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ABSTRACT
The development of important applications of increasingly large
neural networks (NNs) is spurring research that aims to increase
the power efficiency of the arithmetic circuits that perform the
huge amount of computation in NNs. The floating-point (FP) repre-
sentation with a large dynamic range is usually used for training.
In this paper, it is shown that the FP representation is naturally
suited for the binary logarithm of numbers. Thus, it favors a design
based on logarithmic arithmetic. Specifically, we propose an effi-
cient hardware implementation of logarithmic FP multiplication
that uses simpler operations to replace complex multipliers for the
training of NNs. This design produces a double-sided error distri-
bution that mitigates the accumulative effect of errors in iterative
operations, so it is up to 45% more accurate than a recent logarith-
mic FP design. The proposed multiplier also consumes up to 23.5×
less energy and 10.7× smaller area compared to exact FP multipliers.
Benchmark NN applications, including a 922-neuron model for the
MNIST dataset, show that the classification accuracy can be slightly
improved using the proposed multiplier, while achieving up to 2.4×
less energy and 2.8× smaller area with a better performance.

CCS CONCEPTS
• Hardware → Combinational circuits; Application specific in-
tegrated circuits; • Computer systems organization → Neural
networks.
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1 INTRODUCTION
Artificial neural networks (NNs) are computational models that
possess attractive characteristics of the biological NNs of the brain.
NNs have been widely explored and used in many areas such as
signal processing, image analysis and medical diagnosis [13]. An ar-
tificial NN requires massive multiply-accumulate (MAC) arithmetic
computations in both the training and inference phases. With the
increasing size of NNs, the amount of MAC computation becomes
a limiting factor. This challenge motivates the search for more
efficient computation processes and hardware implementations.

Various methods have been explored for accelerating NNs. They
include reducing redundancies in structure, optimizations of gradie-
nt-based backpropagation and decreasing the computation inten-
sity in the convolution to improve training and inference [18][21].
Taking advantages of the error tolerance in NNs, approximate com-
puting is a promising technique to improve the computational and
energy efficiency in deep learning applications [7].

To ensure the accuracy of NN models, a floating-point (FP) rep-
resentation is usually adopted in the training phase as the wider
range of representation leads to more accurate training. Since the
FP MAC circuits, especially multiplication, dominate power con-
sumption and circuit area, the design of efficient FP multipliers has
been extensively investigated [2, 15, 20]. Low-precision computa-
tion in training and inference has recently been pursued. Significant
progress has been made in exploiting reduced-precision integers
for inference, while 8-bit FP numbers [19] and logarithmic 4-bit FP
numbers [17] have been shown to be effective in the training of
deep NNs. Hence, finding a balance between accuracy, speed and
area in the implementation of NNs is a key challenge as apparently
no hardware has been proposed for these low-precision NNs.

In this work, we show that the standard IEEE 754 FP representa-
tion is naturally suited for logarithmic arithmetic. A logarithmic FP
multiplier is designed using simple operators such as adders and
multiplexers. Unlike other approximate FP multipliers, a double-
sided error distribution is produced by the proposed design, which
minimizes the increase of accumulative errors. The proposed design
also improves the energy efficiency of training with only a slight
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loss of accuracy. In some cases, it even improves the accuracy of
NNs compared to those using exact multipliers.

The rest of this paper is organized as follows: Section 2 describes
the research motivation and related work. Section 3 introduces the
logarithmic FP representation and formulation for multiplication.
Section 4 presents the proposed multiplier with an accuracy and
performance evaluation. Section 5 presents NN applications and
experimental results. Finally, Section 6 concludes the paper.

2 MOTIVATION AND RELATEDWORK
The training phase, which plays a key role in achieving a high
NN accuracy, requires more arithmetic computation than infer-
ence due to the use of the iterative gradient descent algorithm for
updating weights and biases. Since inference is less sensitive to
precision reduction with simpler computations, fixed-point arith-
metic units dealing with fixed-point numbers are applied in the
inference phase. Many approximate designs have been developed
to perform fixed-point multiplication, such as truncated multipliers
and logarithm-based multipliers [9]. However, with a wider range
of representation, the FP arithmetic unit, especially the FP multi-
plier, permits greater training accuracy at the cost of higher power
consumption and larger area usage.

