for
the quantum processing and the (intermediate) outputs of the quantum computing need
to be processed classically in order to obtain appropriate results. This process has to be
repeated if necessary. For the architecture in Figure 5.21, the classical processing network
serves as such a pre- and post-processor for the quantum computing network in the center
of the system. The interface between classical and quantum processing will be crucial for
a practical implementation. Because classical and quantum computing based on the same
device can now be studied simultaneously, which is impossible in certain circumstances, e.g.
in the study of ensemble spin-based quantum computers, the array-based architecture of
Josephson circuits is a good vehicle for studying the quantum computer paradigm, albeit
that the possibility to realize such a quantum computer greatly depends on the progress in
experiments on fundamental quantum devices and circuits.
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5.5 Quantum cellular nonlinear networks (CNNs) us-
ing Josephson circuits

5.5.1 Cellular nonlinear networks (CNNs)

A CNN is an N dimensional array of analog circuit cells with identical components and
structures. Fach cell is a dynamical system. Tt interacts directly with its neighbors within
a radius and, indirectly, with other cells through a global interaction of continuous-time
dynamics. The dynamics of a CNN is determined by a set of state dynamics of each cell in
the array [88]. The state dynamics of a cell, indexed by k, is described by the CNN state

equation:
d.’)?k

— = f) + > iy + > hiluy), (5.24)

ier jer
where 1, is the state variable, and y;, 1; are inputs and outputs of neighboring cells within
the area of effective interactions. The cell interactions, as can be seen, are implied in the
linear or nonlinear functions (g; and h; in equation (5.24)) of the variables associated with
neighbors (y; and wu; in equation (5.24)). The state variable of a cell is thus completely
determined by its inputs and the synaptic effect of neighboring interactions. The output of
a cell is given as a function of the state variable:

uy = q(Tr)- (5.25)

The CNN state equation (5.24) can be readily adapted to applications of image processing
and pattern recognition [88], and the CNN architecture, when attached with local memories,
can be used to construct a CNN universal machine, which is as universal as a Turing machine

[94].

5.5.2 Formulating Josephson quantum dynamics as CNN state
dynamics

For a Josephson circuit based CNN (schematically shown in Figure 5.22), the cell dynamics
are obtained as the quantum dynamics of the Josephson circuit. The state variable of a cell,
indexed by k, is then:

W) = o [0) + B, [1) (5.26)
with
o |” + 18, " = 1. (5.27)

The variable |¥}) can be effectively represented by the unit three-dimensional sphere, often
called the Bloch sphere. For the Bloch sphere representation, we have

)
v, = COS Ek (5.28)

and 9
B, = €5 sin Ek (5.29)
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where 6, and ¢, are real numbers [105]. T.et A, = cos % and B, = sin % then we have
and
B, = Be'%*, (5.31)

where A, B, are amplitude variables and ¢, is a phase variable.

A variety of methods is available for the coupling of Josephson circuits (e.g. to use flux
transporters [37]). To a first analysis, however, we model the coupling as the interaction
of flux generated by the superconducting currents through mutual inductance. Due to the
neighboring couplings, the magnetic frustration of a cell k (as the one in the center of Figure
5.22) is changed over the initial frustration fy to

Jr :,f0+2]\/[m7f,/¢0, (5.32)

ier
where [; is the persistent current of a neighbor circuit and M;;, is the mutual inductance.

The inductive couplings produce a magnetic flux change, which causes an energy shift
in the circuit. If we assume that the coupling between cells is only via classical degrees of
freedom, i.e., that there are no quantum entanglements among cells, a Josephson network is
then an array of individual quantum systems. The magnetic frustration change of a circuit
under interaction is dependent on the states of the circulating currents of neighbors. This
change, incorporated in the Hamiltonian, can be described by including a coupling factor
F'(A;), a function of A;, in equation (5.32). The Hamiltonian of a cell & becomes:

