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ABSTRACT

Due to the large volumes of data that need to be processed,
efficient memory access and data transmission are crucial
for high-performance implementations of convolutional neu-
ral networks (CNNs). Approximate memory is a promis-
ing technique to achieve efficient memory access and data
transmission in CNN hardware implementations. To assess
the feasibility of applying approximate memory techniques,
we propose a framework for the data resilience evaluation
(DRE) of CNNs and verify its effectiveness on a suite of
prevalent CNNs. Simulation results show that a high de-
gree of data resilience exists in these networks. By scaling
the bit-width of the first five dominant data subsets, the
data volume can be reduced by 80.38% on average with a
2.69% loss in relative prediction accuracy. For approximate
memory with random errors, all the synaptic weights can
be stored in the approximate part when the error rate is
less than 10™%, while 3 MSBs must be protected if the error
rate is fixed at 1073, These results indicate a great poten-
tial for exploiting approximate memory techniques in CNN
hardware design.
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1. INTRODUCTION

For many machine-learning tasks, a convolutional neural
network (CNN) is a state-of-the-art technique with the pro-
cessing capacity of huge data volumes and high computa-
tional demands. A number of designs [1, 2] focus on the
computational part of the algorithm and aim to achieve fast
efficient networks. However, efficient memory and data ac-
cess are crucial for high-performance implementations of a
CNN. ShiDianNao [3] focuses on minimizing memory trans-
fers to achieve high efficiency, but it is only available for
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small-scale neural networks rather than large-scale ones. It
is imperative to explore data storage and transmission opti-
mization for both small and large neural networks.

Approximate memory is one of the most promising tech-
niques to achieve efficient memory and data access in CNN
hardware implementations. The main idea of approximate
memory is leveraging the inherent data resilience of applica-
tions to trade off output quality for improved performance,
such as energy efficiency and processing capacity. Prevalen-
t approximate memory techniques can be divided into four
categories: on-chip memory design [4, 5], off-chip memory
design [6, 7], approximation in off-chip memory access [8, 9],
and approximate storage in emerging devices [10, 11].

In order to apply suitable approximate memory techniques,
it is important to understand data resilience in greater de-
tail. It is required to quantitatively evaluate the data re-
silience of a given CNN, and identify which parts of the data
are amenable to be stored in approximate memories. Moti-
vated by the above, we propose a data resilience evaluation
(DRE) framework to aid designers in adopting approximate
memory techniques in CNN hardware design. The proposed
DRE framework differs from previous paradigms [12, 13, 14]
in one major point. All the above frameworks are established
from the perspective of computation, mainly focused on the
approximation in arithmetic units. Due to the fact that ap-
proximations in memory access and data transmission are
distinct from that in arithmetic units, these paradigms are
not applicable in approximate memory architecture design.
This is the main reason for proposing the DRE framework.

The key contributions of this paper are summarized as:

e The DRE framework: Our primary contribution is a
systematic framework (i.e., the DRE framework) es-
tablished from the perspective of data storage in mem-
ory. It is used to quantitatively evaluate the data re-
silience of a given CNN and help designers to quickly
estimate the potential of applying specific approximate
memory techniques.

e A benchmark analysis: To verify the effectiveness of
the proposed DRE framework, we characterize and an-
alyze the inherent data resilience of several prevalent
CNNs. We demonstrate the high degree of data re-
silience in these neural networks and emphasize the
potential of approximate memory techniques.

e A design guide: Based on the analysis, we present sev-
eral strategies for designers in the adoption of various



approximate memory techniques in CNN hardware im-
plementations.

The rest of the paper is organized as follows. Section 2
introduces the approximation models for prevalent approxi-
mate memory techniques and analyze the data resilience of
CNN algorithms. The proposed DRE framework is present-
ed in Section 3. Simulation results are provided in Section
4. Finally, Section 5 concludes the paper.

