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Abstract—Gradient descent (GD) is a widely used optimiza-
tion algorithm in machine learning. In this paper, a novel
stochastic computing GD circuit (SC-GDC) is proposed by
encoding the gradient information in stochastic sequences.
Inspired by the structure of a neuron, a stochastic integrator
is used to optimize the weights in a learning machine by its “in-
hibitory” and “excitatory” inputs. Specifically, two AND (or
XNOR) gates for the unipolar representation (or the bipolar
representation) and one stochastic integrator are, respectively,
used to implement the multiplications and accumulations in
a GD algorithm. Thus, the SC-GDC is very area- and power-
efficient. As per the formulation of the proposed SC-GDC,
it provides unbiased estimate of the optimized weights in
a learning algorithm. The proposed SC-GDC is then used
to implement a least-mean-square algorithm and a softmax
regression. With a similar accuracy, the proposed design
achieves more than 30× improvement in throughput per
area (TPA) and consumes less than 13% of the energy per
training sample, compared with a fixed-point implementation.
Moreover, a signed SC-GDC is proposed for training complex
neural networks (NNs). It is shown that for a 784-128-
128-10 fully-connected NN, the signed SC-GDC produces a
similar training result with its fixed-point counterpart, while
achieving more than 90% energy saving and 82% reduction
in training time with more than 50× improvement in TPA.

Index Terms—Adaptive filter (AF), gradient descent (GD),
machine learning, neural networks (NNs), softmax regression
(SR), stochastic computing (SC).

I. INTRODUCTION

DEEP learning utilizes a computational model to auto-
matically discover intricate structures from large raw

data by following a general-purpose training procedure. By
using a multiple-layer computational model, it has produced
many promising results for various tasks including object
recognition, natural language processing and autonomous
driving [1]. However, a larger computational load is im-
posed on training a learning machine as a model becomes
more complex; e.g., tens of millions of parameters or
weights need to be optimized for image recognition in
AlexNet [2]. To improve performance, graphics processing
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units (GPUs) with massively parallel computing resources
have widely been used for machine learning.

To further improve performance, machine learning spe-
cific chips have been developed, such as the TrueNorth
neuro-chip [3], the tensor processing unit (TPU) [4], and
the Minerva [5]. However, most of these chips are designed
for inference rather than training or optimizing the weights
in a learning process. A recent study shows that only three
days are required to train a network playing the Go game
using four TPUs [6]. Nevertheless, it is still not energy-
efficient for mobile or embedded applications.

To reduce the energy consumption in a learning sys-
tem, quantization and binarization have been shown to
be effective [7], [8]. However, both methodologies are
mostly implemented in software and no dedicated hardware
is available for training. In [7], binarized weights and
activations are used to drastically reduce memory usage
during the inference phase, whereas in the backpropagation,
the binarization is not applicable, and real values are used
to compute the optimal weights by using gradient descent
(GD).

Stochastic computing (SC) is an alternative hardware-
efficient computing paradigm. In SC, a random binary bit
stream of “0”s and “1”s, or a stochastic sequence, is used
to encode a real value by the occurrence frequency of
1’s. Such a sequence is generated by a stochastic number
generator (SNG) as shown in Fig. 1. In the unipolar repre-
sentation, the value to be encoded, x ∈ [0, 1], is compared
with a random number (RN) that is uniformly distributed
within the interval [0, 1]. The comparator generates a 1 if
x is larger; otherwise it generates a 0. In the bipolar rep-
resentation, a value x ∈ [−1, 1] is first mapped to [0, 1] by
(x+1)/2, which is then converted to a stochastic sequence
by using an SNG. Typically, only a small circuit is required
to perform computations on the stochastic sequences. For
example, a multiplier can be implemented by an AND gate
for the unipolar representation, or an XNOR gate for the
bipolar representation as shown in Fig. 2.

SC is also a biologically plausible computing paradigm
[9]. The spike trains in the brain is similar to a stochastic
sequence when considering a 1 in the sequence as a spike
and a 0 as no spike. Inspired by this feature, SC has been
applied to various machine learning algorithms, such as the
spiking neural networks [10], multilayer perceptrons [11],
[12], radial basis function neural networks [13], restricted
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Fig. 1. A stochastic number generator (SNG).
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Fig. 2. (a) A unipolar and (b) bipolar stochastic multiplier.

Boltzmann machines [14], convolutional neural networks
(CNNs) [15], [16] and deep neural networks (DNNs) [17]–
[19]. Unfortunately, none of these SC designs implements
the complex and time-consuming training process.

In this paper, a novel gradient descent circuit (SC-GDC)
is proposed for efficient training of learning machines
by using stochastic circuits. In the proposed design, the
gradient information of a training sample is carried by
stochastic bits. It is different from the conventional belief
that the gradient value used during training cannot tolerate
much inaccuracy [7].

By using the proposed SC-GDCs, the loss functions of a
least-mean-square (LMS) adaptive filter (AF) and a softmax
regression (SR) are minimized to obtain optimized weights.
The simulation results show that SC-GDC-based LMS
weight update unit achieves a higher accuracy with less than
0.1% of the computation time than a previous stochastic
design. For handwritten-digit recognition, the proposed
SR unit using an SC-GDC array produces a similar test
accuracy with a software implementation using the same
SR model. It takes only 42.6% of the computation time
and less than 15% of the energy of a fixed-point design.
A more complex 784-128-128-10 neural network (NN) is
trained by a signed SC-GDC array. The signed SC-GDC
achieves more than 90% energy saving and 82% reduction
in time compared to its fixed-point implementation while
preserving a similar test accuracy.

The variance bound for the proposed SC-GDC is given
by an error analysis. Moreover, it is shown that sharing the
random number generators (RNGs) for generating some of
the input stochastic sequences reduces the variance of the
computed result.