1 A
Hy = 1,((fo = 5)%0 + > F(A)MyT)o — 50 (5.33)

ier

The dynamics of the Josephson network is simply described by a set of Schrodinger
equations for each cell,

d|¥,)
dt

ih = H, |T;). (5.34)
Taking equations (5.26), (5.27), (5.30), (5.31) and (5.33), the Schrédinger equation (5.34)

can be written as a couple of equations for the amplitude variable A (or By, which is
essentially equivalent to Aj) and the phase variable ¢, respectively:

dA A
hd—: :—5@/1—A§singok, (5.35)

doy, A AL
TR I((fo q)o—l-z M l) + Qﬁcosgok. (5.36)

ier k

As can be seen, equations (5.35) and (5.36) are analogous to the CNN state equation
(5.24). The Josephson CNN cell dynamics are characterized by two variables Ay and ¢,.
When a measurement is made, the phase information carried on ¢, is discarded, and the
amplitude information carried on A, is obtained as the probability amplitude. The output
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Figure 5.22: A quantum CNN using Josephson circuits.

is therefore the probability that a cell behaves as one specific state of the persistent currents.
The output equation is given by:
u, = A7 (5.37)

Inputs are prepared in the form of the cells’ initial states. Fach cell is influenced by its
neighbors through mutually inductive couplings. The mutual inductance between cells can
simply be a function of their physical distance; the synaptic effect of couplings is therefore
a weighted sum of neighboring couplings, as shown in Figure 5.22, where the grey levels of
cells imply different coupling weights.

5.5.3 Simulations

To illustrate how a Josephson circuit based CNN works, we present a study on a simple
network.

Consider the network in Figure 5.22. Fach cell is interacted with neighbors through the
flux the persistent currents generate. The varying of the currents induces flux changes in
the neighboring circuits, and therefore change the energies of those circuits. For the layout
shown in Figure 5.22; the flux change in one cell will result in an opposite effect (i.e. a flux
change with an opposite direction) on neighbors. The state of a cell can be manipulated by
applying microwave pulses at a frequency equal to the energy splitting of the circuit; the
microwave amplitude and pulse length determine the relative probability of the cell being
in each base state.

Since every cell in the network has the same state equation as others (without loss of gen-
erality, we ignore boundary effects), the global properties of the network can be understood
by studying the local properties of a single cell. We further assume that each cell interacts
only with its nearest neighbors, i.e., that the interaction with far away cells is ignored. Thus
we focus the study on a 3 x 3 network, as the one encircled in Figure 5.22.

We start the simulation with all cells being initially prepared in the ground state. To
study the state dynamics under interaction, we apply microwave pulses to promote the states
of a number of cells in the network to the first excited state, inducing the network to evolve
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due to interactions. Then we observe the changes of the state dynamics of cells. To a first
approximation, we focus on the quantum dynamics of the cell (2,2), i.e. the cell in the
center of the network, and assume that other cells are static either at the (initial) ground
state or at the (promoted) first excited state.

In this simulation, the cells are operating at a magnetic field just below a half quantum
flux (0.5%q), namely, 0.496®, (i.e. fo = 0.496). Other circuit parameters are adopted from
[40], as @ = 0.8, F; = 260 GHz and A = 3.4 GHz. The mutual inductances are obtained
by FastHenry to be approximately 0.56 pH for adjacent cells and 0.14 pH for diagonally
adjacent cells.

The actual state dynamics of cell (2,2) depends on the synaptic effects of the states of
neighbors as well as its initial state. If the initial state of each cell (at £ = 0) is prepared at

the ground state, we have |¥,;(0)) = |0), i.e.,
A77(0) = 17 3017(0) - 07 7’77 € [17273]7

If, at the same time, a number of the cells (except the cell (2,2)) are excited to the first
upper state, Le., the states are inverted to as |¥;;(0)) = |1), the initial conditions for the
network become then:

A77(0) = 07 9017(0) = 07 fOT chosen, 7:7.7.7
Aij(0) = 1, ¢;(0) =0, otherwise.

77

For example, consider the three distinct sets of initial conditions in Figure 5.23 (al, a2,
a3), shown in the form of (A;;(0),¢,;(0)). Because of the inverse of the persistent currents,
the coupling factor F'(A;;) = —2 for each A;;(0) = 0; and F'(A,;) = 0 for each A;;(0) = 1.
In all the cases, the initial states of cell (2,2) are the same, as A (0) = 1, ©ye(0) = 0. The
neighbors of cell (2,2) are fixed in the state of A;;(#) = 0 or 1, which can be interpreted as
the pixel values of binary images [89]. In Figure 5.23, each cell is shaded by encoding its
content to a grey-level image pixel: (1,0) = black, (0,0) = white and (0.7, 7) = grey.