Hence, hardware-efficient FP multipliers have mostly been ex-
plored for the training of NNs. A short-bit-length FP format is
considered in [8] for the training of convolutional NNs. An approx-
imate computing technique called Tunable Floating-Point (TFP)
adjusts the precisions for different operations to lower the power
consumption [5]. Both of the above proposals depend on bit width
reduction of the FP representation to increase the efficiency, similar
to most of the other studies focused on bit-width scaling [5]. In
[15], mantissa multiplication is converted to addition of the input
operands; however, exact multiplication is required when the er-
ror rate exceeds a pre-determined value. These methods do not
completely eliminate the multiplication.

As an energy-efficient alternative to the conventional FP repre-
sentation, logarithmic representations of FP numbers have been
considered for the acceleration of NNs. For example, Lognet shows
that logarithmic computation can enable more accurate encoding
of weights and activations that results in higher classification ac-
curacies at low resolutions [11]. A state-of-the-art 4-bit training
strategy for deep NNs is based on the logarithmic radix-4 format
[17]. Hence, efficient logarithm-based FP multipliers have become
promising for the training of NNs.

Recently, a logarithmic approximate multiplier (LAM) was pro-
posed to improve the power efficiency of NN training by imple-
menting FP multiplication with fixed-point addition [4]. However,
the LAM always underestimates the product, so approximation
errors are accumulated in the training process. Different from the
conventional logarithmic approximation, which uses the highest
power of two smaller than the given number, a nearest-one detector
(NOD) is proposed in [1] to find the nearest power of two to a given
input. Since the improved logarithmic multiplier is designed for
fixed-point numbers, the NOD evaluates from the most significant
bit to the least significant bit of the inputs. Taking advantage of
the IEEE 754 FP format, however, the nearest power of two for a
number in the FP representation can readily be determined without
using a NOD, as shown next.

3 LOGARITHMIC FLOATING-POINT
REPRESENTATION AND FORMULATION
FOR MULTIPLICATION

3.1 FP Representation and Multiplication
The IEEE 754 standard defines the most commonly used formats
for representing FP numbers. The IEEE 754 FP formats contain a
1-bit sign 𝑆 , a 𝑝-bit exponent 𝐸 and a 𝑞-bit mantissa𝑀 . Fig. 1 shows
the IEEE 754 representation of a single-precision FP number.

Figure 1: The IEEE-754 single-precision format.
An FP number 𝑁 in base-2 scientific notation is expressed as:

𝑁 = (−1)𝑆 · 2𝐸−𝑏𝑖𝑎𝑠 · (1 + 𝑥) (1)

where 𝑆 is either 0 for a positive number or 1 for a negative number.
To ensure unsigned integers in the exponent field, a bias, such as
127 for the single-precision, is added to the actual exponent value.
𝐸 − 𝑏𝑖𝑎𝑠 denotes the actual exponent value of 𝑁 . With the hidden
‘1’, 𝑥 is the fractional part of the FP number, represented by the
mantissa 𝑀 , and hence 0 ≤ 𝑥 < 1. Note that 𝑋 is used to denote
the actual mantissa, 1 + 𝑥 , in the following content.

In the IEEE 754 formats, the FP multiplication can be calculated
by three processes, including the XOR operation for the sign bits,
the addition of the exponents, and themultiplication of the mantissa
bits. Consider 𝑃 = 𝐴 × 𝐵, which is computed as follows:

𝑆𝑃 = 𝑆𝐴 ⊕ 𝑆𝐵, (2)

𝑋𝐴𝐵 = (1 + 𝑥𝐴) × (1 + 𝑥𝐵), (3)

𝐸𝑃 =

{
𝐸𝐴 + 𝐸𝐵 − 𝑏𝑖𝑎𝑠, 𝑋𝐴𝐵 < 2,
𝐸𝐴 + 𝐸𝐵 − 𝑏𝑖𝑎𝑠 + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(4)

𝑋𝑃 =

{
𝑋𝐴𝐵, 𝑋𝐴𝐵 < 2,
𝑋𝐴𝐵/2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(5)

where the sign bit, exponent and mantissa of A, B and P are respec-
tively denoted with the corresponding subscripts. The exponent
and mantissa of product 𝑃 relate to the comparison of the obtained
mantissa 𝑋𝐴𝐵 with 2. Note that (2) is valid for the sign computation
of the proposed design as well, so it will not be discussed in the
following content.