II. BACKGROUND

A. Gradient descent

As a basic optimization algorithm, GD has widely been
used in machine learning to optimize the weights of a model

by minimizing the loss function. Let L(w) be a multivariate
differentiable loss function and the vector w be the weights
in a learning machine, GD computes the local minimum of
the loss function by an iterative optimization [20]:

wi+1 = wi − η∇L(wi), (i = 0, 1, 2, . . . ), (1)

where wi is the optimized weight vector at the ith step;
η is a constant or variable step size, or learning rate,
which determines how fast the model learns; ∇L(wi) is
the gradient of the loss function at w = wi. ∇L(w) is
given by

∇L(w) =
[
∂L(w)
∂w1

, ∂L(w)
∂w2

, . . . , ∂L(w)
∂wj

, . . .
]
, (2)

where wj is the jth element in vector w. If the step size
is constant, the optimization result at the kth step can be
obtained by accumulating (1) from i = 0 to k − 1,

wk = w0 − η
∑k−1

i=0
∇L(wi), (3)

where the vector, w0, is usually initialized randomly [20].

B. Stochastic integrator

Stochastic integrators are sequential SC elements that ac-
cumulate the difference between two stochastic sequences
[21]. As shown in Fig. 3, a stochastic integrator consists of
an n-bit counter, an RNG and a comparator. The counter
updates its value by [22]

Ci+1 =


Ci + 1 if ai = 1 and bi = 0

Ci if ai = bi

Ci − 1 if ai = 0 and bi = 1,

(4)

where ai and bi are the ith bits from the stochastic
sequences A and B respectively, i.e., they are the values of
A and B at the ith clock cycle since each bit is generated
per clock cycle. Ci and Ci+1 are the n-bit binary numbers
stored in the counter at the ith and (i+ 1)th clock cycles.
Equivalently, we have

Ci+1 = Ci + ai − bi. (5)

As in an SNG, the output stochastic sequence is gener-
ated by comparing the n-bit binary number with an n-bit
RN generated by the RNG. So, at the ith clock cycle, the
probability generating a 1 equals to 2−nCi, i.e., the value
encoded by the n-bit binary number is Pi = 2−nCi in the
unipolar representation. Normalizing (5) by 2−n leads to

Pi+1 = Pi + 2−n(ai − bi). (6)
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Fig. 3. A stochastic integrator: (a) the circuit block diagram; (b) a symbol.
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Assume the initial value is P0, then by an iterative
accumulation of (6) from i = 0 to k−1, the value encoded
by the counter at the kth clock cycle is obtained as

Pk = P0 + 2−n
∑k−1

i=0
(ai − bi). (7)

Taking the expectation of (7) gives us

E[Pk] = P0 + 2−n
∑k−1

i=0
(E[ai]− E[bi]). (8)

Comparing (8) and (3), the stochastic integrator provides
an unbiased estimate of a weight optimized by the GD
algorithm, i.e. E[Pk] = wk, under the conditions that: 1)
the stochastic integrator is initialized with w0; 2) the expec-
tation of the difference of the stochastic sequences equals
to the negative of gradient, i.e., E[ai]−E[bi] = −∇L(wi);
and 3) the step size equals to 2−n [23].

III. PROPOSED SC-GDC DESIGN

A. SC-GDC circuit design

Fig. 4 shows the proposed unipolar SC-GDC for opti-
mizing a weight, wi,j , i.e., the jth element in the vector
w at time step i. If there are N elements in w, N SC-
GDCs are required to optimize the N weights. In Fig.
4, F (wi,xi) is the inferred value given by the model,
and ti is the target or desired output value for input
xi, which is used to supervise the training of a model.
∂F (wi,xi)/∂wi,j is the input signal for a linear model.
For an NN model, these signals can be obtained by a back-
propagation. The SNGs are used to stochastically binarize
the inputs of SC-GDC, and the stochastic multiplier and
integrator are used to efficiently compute (1). The SC-
GDC works in an online manner, which means that it
uses {F (wi,xi), ∂F (wi,xi)/∂wi,j , ti} of training sample
xi sequentially to update the weight. When the bipolar
representation is used, the AND gates are replaced by
XNOR gates for multiplication.

The circuit design of a stochastic integrator is shown
in Fig. 5. One n-bit adder is used to compute (5) by
taking advantage of SC. Since ai can only be 0 or 1, it
is used as the carry input of the adder. n copies of bi
are used to perform “−bi” in (5). Specifically, (bibi . . . bi)2
represents -1 in 2’s complement when bi is 1, otherwise it
represents 0. The RNs are generated by a linear feedback
shift register (LFSR) that works as an RNG. The LFSR and
the comparator can be removed if the output sequence is
not used for further stochastic computation.

+

-

SNG
∂ F(wi, xi)

∂ wi,j
SNG

SNG

ai

bi

Pi = 2-nCi
n

wi,j[Pi] = F(wi, xi)
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Fig. 4. Proposed unipolar SC-GDC.
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B. Formulation of SC-GDC

To train a learning machine by using GD, the loss
function is defined first. The quadratic error between the
inferred value and the target value is a commonly used
loss function, which is also known as the LMS error, given
by

L(wi) = 0.5[ti − F (wi,xi)]
2. (9)

The gradient is the partial derivative of the loss function
as per (2). For wi,j , it is the partial derivative of the loss
function with respect to wi,j , i.e.,

∂L(wi)

∂wi,j
= −∂F (wi,xi)

∂wi,j
ti+

∂F (wi,xi)

∂wi,j
F (wi,xi). (10)

Equation (3) is then transformed to

wk,j = w0,j − η
k−1∑
i=0

[−∂F (wi,xi)

∂wi,j
ti

+
∂F (wi,xi)

∂wi,j
F (wi,xi)].

(11)

As shown in Fig. 4, two AND gates are used to imple-
ment the multiplications in (10), and we have

E[ai] =
∂F (wi,xi)

∂wi,j
ti,

E[bi] =
∂F (wi,xi)

∂wi,j
F (wi,xi),

(12)

where ai and bi are the two output bits of the AND gates.
They are used as the inputs for the stochastic integrator to
implement the accumulation in (11). As per (8) and (12),
the expectation of the value encoded by the counter at the
kth clock cycle is given by

E[Pk] = P0 +
1

2n

k−1∑
i=0

[
∂F (wi,xi)

∂wi,j
ti

− ∂F (wi,xi)

∂wi,j
F (wi,xi)].