The amplitude state dynamics of cell (2,2), Agy(?), is plotted in Figure 5.24 (al, a2,
a3), for the three different sets of initial conditions. The minimum values of the amplitude
variable, as can be seen, are approximately 0.84, 0.87 and 0.89, corresponding to different
initial conditions. Although the variations of these values, due to the relatively weak coupling
between cells, are rather small, they clearly indicate that the synaptic effects of different
sets of neighboring couplings result in the different changes of cell dynamics, given the same
initial states. The variation introduced by neighboring interaction can be strengthened by
exploring other coupling methods (e.g. to use flux transporters).

Furthermore, the oscillation frequencies of the cell states are distinguishable. This means
that a cell may be individually addressed and its state may be manipulated by microwave
pulses during data processing. In other words, a CNN network based on Josephson circuits
can be potentially programmable.

The dynamics of a cell also depends on its initial state. If cell (2,2), for instance, is
initially prepared at a superposition of the states |0) and |1) at £ = 0, i.e. |Wyy(0)) =

- (10) — [1)), the state variables are then Aq(0) = = = 0.7, 0) = m. TIf the initial
/2 V2 Po9

conditions of other cells are assumed to be unchanged, as shown in Figure 5.23 (b1, b2,
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Figure 5.23: The six sets of initial conditions; cells are encoded as grey-level image pixels

and shaded in the figure as (1,0) = black, (0,0) = white and (0.7, 7) = grey.

b3), the amplitude state dynamics of cell (2,2), Agy(t), is plotted in Figure 5.24 (bl, b2,
b3), for the three different sets of initial conditions. The minimum values of the amplitude
variable, as can be seen, are approximately 0.20, 0.26 and 0.29, which distinguish these state
dynamics, resulting from the different initial conditions in Figure 5.23 (b1, b2, b3).

Tt is interesting to notice that the oscillation frequencies obtained from Figure 5.24
(al) and Figure 5.24 (bl), Figure 5.24 (a2) and Figure 5.24 (b2), Figure 5.24 (a3) and
Figure 5.24 (b3), are identical. This indicate that, with the same configurations (circuit
parameters, interaction conditions, etc.), a CNN network based on Josephson circuits will
produce different output states, according to different inputs or initial states.

5.5.4 Summary and issues

Quantum CNNSs using superconducting circuits of Josephson junctions have been presented.
The local quantum dynamics of the Josephson circuit is used as the state dynamics of CNNs
by formulating the Schrédinger equation to a set of equations for an amplitude variable and
a phase variable. The states of a cell are controlled by changing the enclosed magnetic flux
of the circuit. Cells interact with their neighbors through the mutually inductive couplings.
Output states are measured with superconducting magnetometers (SQUIDs). This quantum
CNN architecture presents a novel computing paradigm, other than quantum computing and
classical computing based on binary logic, for the use of Josephson circuits.

The interactions of variables of cells are assumed to be only via classical degrees of
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Figure 5.24: The state dynamics of cell (2,2) corresponding to the initial conditions of Figure
9.23.

freedom, i.e., no quantum entanglements among cells. This assumption distinguishes a
quantum CNN architecture from a quantum computer. Tt is yet unknown if this assumption
is feasible in an actual implementation.

Since any interaction with the external environment introduces decoherence to quantum
coherent states, it would be difficult to keep the local coherent states away from decoherence
under the circumstances that each Josephson circuit in an array is coupled with its neighbors
and the control and measurement circuitry. In general, difficulties remain in the controlling
of the states, in inserting inputs and measuring outputs of a large network, due to the
decoherence problem. In the next section, a magnetic field gradient scheme is proposed for
operations on integrated circuits of Josephson junctions.

5.6 Implementation issues

As noted in previous sections, requirements for a Josephson circuit based system are that
the cells can be prepared in well-defined quantum states, that the states can be precisely
manipulated according to certain initial conditions (as inputs), and that the states can be
measured and read out (as outputs).
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The gquantum state of a Josephson circuit is manipulated by radiation in resonance of
the energy difference of the two base states. This energy difference is typically a few (GHz.
Microwave pulses can be injected into the circuits for control operations.