3.2 Logarithmic FP Representation
An FP number 𝑁 is first converted into the format of its nearest
power of two and the corresponding mantissa. Since the IEEE 754
FP format provides the highest power of two smaller than 𝑁 , by
comparing the fraction 𝑥 with 0.5, the nearest power of two can
be determined for 𝑁 . This process is further simplified to checking
whether the leading bit of the explicit mantissa is ‘1’ in the circuit
implementation.

If 𝑥 ≥ 0.5, 𝑁 is closer to 2𝐸−𝑏𝑖𝑎𝑠+1 than 2𝐸−𝑏𝑖𝑎𝑠 (or equally away
for the equal sign). The exponent 𝐸 is then incremented by 1 and,
accordingly, the mantissa becomes 1+𝑥

2 . In contrast, the exponent



and mantissa of𝑁 remain the same when 𝑥 < 0.5. Let the converted
exponent of 𝑁 be denoted as 𝐸 ′ and the converted mantissa as 𝑋 ′.
Then 𝐸 ′ and 𝑋 ′ are given by:

𝐸 ′ =

{
𝐸, 𝑥 < 0.5,
𝐸 + 1, 𝑥 ≥ 0.5,

(6)

𝑋 ′ = 1 + 𝑥 ′ =

{
1 + 𝑥, 𝑥 < 0.5,
1+𝑥
2 , 𝑥 ≥ 0.5.

(7)

3.3 Mathematical Formulation for the
Proposed Design

The logarithm approximation used in the proposed design is based
on log2 (1+𝑘) � 𝑘 fromMitchell [12]. This logarithm approximation
and its anti-logarithm approximation are both applied over the
region of 0 ≤ 𝑘 < 1 in most logarithmic multipliers. Hence, for the
logarithmic 𝑁 using the nearest one representation, the exponent
is given in (6) and log2 (𝑋 ′) is approximated as follows:

log2 (𝑋 ′) �
{
𝑥, 𝑥 < 0.5,
1+𝑥
2 − 1, 𝑥 ≥ 0.5.

(8)

Note that the logarithm approximation, log2 (1 + 𝑘) � 𝑘 , is applied
over the region −0.25 ≤ 𝑘 < 0.5 in (8).

For 𝑃 = 𝐴 × 𝐵 in the logarithm domain, the exponent is still
computed by addition, whereas the multiplication for the mantissa
is converted to addition. Let 𝑋 ′

𝐴𝐵
= (1 + 𝑥 ′

𝐴
) × (1 + 𝑥 ′

𝐵
), and hence

the logarithm of 𝑋 ′
𝐴𝐵

is given by:

log2 (𝑋 ′
𝐴𝐵) = log2 (1 + 𝑥 ′𝐴) + log2 (1 + 𝑥 ′𝐵) � 𝑥 ′𝐴 + 𝑥 ′𝐵 . (9)

Using the anti-logarithm approximation, 2𝑘 � 𝑘 +1, applied over
the region −0.5 ≤ 𝑘 < 1, 𝑋 ′

𝐴𝐵
is computed as:

𝑋 ′
𝐴𝐵 � 2𝑥

′
𝐴
+𝑥 ′

𝐵 � 1 + 𝑥 ′𝐴 + 𝑥 ′𝐵 . (10)

According to (8), we obtain −0.5 ≤ 𝑥 ′
𝐴
+ 𝑥 ′

𝐵
< 1, and thus,

0.5 ≤ 𝑋 ′
𝐴𝐵

< 2. When 𝑋 ′
𝐴𝐵

< 1 (or 𝑥 ′
𝐴
+ 𝑥 ′

𝐵
< 0), 𝑋 ′

𝐴𝐵
cannot

be directly adopted as the mantissa of product 𝑃 . Therefore, in
this case, 𝑋 ′

𝐴𝐵
is multiplied by 2 and, accordingly, the exponent is

reduced by 1.
Finally, the logarithmic FP multiplication is given by:

𝐸𝑃 =

{
𝐸 ′
𝐴
+ 𝐸 ′

𝐵
− 𝑏𝑖𝑎𝑠, 𝑥 ′

𝐴
+ 𝑥 ′

𝐵
≥ 0,

𝐸 ′
𝐴
+ 𝐸 ′

𝐵
− 𝑏𝑖𝑎𝑠 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(11)

𝑋𝑃 =

{
1 + 𝑥 ′

𝐴
+ 𝑥 ′

𝐵
, 𝑥 ′

𝐴
+ 𝑥 ′

𝐵
≥ 0,

(1 + 𝑥 ′
𝐴
+ 𝑥 ′

𝐵
) × 2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(12)

Note that 𝐸 ′
𝐴
and 𝐸 ′

𝐵
are the converted exponents, and 𝑥 ′

𝐴
and 𝑥 ′

𝐵
are the approximate logarithms given in the converted mantissas,
for 𝐴 and 𝐵, respectively.

4 FLOATING-POINT LOGARITHMIC
MULTIPLIER DESIGN AND EVALUATION

4.1 Hardware Implementation
The design of the proposed FP logarithmic multiplier, denoted as
FPLM, is shown in Fig. 2. Taking advantage of the IEEE 754 FP
format, the exponent and the explicit mantissa of the FP number can

(a) The proposed logarithmic floating-point multiplier.

(b) The proposed floating-point logarithm estimator (FP-LE).

Figure 2: The design of the proposed logarithmic floating-
point multiplier.

directly be obtained. Thus, for the hardware implementation, 1.𝑀 is
used to denote the actual mantissa of the given FP number. Here,𝑀
contains 𝑞 bits, e.g., 23 bits in the single-precision, after the binary
point and the implicit ‘1’, given as𝑀 [𝑞 − 1]𝑀 [𝑞 − 2] · · ·𝑀 [1]𝑀 [0]
in Fig. 2. Note that 1.𝑀 is equivalent to 1 + 𝑥 in (1).

An FP logarithm estimator (FP-LE) is further proposed to com-
pute the approximate logarithm of themantissa based on the nearest
power of two for the FP number. Simple arithmetic operations are
used to implement the FP-LE, as shown in Fig. 2(b). The nearest
power of two for each FP number can simply be determined by
checking the leading bit of the explicit mantissa,𝑀 [𝑞−1], and hence
a 2-to-1 multiplexer is used to obtain the approximate logarithmic
value 𝑥 ′, implemented by 𝑀 ′. When 𝑀 [𝑞 − 1] = 1, according to
(8), the approximate logarithm, 𝑥 ′ = (1 + 𝑥)/2 − 1, is obtained as a
negative number in 2’s complement, i.e.,𝑀 ′ = 1.1𝑀 [𝑞−1] · · ·𝑀 [1].
Otherwise, 𝑥 ′ = 𝑥 ;𝑀 ′ is obtained as 0.𝑀 [𝑞 − 1] · · ·𝑀 [0].

As shown in Fig. 2(a),𝑀 ′
𝐴
and𝑀 ′

𝐵
obtained from the FP-LEs are

then summed to compute the explicit mantissa. In this addition, the
addend, 1, for 1 + 𝑥 ′

𝐴
+ 𝑥 ′

𝐵
in (10), is omitted as the hidden bit and it

has no effect on the explicit mantissa of the sum. Let𝑀 ′
𝑃
denote the

sum of𝑀 ′
𝐴
and𝑀 ′

𝐵
in the form of𝑀 ′

𝑃
[𝑞] .𝑀 ′

𝑃
[𝑞 − 1] · · ·𝑀 ′

𝑃
[0] with



𝑞 + 1 bits. As per (12), when 𝑥 ′
𝐴
+ 𝑥 ′

𝐵
< 0, which means𝑀 ′

𝑃
[𝑞] = 1

in 2’s complement, the mantissa, (1 + 𝑥 ′
𝐴
+ 𝑥 ′

𝐵
) × 2, is obtained as

1.𝑀 ′
𝑃
[𝑞 − 2] · · ·𝑀 ′

𝑃
[0]0. Otherwise, the mantissa, 1 + 𝑥 ′

𝐴
+ 𝑥 ′

𝐵
, is

obtained as 1.𝑀 ′
𝑃
[𝑞 − 1] · · ·𝑀 ′

𝑃
[0].