(13)

As per (11) and (13), if the counter is initialized with the
value of w0,j , the proposed SC-GDC provides an unbiased
estimate to the weight to be optimized with a step size of
2−n, i.e.,

E[Pk] = wk,j , for η = 2−n and P0 = w0,j . (14)

Therefore, the SC-GDC is used to perform GD-based on-
line learning, and the weights are stochastically optimized
by the SC-GDC. Each bit from the stochastic sequence
accounts for 2−n in the unbiased estimate of the optimized
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weight and the randomness of each bit can be canceled out
during the accumulation. As a result, this method leads to
a high accuracy without using a long stochastic sequence
encoding each gradient.

IV. ERROR ANALYSIS

A. Single-step variance for SC-GDC

The variance of the estimated weights produced by the
SC-GDC is obtained by analyzing the probability mass
function (PMF) of the result by one-step optimization, i.e.,
the value of wi+1 updated from wi. For the proposed
unipolar design in Fig. 4, let Y = F (wi,xi), X =
∂F (wi,xi)/∂wi,j , and T = ti for simplicity; further let
ys, xs and ts be the stochastic bits encoding these values,
generated by the three SNGs. Thus, E[ys] = Y , E[xs] = X
and E[ts] = T . ys and xs are independently generated to
ensure the correctness of the multiplications, so are ts and
xs. However, ys and ts are not necessarily independent. If
ys and ts are independently generated, the PMF of wi+1

is listed in Table I. As per (6), only when ts =1, xs =1
and ys =0, is wi increased by 2−n. When ts =0, xs=1
and ys =1, wi is decreased by 2−n; otherwise, wi does not
change.

The variance of a random variable x is given by

Var[x] = E[(x− E[x])2]. (15)

As per Table I and (15), the variance of wi+1 is computed
as

Varind[wi+1] =2−2n[XY (1−XY ) + TX(1− TX)

+ 2TY X(1−X)].
(16)

However, when the same RNG is used to generate ys and
ts, they are not statistically independent. The variance of
wi+1 can be computed similarly by using its PMF. Due to
the space limitation, the variance of wi+1 is directly given
here, by

Varshare[wi+1] = 2−2n(|T − Y |X)(1− |T − Y |X). (17)

The variance is reduced by 2−2n+1 min{T, Y }(1 −
max{T, Y }) compared to the case when ys and ts are
independently generated. Therefore, it reduces the variance,
thus improving the accuracy when using the same RNG to
generate stochastic bits ys and ts.

TABLE I
PROBABILITY DISTRIBUTION OF wi+1 WHEN ys , xs AND ts ARE

INDEPENDENTLY GENERATED.

wi+1 Probability

wi − 2−n (1− T )XY
wi 1− TX −XY + 2TXY
wi + 2−n (1− Y )TX

B. Multiple-step variance bound

If every stochastic bit is independently generated at each
step, i.e., they are temporally independent, the multi-step
variance is the summation of the single-step variances
[24]. When the RNG is shared, the maximum single-step
variance is 2−2n−2 only when |T − Y |X = 0.5. Thus, the
variance bound of the estimated optimized weights after k
steps is given by

Varbound[wk] = 2−2n−2k. (18)

As per (18), the variance bound exponentially decreases
with the bit width n. When the bipolar representation is
used, the variance can be derived similarly, and the bound
is given by 2−2nk.

V. APPLICATIONS

A. System identification using least-mean-square (LMS)
adaptive filters (AFs)

To assess the efficiency of the proposed SC-GDC, it is
used in an LMS AF for system identification. The block
diagram of an AF is shown in Fig. 6. An AF system consists
of a linear filter and an optimization module that adjusts the
weights of the linear filter. It can be considered as a simple
learning machine with one neuron and a linear activation
function. An AF has been implemented in approximate
arithmetic circuits as a cerebellar model to control eye
movement [25].

In an AF system, the output of the linear filter at the ith
step, yi, is given by

yi = F (wi,xi) = wixi =
∑M−1

j=0
wi,jxi−M+j+1, (19)

where M is the length of the filter; wi is a vector
of M weights, wi = [wi,0, wi,1, ..., wi,j , ..., wi,M−1];
and xi is the input vector at the ith step, xi =
[xi−M+1, ..., xi−M+j , ..., xi]

T. The desired signal, ti,
guides the estimation of the weights in the target system
[26].

In the LMS algorithm, the loss function is the quadratic
error between ti and yi, which is given by (9) with
F (wi,xi) = yi = wixi. As per (19), ∂F (wi,xi)/∂wi,j =
xi−M+j+1. Thus, the weight update unit is constructed
from the SC-GDCs as shown in Fig. 7. M SC-GDCs are
used to minimize the loss function and hence, to estimate
the weights of the target system.

Since xi, wi and yi take values within [−1, 1], the bipolar
representation is used. Thus, the stochastic multipliers are
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Fig. 6. An adaptive filter (AF).
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Fig. 7. LMS weight update unit using SC-GDCs.

implemented by XNOR gates. The stochastic sequences
encoding yi, ti and xi are generated by the RNGs and
comparators. As discussed in Section IV-A, to reduce the
variance as well as the hardware cost, the RNG is shared to
generate stochastic sequences for yi and ti. As the M SC-
GDCs are independent of each other, the RNG generating
sequences for the vector xi is also shared. For the same
reason, the stochastic sequences encoding yi and ti are,
respectively, shared among different SC-GDCs.

B. Handwritten-digit recognition using softmax regression

A softmax layer is usually the output layer in NNs for
multi-class classification, which can be trained by using the
GD algorithm. A softmax layer itself can be considered as
a learning machine, which can perform classification of a
relatively simple dataset. Fig. 8 shows an SR model, where
wm,j denotes the weight of the connection between the
jth input and the mth neuron. The output of the neurons
a = [a1, . . . , aM ]T is given by

a = wx =


w1,1 w1,2 · · · w1,J

w2,1 w2,2 · · · w2,J

...
...