Josephson array oscillators consisting of parallel arrays of Josephson junctions have been
studied as on-chip oscillators controlling quantum circuits of Josephson junctions [151]. The
oscillators have a single frequency, and the frequency, as well as the amplitude, is tunable by
independent variables. Oscillators based on RSFQ (rapid single flux quantum) technology
have also been proposed for the driving and controlling of Josephson circuits [152], [153)].
Measurement, can be carried out by weakly coupling one or an ensemble of the Josephson
circuits to a SQUID. These schemes aimed at an ultra-fast, high precision and on-chip
control of integrated quantum circuits.

For the fabrication of integrated Josephson circuits, there are basically two strategies.
One is to incorporate the superconducting control circuitry on a single chip as the Josephson
circuits. The other is to develop a flip-chip, i.e., the working Josephson circuits are fabricated
on one chip and the measurement and control circuitry are fabricated on another chip; the
two chips can then be bonded to be inductively coupled [154].

In both methodologies, however, the mechanism of handles to address each individual
cell (either in a quantum CNN or a quantum computation circuit), parameterize it, or input
signals to it, have to be developed. In this section we present a magnetic bias scheme that
makes it possible to individually address a cell. This scheme is inspired from the MRI
(magnetic resonance imaging) technique [155].

Since the energy difference required for resonance in frequency is determined by the
enclosed flux of a Josephson circuit, we would be able to control each individual cell if each

of them has a unique magnetic flux. A gradient in the magnetic field will help to accomplish
this.

A magnetic field gradient is a variation in the magnetic field with respect to position. A
one-dimensional linear magnetic field gradient (¢, along the z axis, for example, indicates
that the magnetic field at position z is given by a linear equation:

B, = Bo+ 7+ G, (5.38)

where By is the magnetic field at the initial reference point. A linear magnetic field gradient
(z, along the y axis similarly gives the magnetic field at position y.

Applying simultaneously the linear magnetic field gradient (7, and G, to a two-dimensional
array leads to a magnetic field distribution at the (z,y) plane, described by:

If a cell in this array is regarded as rectangular, and it has values in the coordinates as
(21, 29) and (y1,y9), its enclosed flux will be:

Y2 2
F = / / By, dxdy. (5.40)
Sy Jx

Simplifying equation (5.40) with (5.39), and assuming the area of the cell S = (xy —
21)(ya — y1) and the center of the cell (x.,y.) at x, = %(T1 + 79) and y, = %(1/1 + 1), we
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obtain the enclosed magnetic flux as:

Fr=SBo+z. Gy +y.-Gy). (5.41)

The area of each cell, S, can be seen as the same, if the variation introduced by the
fabrication process is ignored. The magnetic flux in each cell is then distinguished by the
variables indicating its position, z. and y.. The gradient parameters (=, and (, can be
chosen so that the magnetic flux enclosed in each cell is unique. The magnetic field gradient
can be realized through a pair of gradient coils with currents of opposite directions.

The use of a magnetic field gradient provides a unique magnetic bias to each cell, so that,
when single frequency microwave pulses are applied to the whole array or a chip, only one
cell will respond due to the resonance in frequency. Tt is also possible to have a number of
selected cells respond at one frequency by tuning the parameters (¢, and GG,,. If, for instance,
only the gradient G, or G, is used (by setting G, = 0 or G, = 0), the cells in a column or
a row will be addressed by a single frequency radiation.

The magnetic field gradient scheme presents a practical approach for the manipulation
of an integrated circuit of Josephson junctions. However, the use of magnetic field gradient
presents challenges. First, each cell has a different flux bias, which implies each cell operates
with different energies. This will increase the complexity in setting circuit parameters and
implementing algorithms. Second, to individually manipulate a cell, microwave pulses with
different frequencies are injected in a sequential order. Other measures are required to have
cells working in a synchronized pattern. Finally, the accuracy and stability of a flux bias
that can be achieved by using a magnetic gradient need to be investigated.

5.7 Summary

A classical SIMID) computer architecture and an array-based quantum computer structure
have been presented as possible applications of superconducting circuits of Josephson junc-
tions. The classical computer may serve as a pre- and post-processor for the quantum com-
puting performed in the heart of the Josephson circuit array, establishing a heterogeneous
quantum /classical computer for, e.g. an implementation of Shor’s factoring algorithm.

Quantum computing represents an important application based upon the reversibility
of computation [156], while reversible computing is also of interest in classical digital sys-
tems where little or no energy is dissipated [157]. The Josephson circuit, operating at a
low temperature and consuming little power, might be favorable for the implementation
of a reversible circuit. A reversible network could thus be obtained from the supercon-
ducting circuits and perform both quantum and classical computations. These issues on
reversible computing are, however, not specifically discussed in our study, and await further
investigations.