According to (6), the exponents of the two operands are modified
first, practically depending on 𝑀𝐴 [𝑞 − 1] and 𝑀𝐵 [𝑞 − 1]. Then
the modified exponents are summed subsequently to obtain the
exponent of the product, which is subtracted by 1 if 𝑀 ′

𝑝 [𝑞] = 1,
as per (11). The circuits that are required to implement the above
operations can be simplified to only one adder with a carry-in bit
that determines the modified value of 𝐸𝐴 + 𝐸𝐵 . As shown in Fig.
2(a), four logic gates are used to generate the carry-in bit based
on the truth table obtained with𝑀𝐴 [𝑞 − 1],𝑀𝐵 [𝑞 − 1] and𝑀 ′

𝑝 [𝑞]
as inputs. For example, when both 𝑀𝐴 [𝑞 − 1] and 𝑀𝐵 [𝑞 − 1] are
‘1’, 𝐸𝐴 + 𝐸𝐵 is added with 2 as per (6), but a 1 is subtracted since
𝑀 ′
𝑃
[𝑞] = 1 as in (11). Therefore, in this case, the carry-in bit is ‘1’.

The exponent is then added with the bias to be stored in the IEEE
standard format.

Any exception result (such as overflow, underflow, and not a
number) is reported by detecting the two operands and the final
result. Note that the rounding unit is not required in the inexact
design since it is inherently imprecise.

4.2 Performance of the FP Logarithmic
Multiplier

The performance of the proposed FPLM is evaluated by comparing
it with the exact FP multiplier (EFM) and a recent multiplier, LAM
[4], in terms of accuracy and circuit performance. The multiplier in
[1] is not applicable for this comparison since it was designed for
fixed-point numbers.

4.2.1 Approximation error analysis. The approximations of the
function log2 (1 + 𝑘) used in the two multipliers are shown in Fig.
3, in which they are compared to the exact function.

As shown in Fig. 3, the LAM always underestimates the multi-
plication result since the approximation method log2 (1 + 𝑘) � 𝑘

is adopted over the interval (0, 1) for 𝑘 . FPLM computes the same
underestimated results as the LAM when both input operands are
closer to 2𝐸−𝑏𝑖𝑎𝑠 . However, the input operands closer to 2𝐸−𝑏𝑖𝑎𝑠+1
are overestimated when converted to the logarithmic domain. In
FPLM, when one of the input operands is closer to 2𝐸−𝑏𝑖𝑎𝑠 and
the other one is closer to 2𝐸−𝑏𝑖𝑎𝑠+1, the multiplication error can
be reduced due to the aforementioned overestimation and un-
derestimation of the inputs. For a logarithm multiplier, the anti-
logarithm approximation, 2𝑘 � (1 + 𝑘), can offset some errors in
the last step since the approximation direction is opposite to that
of log2 (1 + 𝑘) � 𝑘 .

4.2.2 Multiplication accuracy evaluation. The accuracy of the mul-
tiplication is assessed by using a sample of 103 uniformly distributed
random input combinations, as shown in Fig. 4. Since the proposed
FPLM computes the accurate exponent of the product, the ran-
dom numbers are generated over the interval of [1, 2) by ignoring
the exponent for simplicity. As can be seen, the FPLM produces
double-sided errors.

The mean relative error distance (MRED) is the average value
of all possible relative (absolute) error distances and the average

Figure 3: Approximations of log2 (1 + 𝑘).

Figure 4: Multiplication accuracies of FPLM, LAM [4] and
EFM.

error (AE) is the average (signed) difference between the exact and
approximate products. Both metrics and four FP precision formats:
32-bit single-precision, 16-bit half-precision, Brain Floating Point
(Bfloat16) format and 8-bit FP (FP8) format in the form of (1, 5,
2) bits for the sign, exponent and mantissa, are considered for the
evaluation of each multiplier. The FP8 (1, 5, 2) format is chosen since
it performs best with respect to the classification accuracy. It has
been adopted to an application of NN training [19]. A sample of 107
random cases of uniform and standard normal distributions were
generated respectively to obtain the results in Tables 1 and 2. It is
shown that, for a normal distribution, the FPLM performs up to 31%
more accurately in 32- and 16-bit precisions with respect to MRED,
and has lower AE, compared to LAM. For a uniform distribution,
the FPLM is more accurate in the single-precision, half-precision
and Bfloat16 formats with up to 45% smaller MRED and over 103
× smaller AE. For the FP8 format, both of the multipliers produce
significantly larger errors; the FPLM is slightly less accurate than
LAM.