2. CNN DATA RESILIENCE ANALYSIS
2.1 Modeling Approximate Memory

Inherent data resilience is defined as the property of an ap-
plication to produce acceptable outputs despite some of its
(input and intermediate) data being approximate. Approxi-
mate memory techniques exploit the inherent data resilience
of applications to trade off output quality for improved per-
formance.

The data of a given algorithm can be partitioned into two
parts: the resilient part and the sensitive part. Approximate
memory techniques should be targeted towards resilient da-
ta while avoiding the sensitive ones. For the resilient part
of data, it is imperative to evaluate the applicability of vari-
ous approximate memory techniques. Generally, we use ap-
proximation models to abstract a wide range of approximate
memory techniques so that we can make quick evaluations.
The approximation models of different approximate memo-
ries greatly depend on how the techniques are utilized. Most
approximate memory techniques can be modeled as random
errors that are uniformly injected into resilient bits [4, 5, 6, 7,
10, 11]. For off-chip memory reduction, major approximate
techniques focus on data bit-width scaling [9]. The other
approximate memory techniques are usually related to the
characteristics of applications [8]. Table 1 summarizes the
prevalent approximation techniques and their models. By
using these approximation models for resilient data subsets,
we can quickly evaluate the applicability of various approx-
imate memory techniques.

Table 1: Approximate Memory Model

Approximate Memory Technique | Approximation Model

On-chip Memory [4, 5
Oft-chip Memory |6, 7
Emerging Device [10, 11]

Uniformly Injected
Random Errors

Off-chip Memory Access [9] Bit-Truncation

2.2 CNN Data Resilience

CNNs play important roles in the machine-learning do-
main. Many CNN hardware designs focus on fast and effi-
cient implementations of feed-forward networks because off-
line learning is sufficient for many applications. It consists
of a number of layers, including convolutional layers, pooling
(sub-sampling) layers and a multi-layer perceptron (MLP)
which consists of several full connection layers at the top
of the network. These layers are executed in sequence so
that they can be considered independently. The operands
of each layer includes a number of neurons (output of the
previous layer) and synaptic weights obtained from early
off-line training. Figure 1 shows the major data flow of a
typical CNN feed-forward network example. The inherent
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Figure 1: Data Flow of a CNN Example.

data resilience of a CNN can be reflected in the following
two aspects.

2.2.1 Numerical Representation Requirement

Firstly, the data resilience of CNNs is reflected in their nu-
merical representation requirements. Many implementation-
s use the worst-case numerical precision for all values. Most
software implementations use 32-bit floating-point numbers,
while hardware implementations use 16-bit/8-bit fixed-point
numbers. However, the numerical representation require-
ment of each layer is different. The numerical representa-
tion requirement of CNNs significantly varies not only across
networks but also across the layers of the same network
[15]. Their operand bit-width can be decreased according
to their minimum numerical requirements so that memory
access and data transmission can be significantly reduced.
Therefore, we use numerical representation requirement to
characterize the resilience of CNN data, including neurons
and weights of each layer.

2.2.2 Random Error Tolerance

Secondly, the data resilience of CNNs is reflected in the
random error tolerance. It is described as an maximum tol-
erable random error rate (MTRER) injected into the re-
silient bits with a negligible decrease in the prediction accu-
racy. For most approximate memories with random errors,
the difference between different accuracy levels is beyond or-
ders of magnitude [4, 5, 6, 7, 10, 11]. Therefore, the order of
magnitude of MTRER is sufficient to characterize the tol-
erance of random errors. From a different perspective, the
random error tolerance can also be described as the number
of MSBs (Most Significant Bits) that must be stored in the
precise part. Given approximate cells with a specific error
rate, many LSBs (Less Significant Bits) can be stored in
these cells, while some MSBs must be precise (protected).
The number of protected MSBs can be used to characterize
the random error tolerance of a given CNN.