. . .
...

wM,1 wM,2 · · · wM,J



x1
x2
...
xJ

 . (20)

The probability of input x belonging to class m, P (x ∈
m|w), is then estimated by the softmax function [27],

ym = P (x ∈ m|w) =
eam∑M
k=1 e

ak
. (21)
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Fig. 8. A softmax regression (SR) model.

The loss function of an SR model is evaluated by cross
entropy, given by [27]

Lce(w) =
∑M

m=1
−tm log ym, (22)

where m is the class label, and tm is the actual classification
result in a one-hot code. tm is 1 when the input data belongs
to class m; otherwise, it is 0. The partial derivative of the
cross entropy with respect to wm,j is obtained by

∂Lce(w)

∂wm,j
=
∂Lce(w)

∂ym

∂ym
∂am

∂am
∂wm,j

= −(tm − ym)xj ,

(23)
which is similar to the gradient of the quadratic error loss
function. Thus, a GD-based SR unit can be implemented by
using an SC-GDC array with ym, xj and tm as its inputs.
Since xj , tm, ym ∈ [0, 1], the unipolar SC-GDCs are used.
The SR unit is shown in Fig. 9 for training the MNIST
handwritten-digit dataset.

In Fig. 9, the input samples are 28×28 gray-scale images,
which are flattened into vectors of 784 values. There are 10
classes of digits, so 784× 10 weights are to be optimized
by at least 784 × 10 SC-GDCs if the weights are updated
in parallel. The RNGs and comparators are shared to the
maximal extend to reduce the hardware cost and improve
the accuracy as in the LMS weight update unit. Thus, two
independent RNGs are used.

At clock i, one of the training samples, image i, is loaded
to the SR model. Corresponding {tm,i, ym,i, xj,i} are com-
puted and connected to the SC-GDC array. Meanwhile,
in the SC-GDC array, {tm,i, ym,i, xj,i} are stochastically
binarized and the stochastic bits encoding the gradient
information are used to update the weights stored in the
stochastic integrators. Since only one clock cycle is used to
train one image and to update the weights, the performance
of the SC-GDC array is much higher than conventional
stochastic circuits where a long sequence is usually used
to ensure the accuracy.
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Fig. 9. An SC-GDC array for the training of the SR model.
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However, if a counter needs to count beyond the maxi-
mum/minimum value it can reach, an overflow occurs. In
this design, an overflow is avoided by adding extra bits
and using the 2’s complement representation. For example,
for an 8-bit counter, it can encode a negative number
or a number larger than 1 by adding 2 bits to its most
significant bit, e.g., “01 0000 0001” encodes 257/28 and
“11 1111 1111” encodes −1/28 in the extended counter. If
the weights are still out of the representation range of the
extended counter in some other applications, the counter
can always be further extended.

VI. EXPERIMENTS AND RESULTS

A. Accuracy evaluation

1) System identification using an LMS AF: The pro-
posed LMS weight update unit is used to perform system
identification for a high pass FIR filter (target system) with
103 weights, so 103 SC-GDCs are required. The frequency
response of the AF after training is shown in Fig. 10. It
indicates that the results produced by the SC-GDCs are
very close to the target system. After 220 steps of training
using a 15-bit counter (for a step size of 2−15), the root
mean squared error (RMSE) between the optimized and
actual weights is around 6.45 × 10−4, and the maximum
absolute error is 2.90 × 10−3 for 100 runs. According to
the 3-σ rule and the theoretical bound of variance derived
in Section IV, the maximum error, in this case, is under the
3-σ bound, i.e., 2.90× 10−3 � 3×

√
220/22×15.

2) Handwritten-digit recognition using SR: The pro-
posed SR unit in Fig. 9 is used to recognize the handwritten
digits in the MNIST dataset. In this paper, 60,000 images
are used for training by using the SC-GDCs, and 10,000
images are used for evaluating the optimized weights with-
out cross-validation. In the SC-GDCs, 8-bit counters are
used, and the weights are initialized with random values.

An epoch of training is completed when the model is
exposed to every training sample exactly once. The recog-
nition accuracy and the cross entropy are shown against the
number of training epochs in Fig. 11. The accuracy and
cross entropy are reported every 10,000 steps or training
samples.

Fig. 11(a) shows that the optimized weights produce a
recognition accuracy around 92% for both the training and
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Fig. 11. (a) Recognition accuracy and (b) cross entropy using the SC-
GDCs.

test data, which is similar to a software implementation
using the same SR model [27]. The cross entropy converges
rapidly at the first 10,000 samples and it becomes stable
after about 4 epochs of training.

B. Hardware evaluation

The hardware efficiency of the proposed SC-GDC is
evaluated in terms of speed, throughput and energy con-
sumption. The proposed designs are implemented in VHDL
and synthesized in Synopsys Design Compiler with a 28nm
STM process. As per the formulation of the SC-GDC, one
training sample is loaded to the circuit per clock cycle, and
it does not require a long sequence for computing one result
as in a conventional SC circuit. Therefore, the proposed
design is more efficient than the conventional SC design.

The GD algorithm can be considered as walking from
point A (initial weights) to point B (optimal weights) in
a high-dimensional space. A larger step size leads to a
smaller number of steps to reach point B, thus lower latency
for the gradient descent circuit. Therefore, to optimize the
energy efficiency and speed, a larger step size is preferable.
However, if the step size is too large, the optimal point
could be missed. It then may incur instability. Therefore,
for a fair comparison, the maximum step size in a power of
2 that does not incur instability is used for each application
by an exhaustive search, so that their energy efficiency and
speed are optimized.

1) LMS weight update unit: The LMS weight update
unit is compared with an existing SC design [28] and a
fixed-point implementation for the same task. The fixed-
point GD circuit is shown in Fig. 12, consisting of a
subtractor, a multiplier, a shifter, an adder and registers.
The shifter is used as a multiplier for multiplying the step
size, 2−k, where k is a positive integer.