4.2.3 Hardware evaluation. The proposed FPLM and the LAM in
[4] were implemented in Verilog and an EFMwas obtained using the
Synopsys DesignWare IP library (DW_fp_mult). All of the designs
were synthesized using the Synopsys Design Compiler (DC) for



Table 1: Mean Relative Error Distance of Multipliers

Single-
Precision

Half-
Precision Bfloat16 FP8

Uniform Distribution
FPLM 0.0289 0.0289 0.0302 0.2311

LAM [4] 0.0385 0.0391 0.0437 0.1915
Normal Distribution

FPLM 0.0288 0.0311 0.0300 0.2160
LAM [4] 0.0382 0.0410 0.0434 0.1891

Table 2: Average Error of Multipliers

Single-
Precision

Half-
Precision Bfloat16 FP8

Uniform Distribution
FPLM 3.2×10−5 2.2×10−3 0.0176 0.5630

LAM [4] 0.0833 0.0848 0.0950 0.4380
Normal Distribution

FPLM 8.3×10−6 8.2×10−6 7.4×10−6 3.5×10−5

LAM [4] 1.2 × 10−5 1.3 × 10−5 1.3 × 10−5 4.8 × 10−5

STM’s CMOS 28-nm process with a supply voltage of 1.0𝑉 and a
temperature of 25◦𝐶 . The same process and the same optimization
optionwere used to ensure a fair comparison. The evaluation results
are shown in Table 3. All of the designs are evaluated with a 500-
MHz clock frequency.

As shown in Table 3, the FPLM consumes 20.8× less PDP and
10.7× smaller area compared to the EFM in the single-precision
format, while it consumes 23.5 × less energy and 6.5× smaller area
in the FP8 format. Also, the FPLM achieves a shorter delay compared
to the LAM [4] in the single-precision format. It is interesting to
observe that the FPLM consumes less energy in Bfloat16 compared
to the consumption in the half-precision format, while LAM is the
opposite. Although LAM has the smallest PDP, its accuracy is lower
as the trade-off. It is necessary to point out that, according to [6],
the power consumption of the accurate FP multiplier is dominated
by the mantissa multiplication for over 80% and the rounding unit
for nearly 18%. Therefore, the power and area cost can be largely
reduced due to the elimination of the mantissa multiplier and the
rounding unit in the proposed design.

5 NEURAL NETWORK APPLICATIONS
5.1 Experimental Setup
The proposed logarithmic FPmultiplier is used in the arithmetic unit
in a multi-layer perceptron (MLP) to illustrate their performance
in NNs with respect to the classification accuracy and hardware
performance. It is evaluated against the EFM considered as the
baseline arithmetic unit, and the LAM in [4]. In the experiments,
the exact multiplication is replaced with approximate designs in
the training phase by using the Pytorch framework [14]. To fairly
evaluate the effect of approximate multiplication on training, the
multiplier used in the inference engine is an exact FP multiplier
with the same precision as the approximate one. An NN employing
approximate multipliers of four precisions was trained using the
same number of epochs and each training was repeated five times
using random weight initializations. Since the code quality and

Table 3: Circuit Assessment of the FP Multipliers

FPLM LAM [4] EFM
Single-Precision

Power (𝜇𝑊 ) 67.2 39.9 1366.9
Delay (𝑛𝑠) 1.66 1.69 1.70
Area (𝜇𝑚2) 270.4 138.8 2910.3
PDP (𝑓 𝐽 ) 111.5 67.5 2323.7

Half-Precision
Power (𝜇𝑊 ) 29.5 16.1 375.7
Delay (𝑛𝑠) 1.26 0.92 1.70
Area (𝜇𝑚2) 116.8 76.5 1057.5
PDP (𝑓 𝐽 ) 37.2 14.8 638.6

Bfloat16
Power (𝜇𝑊 ) 30.4 18.0 252.2
Delay (𝑛𝑠) 1.22 0.92 1.70
Area (𝜇𝑠2) 127.1 89.9 887.6
PDP (𝑓 𝐽 ) 37.1 16.5 428.7

FP8
Power (𝜇𝑊 ) 13.9 9.6 94.5
Delay (𝑛𝑠) 0.49 0.42 1.70
Area (𝜇𝑚2) 58.5 48.1 385.6
PDP (𝑓 𝐽 ) 6.8 4.0 160.6

GPU performance affect the acceleration of training, the training
time is not eligible for comparison.