A guantum CNN architecture using the Josephson circuits, with the quantum dynamics
formulated as the CNN state dynamics, has been proposed, presenting a novel computing
paradigm for Josephson circuits. Since classical computing architectures (STMD arrays),
quantum computing architectures and semi-quantum computing architectures (quantum
CNNs) can be simultaneously studied on the same device, the Josephson circuit is a good
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vehicle for investigating the architectural issues of quantum and nanoelectronic computer
systems, independently from the question of which device will be the ultimate implementa-

tion vehicle.



Summary

The progress in CMOS technology has entered the sub-micron realm, and the technology
will approach its limits within about 15 years. Already various novel information processing
devices, based on quantum mechanical effects at the nanometer scale, have been widely in-
vestigated and some have been successfully demonstrated at the circuit level. This advance
in nanoelectronic devices has also motivated efforts in the research of nanoelectronic and
quantum computer architectures. Due to the components’ poor reliabilities, these architec-
tures will have to be robust against device and interconnect failures. In order to avoid power
dissipation problems, the components will have to be applied in the quantum mechanical
domain, while due to potential problems in interconnects, the components should be locally
interconnected only.

This dissertation is devoted to pursuing solutions to architectural issues that come up
when designing a nanoelectronic computer. It explores the possibility of building viable
and reliable computer systems from novel nanoelectronic and quantum devices. In partic-
ular, parallel processor architectures that are fault-tolerant and locally-coupled have been
researched.

Chapter 1 presents an introduction to the issues that play a role in nanoelectronics, in
contrast with microelectronics, and discusses implications for nanocomputer architectures.

A brief review of the current status in nanoelectronics and recent progress in nanoarchi-
tecture research is presented in Chapter 2.

Chapter 3 describes research on fault-tolerant architectures. We review von Neumann’s
NAND multiplexing technique and extended his study from a high degree of redundancy to a
fairly low degree of redundancy. We show the stochastic Markovian nature of a multi-stage
multiplexing system and work out its characteristics. We develop a system architecture
based on the NAND multiplexing structure that copes with the problem of random back-
ground charges in single electron tunneling (SET) circuits. Our study shows that, although a
rather large amount of redundant components is required, an architecture based on the mul-
tiplexing technique could be a fault-tolerant system solution for the integration of unreliable
nanoelectronic devices affected by dominant transient errors.

In addition, in Chapter 4, a defect- and fault-tolerant architecture is proposed, that uses
the multiplexing technique for its fundamental circuits and a hierarchical reconfigurability
in the overall system. Tt is shown that the required redundancy could be brought back
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to a moderate level no larger than 102 by adding reconfigurability to the system
concept. This architecture is robust in an efficient way against both manufacturing defects
and transient faults, and tolerates a gate error rate of up to 10 2, which, for any current
microelectronic system, would be unacceptable.

Derived from von Neumann’s multiplexing technique, we propose triplicated interwoven
redundancy (TTR), as a generalization of triple modular redundancy (TMR), but then with
random interconnections. A prototype processor architecture and its simulation-based relia-
bility model have been set-up and are used to evaluate the fault-tolerance. The processor is,
by way of comparison, implemented using both TIR as well as so-called quadded logic. In
general, the reliability of a TIR, circuit is comparable with that of an equivalent TMR circuit
while, for certain interconnect patterns, the TIR structure may present an inferior perfor-
mance to TMR, due to its interwoven nature in gate interconnections. TIR can be extended
to higher orders, which we label N-tuple interwoven redundancy (NIR). The use of 5-tuple
interwoven redundancy leads to an economical redundancy factor of less than 10 for the
reconfigurable system architecture. It has been shown that the design and implementation
of restorative devices (voters) are important for TTR/NIR and quadded structures. Only
with a simple voter design is it possible to obtain ~ with a higher order of NIR,  a better
system reliability than with TIR. TIR or NIR is in particular suitable for implementation
in molecular nanocomputers, which are likely to be fabricated by a manufacturing process
of stochastic chemical assembly.