The accuracy of the fixed-point circuit and the proposed
design is matched by observing the convergence of the mis-
alignment. The misalignment is defined as the normalized
mean squared error between the optimized weight ŵ and
the actual value w of the target system,

Misalignment =
E[(w − ŵ)2]

E[w2]
. (24)
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The convergence curves in misalignment are shown in Fig.
13.

For the stochastic design, the step size is 2−11 by using
11-bit counters in the SC-GDCs. Fig. 13(a) shows that
the misalignment for the stochastic design converges to -
23dB after about 64,000 steps of training. For the fixed-
point circuit, a 16-bit design is used with a step size of
2−6, and the misalignment converges to around -23dB after
about 1100 steps. One hundred simulations are performed
to measure the average minimum steps required for the
misalignment to decrease to -23dB. The average minimum
steps and the critical path delay are then used to estimate
the minimum computation time (“Min. time” in Table II).
Also, the energy per operation (EPO) is used to evaluate the
energy consumption for training one sample, and the total
energy is used to measure the energy cost of the circuits for
the whole training process. The throughput per area (TPA)
is used to evaluate the hardware efficiency by computing
maximum number of samples that can be trained by the
circuit per unit time and per unit area.

The results in Table II show that the proposed stochastic
design consumes only about 0.047% of the total energy
and 0.1% of the computation time of the stochastic design
in [28] with a higher accuracy. Compared to the fixed-
point implementation, the proposed design achieves 87.4%
energy saving for each training sample and 35.3× TPA.
However, the large number of steps leads to a large total
energy cost for the proposed design.

2) SR unit: For the SR unit, the design in [29] realizes
only the inference phase of an SR. To the best of our
knowledge, no previous stochastic design is available for
training an SR model, thus the proposed design is only
compared with a fixed-point implementation using the GD
circuit in Fig. 12. The weights are considered as converged
when the cross entropy is below 0.3. The proposed design
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Fig. 13. Convergence curves in misalignment of the (a) SC-GDC-based,
and (b) fixed-point LMS weight update units.

TABLE II
HARDWARE EVALUATION OF THE LMS WEIGHT UPDATE UNITS.

Metrics SC-GDCs [28] Fixed-point Ratio

Step size 2−11 2−10 2−6 -
Steps 58504 16384 912 -
Min. time (ns) 6.0× 104 6.5× 107 3.6× 103 17:18056:1
EPO (fJ) 1.2× 104 9.1× 107 9.5× 104 1:7583:8
Total energy (fJ) 7.0× 108 1.5× 1012 8.8× 107 8:17045:1
TPA (Sa./µs/µm2) 6.7× 10−5 1.0× 10−8 1.9× 10−6 6700:1:190
Misalign. (dB) -23 -6 -23 -

takes about 4 epochs to converge when the step size is 2−8,
whereas 2 epochs are required for the fixed-point design
with a step size of 2−7. One epoch takes 60,000 clock
cycles for both the stochastic and fixed-point circuits. The
training samples are randomly shuffled at each epoch. As
shown in Table III, the hardware evaluation results indicate
that the proposed design costs 42.55% computation time of
its fixed-point counterpart without any accuracy loss (“Aver.
test Accu.” in the table). Meanwhile, 85.6% total energy
saving and 73.9× TPA are achieved by using the SC-
GDCs. The small difference in accuracy could be caused by
the random initialization and different order of the image
samples.

C. Discussion

The hardware evaluation results indicate that for weight
estimation tasks such as system identification, the proposed
stochastic design using SC-GDCs obtains an adequate
accuracy, although it takes a larger number of steps than its
fixed-point counterpart. However, for applications such as
image recognition that can tolerate more errors, the number
of epochs required for the proposed stochastic design and
conventional fixed-point design are on the same level,
which indicates a high-performance and energy-efficient
stochastic design. However, the accuracy of the image
recognition of the MNIST dataset is quite low (around
92%) compared to the state-of-the-art result (around 99%).
This is due to the inherent simplicity of the SR model rather
than the training method or the SC-GDC. Next, a complex
NN model that produces higher recognition accuracy is
used to test the performance of the SC-GDCs, where
hundreds of thousands of weights are to be optimized.

TABLE III
HARDWARE EVALUATION OF THE SR UNITS.

Metrics SC-GDCs Fixed-point Ratio

Step size 2−8 2−7 -
Epochs 4 2 -
Min. time (ns) 2.0× 105 4.7× 105 1:2.35
EPO (fJ) 5.5× 105 7.5× 106 1:14
Total energy (fJ) 1.3× 1011 9.0× 1011 1:7
TPA (images/s/µm2) 1.7× 103 2.3× 101 74:1
Aver. test Accu. 91.75% 91.69% -
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VII. SIGNED SC-GDC UNITS TRAINING COMPLEX
NEURAL NETWORKS

A. Background for back-propagation

An NN consists of a set of neurons and the connections
between them; the neurons are typically organized layer by
layer. Fig. 14 shows an NN with one input layer, two hidden
layers and one output layer. The output signals of an NN
are generated based on the input signals and the weights of
the connections. For an image recognition task, the input
signals are the pixels of an image, and the output signals are
the classification results. To produce a correct classification
for an image, a GD algorithm can be used to train an
NN by adjusting the weights of the connections. However,
for the hidden layers in an NN, the target value and the
loss function cannot be computed directly. Typically, it
requires both forward- and backward-propagation (FP and
BP) algorithms to obtain the gradients.

In FP, each neuron computes the weighted sum of the
outputs from the previous layer (or the training data from
the input layer). An activation function is then used to de-
cide whether the neuron is activated based on the weighted
sum result as shown in Fig. 14(b). The output layer is
usually a softmax layer for a multi-class classification task.
During FP, the weights remain unaltered.