Three classification datasets, the fourclass [3], the HARS [16]
and the MNIST [10], were used for the evaluation. A small MLP
network was used for training the fourclass. The MLP networks
used for the HARS and MNIST are (561, 40, 6) and (784, 128, 10)
models, respectively. The activation functions for the hidden layer
and output layer are the Rectified Linear Unit (ReLU) function and
sigmoid function, respectively.

5.2 Evaluation Results
5.2.1 Classification Accuracy. The comparison of the classification
accuracy is shown in Fig. 5 to indicate the relative approximation
error of the logarithmic FP multipliers. Since the benchmark NNs
using EFM for training are considered as baseline models, the base-
line accuracies for the four precisions are listed in Fig. 5 in the order
of the single-precision, half-precision, Bfloat16 and FP8 formats.

The proposed FPLM produces a higher accuracy than LAM
for the three datasets in the single-precision, half-precision, and
Bfloat16 format, while it degrades more in the FP8 format. For the
MNIST, it is interesting to observe that the FPLM slightly improves
the classification accuracy in the single-precision and Bfloat16 for-
mats. However, the classification accuracy for LAM based training
shows degradation in all the four precisions, with 2.068% in the half-
precision. The FPLM shows up to 0.21% and 2.19% higher accuracy
than LAM for the HARS and fourclass, respectively. It also indicates
that the FPLM performs more accurately in the classification of
larger dataset due to the offset effect of the double-sided errors.

5.2.2 Hardware Evaluation. The circuit of an artificial neuron with
two inputs was measured to indicate the hardware cost of the imple-
mented NNs. The FP adder used in the neuron was obtained using
the Synopsys DesignWare IP library (DW_fp_add). The Bfloat16



Figure 5: Comparison of the classification accuracy of three datasets with LMs for four precision levels: a negative percentage
means a decrease and a positive percentage means an increase in accuracy from using accurate multipliers.

was selected since the two designs performed very well for the
classification (Fig. 5) with a low energy consumption (Table 3).

The simulation results in Table 4, obtained at a 200-MHz clock
frequency, show that although the neuron using the LAM is more
hardware efficient, the neuron using the FPLM consumes 2.4× less
energy and is 2.8× smaller compared to the EFM based neuron. In
general, the hardware improvements are smaller than that in Table
3 since they are limited by the FP adder.

Table 4: Circuit Assessment of the Artificial Neuron

FPLM LAM [4] EFM
Power (𝜇𝑊 ) 124.0 113.8 263.5
Delay (𝑛𝑠) 4.10 4.66 4.69
Area (𝜇𝑚2) 674.8 606.9 1919.8
PDP (𝑓 𝐽 ) 508.4 416.5 1235.8

6 CONCLUSION
With the increasing size of neural networks, the amount of arith-
metic computation is getting larger and thus computation must
become more efficient to be practical in energy-constrained sys-
tems. In this paper, a floating-point logarithmic multiplier (FPLM) is
proposed for the complex FP multiplication with simple arithmetic
operations. The evaluation results show that the FPLM consumes
up to 23.5× less PDP and 10.7× smaller area compared to the EFM,
while being up to 45% more accurate than a recent FP design. The
FPLM-based NN achieves higher classification accuracy in 32- and
16-bit FP precisions compared to the recent design. It consumes
2.4× less energy and it is 2.8× smaller compared to the EFM based
neuron in the FP8 format. Interestingly, using FPLM slightly in-
creases the classification accuracy in some cases. In future work,
the proposed design will be applied to the training of convolutional
NNs and efficient strategies will be investigated to improve the
low-precision training.
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