In Chapter 5, superconducting circuits of Josephson junctions have been investigated
with as aim to possibly use them in locally-connected processor structures. Both a classical
SIMD computer architecture and an array-based quantum computer structure are presented
that use the same basic circuit, the Josephson junctions. Our ideal is that the classical
computer can serve as a pre-, post- and intermediate processor for the quantum computation
that is performed in the heart of the Josephson circuit array. As such, it then establishes a
heterogeneous quantum /classical computer for implementations of algorithms such as Shor’s
factoring algorithm which mixes classical computation steps with quantum computation
steps in a single algorithm. Although not specifically worked out and discussed in this
study in detail, an architecture in the form of an all-reversible computing network based on
superconducting circuits of Josephson junctions, could in principle be used for this.

A quantum CNN (cellular nonlinear networks) architecture using the Josephson circuits
has also been proposed, presenting a novel computing paradigm for Josephson circuits.
Since classical computing architectures (SIMD arrays), quantum computing architectures
and semi-quantum computing architectures (quantum CNNs) can be simultaneously studied
on the same device, the Josephson circuit is a good vehicle for investigating the architectural
issues of quantum and nanoelectronic computer systems, independently from the question
of which device will be the ultimate implementation vehicle.

This last chapter concludes this dissertation, which can be placed in the “early days” of
research on architectures of nanoelectronic and quantum computers.

And beyond this thesis: The scientific papers that form the foundation of the chap-
ters in this thesis have meanwhile been followed up by many new studies in fault-tolerant
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techniques such as using Monte Carlo simulations [75], bifurcation theory [76] and an exact
analysis using combinatorial arguments [158] to investigate the error behavior in a mul-
tiplexed nanosystem of Markov chains. Moreover, a probabilistic-based methodology has
been proposed for designing nanocomputer architectures based on Markov Random Fields
(MRF) [159], and CAD tools are being developed to automate the evaluation of various
fault-tolerant schemes and their reliability /redundancy trade-offs [74]. The redundancy
techniques, originating from von Neumann, are basically error-correcting codes (ECC). The
multiplexing construction boils down to the use of a repetition code, in which each symbol
of a message is repeated many times to create redundancy [81]. The use of error-correcting
codes, as well as the issue of fault-tolerance in nanocomputing in general, awaits further
investigation.

Novel computing systems, envisioned now as adaptive systems based on molecular elec-
tronics [160], biology-inspired self-learning and -evolving systems [161], nonlinear dynamical
systems [44] and quantum computers, may in the long term emerge, possibly leading to new
types of algorithms and architectures. The choice of algorithms and architectures must, aim
towards applications in nanotechnology. An architecture will strongly influence the design
of devices and circuits, and vice versa: the opportunities and problems found in nanoelec-
tronic devices and circuits will strongly influence the choice of an architecture. In research
on nanocomputer architectures, therefore, an interdisciplinary approach must be followed
and the success will eventually rely upon a multidisciplinary effort in the fields of chemistry,
physics, electrical engineering, computer science, and, perhaps, many others.






Samenvatting

De vooruitgang in CMOS technologie is het submicron rijk ingegaan en de huidige tech-
nologie zal 7ijn grenzen binnen ongeveer 15 jaar bereiken. Nu al zijn er diverse nieuwe
processor schakelingen, die gebaseerd zijn op de quantum mechanische effecten behorend
bij de nanometerschaal, breed onderzocht en enkele zijn zelfs succesvol gebleken op cir-
cuitniveau. Deze vooruitgang in nano-electronica schakelingen was mede de motivatie voor
onderzoek op het gebied van nano- en quantumcomputer architecturen. Vanwege de slechte
betrouwbaarheid van de basis componenten, zal een dergelijke architectuur bestand moeten
7ijn tegen fouten zowel in de basis schakelingen als de interconnecties. Om vermogensdissi-
patie problemen te vermijden, zullen de componenten in het quantummechanische domein
moeten worden toegepast, terwijl door te verwachten problemen bij de interconnecties, de
componenten slechts plaatselijk onderling dienen te worden verbonden.

Dit proefschrift is gewijd aan het zoeken naar oplossingen voor architectuur kwesties die
boven komen bij het ontwerpen van een nano-electronica computer. Het verkent de mo-
gelijkheden om haalbare en betrounwbare computersystemen te bouwen gebaseerd op nieuwe
nano-electronische en quantum-fysische circuits. In het bijzonder zijn fout tolerante, lokaal
gekoppelde massief parallelle processor architecturen onderzocht.