In BP, the error signals, {ej}, are first obtained as the
differences between the outputs and the class-labels of the
training data,

ej = tj − yj , (25)

where yj is the jth output of the NN and tj is the target
output, i.e., the actual class-label in one-hot code. tj is 1
when the input data belongs to class j; otherwise, it is 0.
Then, the local gradient, δ(l)j for neuron j in layer l is
computed using the error signals and the weights by

δ
(l)
j =

ej for neuron j in output layer

f ′(v
(l)
j )

∑
m
δ
(l+1)
m w

(l+1)
m,j for neuron j in hidden layer l,

(26)
where v(l)j is the weighted sum of neuron j in layer l,

v
(l)
j =

∑
h

w
(l)
j,hy

(l−1)
h . (27)
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Fig. 14. (a) A multilayer neural network (NN). (b) The function of a
neuron during forward propagation (FP).

w
(l)
j,h denotes the weight of the connection between neuron

h in layer l − 1 and neuron j in layer l. When neuron j
is in the softmax output layer, its local gradient equals to
the error signal, as shown in the first equation in (26). The
signal flow of the local gradient during BP in an NN is
shown in Fig. 15.

Then, the gradient with respect to each weight is given
by

∇w(l)
j,h = −δ(l)j y

(l−1)
h . (28)

Note that when l = 1, y(l−1)h is the training data from the
input layer.

Finally, the GD algorithm can be used to optimize the
weights with the gradient function of ∇w(l)

j,h.

B. Design of signed SC-GDCs

In an NN, data are usually normalized to have a mean
of 0 and the weights are initialized with small RNs near
0 to improve the training efficiency [20]. It results in a
lot of near-0 intermediate results during the computation.
Meanwhile, the bipolar SC suffers the most from accuracy
loss when representing near-0 numbers due to its large
variance [30]. The reason is as follow. Let the probability
of 1’s in a stochastic sequence be p. The variance of the
sequence is given by p(1− p)/L, where L is the sequence
length. When p = 0.5, the variance reaches its maximum
value, which indicates a possibly large error. For the bipolar
representation, x = 2p− 1 (x ∈ [−1, 1]). So the stochastic
sequence encodes x in the least accurate manner when
x = 0 (or p = 0.5). It means that using the bipolar
representation will dramatically increase the variance of
the results, thus leading to increased error. However, it is
necessary to be able to encode negative numbers by using
stochastic sequences in this application. Thus, instead of
using the bipolar representation, a sign bit is added to
the unipolar representation to encode a negative number,
which leads to the sign-magnitude representation [31]. The
variance p(1−p)/L approaches 0 when p (or x) approaches
0 when using the unipolar representation. In this way, the
variance is very small for the encoded values near 0, so the
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computed results are more accurate than the ones using the
bipolar representation.

The stochastic circuits are adjusted to work with the sign-
magnitude representation. The signed SNG and multiplier
are shown in Figs. 16(a) and (b) respectively. In the signed
SNG, the n-bit input x is in 2’s complement. Thus, the
sign bit for x is its most significant bit, x[n− 1], denoted
as Xsign. The absolute value of a negative number, |x|, is
approximated by flipping all bits using inverters. The RNG
and the comparator are then used to generate the magnitude
bit, X . In the signed multiplier, the XOR gate is used to
compute the sign bit and the AND gate serves as a unipolar
stochastic multiplier. The symbol of a signed stochastic
integrator using the sign-magnitude representation is shown
in Fig. 16(c). The counter in the signed stochastic integrator
updates its value according to Table IV. In this way, the
signed stochastic integrator implements the same function
as an ordinary stochastic integrator for (5), where ai and
bi can take either 0, -1 or +1.

The signed stochastic integrator takes “differential” sig-
nals to update its value, i.e., one signal to increase the
value and another to decrease the value. Thus, the local
gradient signal in (26) has to be rewritten as a differential
pair to work with the stochastic integrator. By applying
the distributive law of multiplication, (25) and (26) are
combined and rewritten as

δ
(l)
j,+ =

tj for neuron j in output layer

f ′(v
(l)
j )

∑
k

δ
(l+1)
k,+ w

(l+1)
k,j for neuron j in hidden layer l,

δ
(l)
j,− =

yj for neuron j in output layer

f ′(v
(l)
j )

∑
k

δ
(l+1)
k,− w

(l+1)
k,j for neuron j in hidden layer l,

(29)

and δ(l)j = δ
(l)
j,+ − δ

(l)
j,−. Thus (28) can be rewritten as

∇w(l)
j,h = −(δ(l)j,+ − δ

(l)
j,−)y

(l−1)
h . (30)

As per the formulation of the SC-GDC, the signed SC-
GDC is proposed to calculate the gradients and to update
the weights as shown in Fig. 17. In a signed SC-GDC,
two signed stochastic multipliers and a signed stochastic
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stochastic bit used to encode the absolute value of the number.

integrator are used. Also, the magnitude stochastic bits
of δ(l)j,+ and δ

(l)
j,−, i.e., the unipolar stochastic sequences

encoding |δ(l)j,+| and |δ(l)j,−| are generated by the same RNG
to reduce hardware cost and variance of the results. It is
assumed that δ(l)j,+ and δ

(l)
j,−, i.e., the local gradients are

available to the signed SC-GDC by a BP. It means that
(29) is computed by other methods (such as a systolic array)
other than SC, because it results in a significant accuracy
loss if the entire BP algorithm is computed in SC. However,
the updating of the weights is purely implemented by
using the signed SC-GDCs. The overflow of the counters
is handled in a similar manner as for the SR units.

C. Handwritten-digit recognition

The MNIST handwritten-digit dataset is used to test the
effectiveness of the proposed signed SC-GDCs. The input
data are pre-processed to have a mean value of 0. A 784-
128-128-10 fully connected NN is used and hyperbolic
tangent (tanh) function is selected as the activation function
for the hidden layers, which is given by

y = tanh(x) =
ex − e−x

ex + e−x
, (31)

and its derivative function is

tanh′(x) = 1− y2. (32)

“Fully connected” means that each neuron in layer l has
connections with every neuron in layer l − 1. Typically, a
fully connected NN has more connections and more weights
to be trained than a CNN. So, training a fully connected
NN is a more challenging task for the proposed circuitry
than training a CNN. Therefore, a fully connected NN is
selected instead of a CNN to evaluate the proposed design,
though CNN has a better test accuracy in most cases.

TABLE IV
THE LOGIC OF SIGNED STOCHASTIC INTEGRATOR.

Ci+1 Asign A Bsign B Ci+1 Asign A Bsign B

Ci 0 0 0 0 Ci 1 0 0 0
Ci-1 0 0 0 1 Ci-1 1 0 0 1
Ci 0 0 1 0 Ci 1 0 1 0
Ci+1 0 0 1 1 Ci+1 1 0 1 1
Ci+1 0 1 0 0 Ci-1 1 1 0 0
Ci 0 1 0 1 Ci-2 1 1 0 1
Ci+1 0 1 1 0 Ci-1 1 1 1 0
Ci+2 0 1 1 1 Ci 1 1 1 1



10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

+

-B

Asign

Bsign

A

B

Asign

Bsign
A

δj,+
(l)

sign bit

δj,+
(l)

magnitude bit

yh
(l-1)

sign bit
yh

(l-1)
magnitude bit

δj,-
(l)

sign bit

δj,-
(l)

magnitude bit

yh
(l-1)

sign bit

yh
(l-1)

magnitude bit

wj,h
(l)

+ -
BA s

ig
n

B s
ig

n

A

δ j,
+(l)

si
gn

 b
it

δ j,
+(l)

m
ag

ni
tu

de
 b

it

δ j,
-(l)

si
gn

 b
it

δ j,
-(l)

m
ag

ni
tu

de
 b

it

y h
(l-

1)
si

gn
 b

it

y h
(l-

1)
m

ag
ni

tu
de

 b
it

w
j,h

(l)

+ -

wj,h
(l)

yh
(l-1)

<0

 RNG2

δj,+
(l) δj,-

(l)

<0 <0

+

-B

Asign

Bsign

A

δj,+
(0)

sign bit

δj,+
(0)

magnitude bit

δj,-
(0)

sign bit

δj,-
(0)

magnitude bit

xh
(0)

sign bit

xh
(0)

magnitude bit

wj,h
(0)

 RNG1

 RNG1

 RNG2

wj,h
(l)

wj,h
(l)

wj,h
(l)

wj,h
(l)

y(l-1) sign bit

|y(l-1)| 
y(l-1) magnitude bit

 RNG2

|δ+
(l)|

|δ-
(l)|

δ+
(l) sign bit

δ+
(l) magnitude bit

δ-
(l) sign bit

δ-
(l) magnitude bit

wj,1
(l) wj,h

(l) wj,h
(l) wj,h

(l) wj,h
(l) wj,h

(l)

w1,1
(l) w1,2

(l) w1,h
(l) w1,h+1

(l) b1
(l)

… 

wj,1
(l) wj,2

(l)

… 
wj,h

(l) wj,h+1
(l) bj

(l)

… … … … … … … 

… … … … … … … 

… 

… 

‘1’ ‘1’‘0’ ‘0’
Layer l

Comparator 
array

Layer l+1

W(l)

y(l) sign bit

y(l) magnitude bit
δ+

(l+1) sign bit
δ+

(l+1) magnitude bit
δ-

(l+1) sign bit
δ-

(l+1) magnitude bit

…
 …

 

δ-
(l+1) magnitude bit

‘0’‘1’‘0’‘1’

W(l+1)

(Generated by RNG1)

(Generated by RNG2)

(Generated by RNG2)

Fig. 18. Proposed signed SC-GDC array for the training of a multilayer NN.

Similar to the circuit for the training of the SR model in
Fig. 9, an array of signed SC-GDCs are used to train the
weights in all layers. In total, 784×128+128×128+128×
10 = 118016 weights and 128+128+10 = 266 biases are
trained by 118282 signed SC-GDCs. Only the “naive” GD
algorithm in (1) is considered to train the NN model. Other
optimization techniques and variants of the GD algorithm,
such as cross-validation, weight regularization, momentum
terms and adaptive optimization, are not considered. The
array of signed SC-GDCs works in the same manner as in
the SR training unit. One clock cycle is required to train
one sample. Also, the RNG can be shared among the inputs
and two RNGs are sufficient to generate the stochastic
sequences: one for {y(l−1)h }; one for {δ(l)j,+} and {δ(l)j,−}.
The proposed circuit for the training of a multilayer NN
is shown in Fig. 18. The signed SC-GDCs are organized
layer-wise to show their connections and signals instead of
the actual mapping of the circuit. The rightmost column
of the signed SC-GDCs in each layer is used to train the
biases, which can be considered as “weights” with an input
of constant 1. Hence, the input signals, y(l−1), for these
SC-GDCs encode a 1.

D. Experiments and results

The average test accuracy and cross entropy against
epoch are shown in Fig. 19 over 10 trials to reduce
the effect of random initialization. It illustrates that the
stochastic circuit using the bipolar representation has a slow
convergence process of the cross-entropy, thus leading to a
low accuracy. Unless the model is trained by a smaller step
size, the test accuracy produced by the bipolar stochastic
circuits remains at around 95% after 20 epochs. Compared
to the fixed-point implementation, the signed SC-GDCs
produce a slightly lower accuracy with the same step size of
2−10; however, it has a similar convergence speed. A double
precision floating-point implementation is also compared as
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Fig. 19. (a) Test accuracy and (b) cross entropy produced by the signed
SC-GDCs, the bipolar SC-GDCs and the fixed-point implementation.

a reference; it shows a similar accuracy with the fixed-point
design.

Fig. 20 shows the classification accuracy and cross
entropy for different widths of SC-GDCs, for which 8-
, 10- and 12-bit SC-GDCs with the same initial values
for weights are considered. The 8-bit design converges the
fastest during the first few epochs. However, due to the
large step size (1/28), it loses its advantage in accuracy
after a few epochs to the 10-bit design, and converges
to a slightly lower value. On the other hand, the 12-bit
design can produce a finer estimate of the optimal weights.
However, it takes a longer time to converge, which would
incur a higher energy consumption.