Hoofdstuk 1 geeft een inleiding in de kwesties die een rol spelen in nano-electronica,
in contrast met de micro-elektronica en de implicaties voor nano-computerarchitecturen
worden besproken.

Fen kort overzicht van de huidige status in de nano-electronica en de recente vooruitgang
in nano-architectuur onderzoek wordt gepresenteerd in Hoofdstuk 2.

Hoofdstuk 3 beschrijft onderzoek naar fouttolerante architecturen. Wij beschouwen von
Neumann’s NAND multiplexing techniek en breiden het onderzoek uit van zijn hoge mate
van redundantie naar een vrij lage graad van redundantie. Wij tonen hier de stochastische
Markoviaanse aard van een dergelijk multiplexing systeem aan en werken de kenmerken uit.
Wij ontwikkelen daarna een systeemarchitectuur die op de NAND multiplexing structuur is
gebaseerd en die aan het probleem van “random background charges” in “Single Flectron
Tunneling” (SET) circuits het hoofd biedt. Onze studie toont aan dat, hoewel er een tamelijk
grote hoeveelheid redundante componenten wordt vereist, een architectuur gebaseerd op de
multiplexingtechniek een fouttolerante systeemoplossing zou kunnen 7zijn bij het integreren
van onbetrouwbare nano-electronische schakelingen, die gedomineerd worden door tijdelijke
(transient) fouten.
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Hier aan toegevoegd wordt, in Hoofdstuk 4, een defect- en fouttolerante architectuur
voorgesteld, die de multiplexing techniek gebruikt in zijn basiscircuits en hiérarchische her-
configureerbaarheid voor het hele systeem. Aangetoond wordt, dat de vereiste redundantie
van de multiplexing in de basiscircuits dan teruggebracht kan worden naar een redelijk
niveau, niet groter dan 10?, door herconfigureerbaarheid aan het systeemconcept toe te voe-
gen. FKen dergelijke architectuur is op een efficiénte manier robuust tegen zowel defecten ten
gevolge van de productie als wel voorbijgaande (transient) fouten, en tolereert poortfouten
tot een ratio van 10 2, wat voor elk huidig micro-elektronisch systeem onaanvaardbaar zou
7ijn.

Afgeleid uit von Neumann’s multiplexing techniek, introduceren we drievoudig ver-
woven redundantie (Triplicated Interwoven Redundancy: TIR), als een generalisatie van
drievoudige modulaire redundantie (Triple Modular Redundancy: TMR), maar dan met
willekeurige interconnecties. Fen architectuur van een prototype processor en het bijbe-
horende op simulatiegebaseerde betrouwbaarheidsmodel 7ijn opgesteld en zijn ge-
bruikt om de fouttolerantie te evalueren. De processor is ter vergelijking, naast met TIR,
ook met zogenaamde quadded logica uitgevoerd. In het algemeen, is de betrouwbaarheid
van een TIR circuit vergelijkbaar met dat van een gelijkwaardige TMR, circuit, terwijl voor
bepaalde interconnectiepatronen de TIR, structuur zelfs inferieure prestaties vergeleken met
TMR kan hebben door de verweven aard van de interconnecties. TTR kan tot hogere orden
worden uitgebreid, die wij N-tuple verweven redundantie (N-tuple interwoven redundancy:
NIR) noemen. Het gebruik van 5-tuple verweven redundantie leidt tot een economische re-
dundantiefactor van minder dan 10 voor de systeemarchitectuur. Fr wordt aangetoond dat
het ontwerp en de implementatie van herstellende schakelingen (meerderheids-stemmers of
“voters”) belangrijk voor TTR/NIR en quadded structuren zijn. Slechts met een eenvoudig
ontwerp van de voter is het mogelijk om bij een hogere orde van NIR a betere sys-
teembetrouwbaarheid te verkrijgen dan met TIR. TTR en NIR zijn in het bijzonder geschikt
voor implementatie in moleculaire nano-computers, die zeer waarschijnlijk door een produc-
tieproces van stochastische chemische assemblage zullen worden vervaardigd.