The hardware cost of the circuits are measured and
estimated as shown in Table V by using the same method
as for the AF and SR applications. The fixed-point imple-
mentation used for comparison is shown in Fig. 12, where
the additions and accumulations are implemented by fixed-
point circuits. Table V shows that the signed SC-GDC-
based design consumes 10.0% of the energy and 25.5%
the computation time of the fixed-point implementation,
while providing more than 50 times TPA, with a similar
test accuracy.



LIU et al.: GRADIENT DESCENT USING STOCHASTIC CIRCUITS FOR EFFICIENT TRAINING OF LEARNING MACHINES 11

0 50 100
Epoch

88

90

92

94

96

98
Te

st
in

g 
ac

cu
ra

cy
 (i

n 
pe

rc
en

ta
ge

) 10-bit

8-bit

12-bit

(a)

0 50 100
Epoch

0

0.1

0.2

0.3

0.4

C
ro

ss
 E

nt
ro

py

8-bit
10-bit

12-bit

(b)

Fig. 20. (a) Test accuracy and (b) cross entropy produced by the signed
SC-GDCs with different widths.

TABLE V
HARDWARE EVALUATION OF THE SIGNED SC-GDC ARRAY TRAINING

A 784-128-128-10 NEURAL NETWORK.

Metrics Signed SC-GDCs Fixed-point Ratio

Step size 2−10 2−10 -
Epochs 20 20 -
Min. time (ns) 1.2× 106 4.7× 106 1:4
EPO (fJ) 1.1× 107 1.1× 108 1:10
TPA (image/s/µm2) 8.3× 101 1.5 55:1
Aver. test Accu. 97.03% 97.47% -

E. Related works and discussion

In [12], extended stochastic logic is used to implement
both FP and BP of a multilayer perceptron. By using a
binary search, a reconfigurable stochastic computational
activation unit and an LFSR sharing scheme, the design
achieves lower area and energy consumption compared to
the binarized neural network (BNN), and the floating- and
fixed-point implementations. With a similar network size
and structure, a similar accuracy is obtained in this paper
compared to [12]. However, a long sequence is required for
[12] to achieve a high accuracy, which incurs a long latency.
Specifically, 256 clock cycles with 16× parallelization are
required to handle one image with a maximum operation
frequency of 112.4MHz, while it takes only 1 clock cycle
in this work to accomplish the gradient accumulation of
one training sample with a maximum operation frequency
of 1.03GHz. Also, the use of extended stochastic logic in
[12] requires extra stochastic divider and computation time
to convert a stochastic sequence back to a binary number.
However, a converter is not required in this design since the
value stored in the SC-GDCs is already in 2’s complement
format.

In [7], the weights and activations are binarized to +1 or -
1 to reduce the power consumption and hardware resources.
However, the binarization is only applicable to the FP of
an NN. In fact, by using real-valued variables and gradient
during the training process, a larger workload is imposed
on training binarized weights and activations. Compared to
[7], this paper focuses on the efficient training of an NN by
stochastic binarization of the gradient instead of the weights
and activations. Also, dedicate hardware using stochastic
circuits are proposed to perform the GD algorithm. It makes

the SC-GDC applicable to most optimization tasks that can
be solved by a GD algorithm, such as system identification
that clearly cannot be solved by binarizing the weights.

Recently, a TernGrad method is proposed to reduce
the communication cost for synchronizing gradients and
parameters in distributed training [8]. In TernGrad, the
gradient is compressed to only three levels, {−1, 0,+1},
stochastically. Compared to [8], this paper focuses on en-
hancing the computation efficiency instead of reducing the
communication cost. Therefore, the activations and local
gradients used for training the NN are stochastically bina-
rized, and the stochastic bits are used in the computation of
gradients by stochastic circuits instead of fixed- or floating-
point multipliers and adders. Due to the simplicity of the
proposed stochastic circuits, significant energy saving and
hardware efficiency are achieved compared to conventional
arithmetic circuits. Generated by the stochastic circuits, the
stochastic bits encoding the gradients in an SC-GDC are
similar to the ternary gradients, and can be directly used to
reduce the communication cost.

The proposed design can also be adapted to deal with
more complex learning tasks. For example, to implement
a variant of GD algorithm using a dynamically adjustable
step size, an additional stochastic sequence can be used to
encode the step size. Then, one more stochastic multiplier
can be used for the SC-GDC to multiply the additional
stochastic sequence. To implement batch learning, multiple
stochastic sequences encoding the gradient information
can be used as the inputs of the SC-GDCs. It resembles
a spiking neuron, in which the probability of an action
potential occurring in a postsynaptic neuron is determined
by multiple excitatory and inhibitory synapses in the presy-
naptic neurons.

VIII. CONCLUSION

In this paper, a novel SC-GDC for online learning is
proposed by using stochastic circuits to implement the GD
algorithm. By encoding the gradient information for each
training sample as stochastic bit, the SC-GDC provides an
unbiased estimate for the optimized weights in a learning
algorithm. The proposed SC-GDC units are then utilized
in system identification and handwritten-digit recognition
using SR model. Compared to a conventional SC system
identification design, the proposed design provides 6.7 ×
103 times TPA improvement, 1000× speed-up and 99.9%
energy reduction. For the SR model, the proposed SC-GDC
consumes 42.6% of the computation time and less than
15% of the energy with 73.9× of the TPA of a fixed-point
design, while providing a similar accuracy.

Moreover, a signed SC-GDC is proposed to improve
the accuracy of the bipolar SC-GDC; it is then used to
implement the training of a complex NN. For a 784-128-
128-10 fully connected NN, the use of the sign-magnitude
representation significantly improves the accuracy of SC,
thus leading to a faster convergence compared to the
use of the bipolar representation. Compared to its fixed-
point counterpart, a similar accuracy is obtained while
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90% energy saving per training sample, 74% reduction in
training time and more than 50× improvement in TPA are
achieved.
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