In Hoofdstuk 5, zijn supergeleidende circuits van Josephson juncties onderzocht, met als
doel hen in lokaal verbonden processorstructuren te kunnen gebruiken. Fr wordt zowel een
klassiecke SIMD computerarchitectuur als een pijplijn-gebaseerde quantumcomputer struc-
tuur voorgesteld die hetzelfde basiscircuit, de Josephson junctie gebruiken. Idealiter is dat
een dergelijke klassieke computer als pre-, post- en interprocessor voor quantum berekenin-
gen kan dienen die dan in het hart van de Josephson junctie circuit worden uitgevoerd. Als
zodanig, vormt het dan een heterogene quantum & klassieke computer geschikt voor imple-
mentaties van algoritmen zoals het factoriseringsalgoritme van Shor, dat voortdurend in één
enkel algoritme klassieke berekeningsstappen en quantum berekeningsstappen door elkaar
heen mengt. Hoewel niet specifiek uitgewerkt en in detail besproken in deze studie, zou in
principe een architectuur in de vorm van een geheel omkeerbaar processornetwerk gebaseerd
op supergeleidende ringen van Josephson juncties, hiervoor kunnen worden gebruikt.

Fen quantum cellulair niet-lineaire netwerk (CNN) architectuur, gebaseerd op Josephson
juncties circuits, wordt eveneens geintroduceerd in dit hoofdstuk, als een mogelijk nieuw
gegevensverwerkingparadigma voor Josephson circuits. Omdat zowel de klassieke processor
architectuur (STMD array), de quantumprocessor architectuur en de semi-quantumprocessor
architectuur (quantum CNNs) gelijktijdig op het zelfde apparaat kunnen worden bestudeerd,
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is een Josephson circuit een goed voertuig om de architectuur kwesties van quantum- en
nano-electronische computersystemen te onderzoeken, onafthankelijk van de vraag waarvan
het apparaat uiteindelijke geimplementeerd wordt.

Dit laatste hoofdstuk besluit het proefschrift, dat kan worden geplaatst in “de begin
dagen” van onderzoek naar nano-electronische en quantum-fysische computer architecturen.

Fn voortbordurend op het thema van dit proefschrift: De wetenschappelijke artikelen
die de basis vormden van de hoofdstukken van dit proefschrift, zijn ondertussen al weer
opgevolgd door vele nienwe studies in fouttolerante technieken om het foutengedrag in een
gemultiplext nano-systeem van Markov kettingen te onderzoeken, zoals het gebruiken van
de Monte Carlo simulaties [75], vertakkings (bifurcation) theorie [76] en een exacte analyse
gebruik makend van combinatorische argumentatie [158]. Voorts is er een probabilistisch-
gebaseerde methodologie voorgesteld voor het ontwerpen van nano-computer architecturen
die op Markov Random Fields (MRF) wordt gebaseerd [159], en worden er CAT) hulpmidde-
len ontwikkeld om de evaluatie van diverse fouttolerante schema’s en hun betrouwbaarheid /
redundantie uitruil te automatiseren [74]. De redundantietechnieken, voortkomend uit von
Neumann’s techniek, zijn in wezen foutverbeterende codes (Frror Correcting Codes: ECC).
De multiplexing constructie komt neer op het gebruik van een herhalingscode, waarin elk
symbool van een bericht vaak wordt herhaald om redundantie te cregren [81]. Het gebruik
van het fout-verbeterende codes, evenals de kwestie van fout-tolerantie voor nano-computing
in het algemeen, wacht op verder onderzoek.

Nieuwe processorsystemen, die nu worden gezien als zichzelf aanpassende systemen gebas-
eerd op moleculaire elektronica [160], op door de biologie geinspireerde zelf lerende en
evoluerende systemen [161], op niet-lineaire dynamische systemen [44] en op quantumcom-
puters, zullen op de lange duur naar voren komen, wellicht leidend tot nieuwe soorten
algoritmen en architecturen. Het onderzoek van algoritmen en architecturen zou nu naar
toepassingen in nano-technologie moeten streven. Fen architectuur zal sterk het ontwerp
van apparaten en circuits beinvloeden, en vice versa: de mogelijkheden en problemen die
in nano-electronische apparaten en circuits worden gevonden zullen sterk de keuze van een
architectuur beinvloeden. In het onderzoek naar nano-computer architecturen moet daarom
een interdisciplinaire benadering worden gevolgd en het succes zal niteindelijk gebouwd 7ijn
op een multidisciplinaire inspanning uit de gebieden scheikunde, natuurkunde, elektrotech-
niek, computerwetenschap, en wellicht vele anderen.
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