3. PROPOSED DRE FRAMEWORK

The proposed data resilience evaluation (DRE) framework
is shown in Figure 2. It consists of three analysis modules
and a characterization module. The three analysis modules
are for: (1) single layer analysis; (2) comprehensive multi-
layer analysis; and (3) random error tolerance evaluation.
Module 1 and Module 2 implement the two steps for nu-
merical representation requirement analysis, while Module
3 evaluates the tolerance of random errors. The whole DRE
framework is realized on the Caffe [16] platform. The input-
s are the network description (.prototxt), synaptic weights
(.caffemodel), a representative validation data set and the
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Figure 2: Overview of the DRE framework.

user-defined classification accuracy requirement. The out-
puts include a list of resilient data subsets, the results of
evaluating the two approximation models mentioned in Sec-
tion 3.2 on the resilient data subsets and their impacts on
the prediction accuracy. In the sequel, we will describe the
three analysis modules and the characterization module of
the DRE framework in detail.

3.1 Single Layer Analysis

The first procedure of the framework is the single layer
analysis. For a CNN algorithm, the control logic is highly
sensitive so that it must avoid approximation. Neurons and
weights of each layer are potentially resilient data subsets.
The objective of the single layer analysis is to analyze and e-
valuate the numerical representation requirement of neurons
and weights of each layer.

To explore the numerical representation requirement of a
single layer, bit truncation is a commonly used technique,
where approximations are introduced by reducing the data
bit-width. Considering that Caffe is a 32-bit floating-point
computing platform, we use 32-bit floating-point number as
a baseline and the initial numerical representation in this
module. The flow of this module is shown in Figure 3.
We first pick a resilient data subset and transform it into
the chosen numerical representation to observe the impact
on the prediction accuracy of the network. If the drop in
prediction accuracy is acceptable, reduce the bit-width of
the chosen numerical representation by bit truncation and
repeat the last step. Otherwise, the numerical representa-
tion requirement of this data subset is the chosen bit-width.
Through these steps, we can derive the numerical repre-
sentation requirement of the neurons and weights at each
layer of CNNs. By truncating a resilient data subset into
its minimum bit-width requirement, we can achieve some
performance improvements in spite of a slight decrease in
prediction accuracy.

3.2 Comprehensive Multi-Layer Analysis

The second procedure of the framework is a comprehen-
sive analysis of multi-layers, which aims to derive a complete
numerical representation scheme for all data subsets. This
is an optimization problem with a search space of exponen-
tial scale. However, the number of neurons and synapses
of each layer varies significantly. Usually, there are several
dominant data subsets contributing to the total data vol-
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Figure 3: The Flow of Single Layer Analysis.

ume. Approximate memory techniques should be targeted
towards these data subsets rather than all the data in the al-
gorithm. Therefore, the intent of this procedure is to explore
a numerical representation scheme for several dominant da-
ta subsets that mainly contribute to the total data volume.
Other data subsets remain using their numerical represen-
tation in 32-bit floating-point numbers.

The comprehensive analysis of multi-layers uses the same
strategy as the single layer analysis. However, there are two
differences. First, the judging conditions of this procedure
are different from that of the single layer analysis. Not only
the prediction accuracy but also the ratio of gain and loss
should be considered in this procedure, while the single lay-
er analysis only considers the former. Second, the working
way of truncated operations are different from that in the
single layer analysis. Truncations of different data subsets
work together to influence the prediction accuracy of CNNs,
while they are in isolation in the single layer analysis. The
desired numerical representation scheme of a given CNN can
be obtained through the procedure of Module 1 and 2.

3.3 Random Error Tolerance Evaluation

The last analysis module of the framework is for random
error tolerance evaluation. Considering the fact that the
approximation of many approximate memory techniques is
modeled as random errors, we need to explore the random
error tolerance of the neurons and weights of a given CNN.
In this module, we also use the same strategy as in the s-
ingle layer analysis, while the operations are random error
injections other than bit truncations. Random errors with a
given probability are introduced into specific resilient data
subsets.

There are two parameters to evaluate the random error
tolerance of the data in a CNN. The first one is the MTR-
ER. Given a resilient data subset, the output quality is ac-
ceptable when the probability of random error is within a
certain range while it is unacceptable when the probability
is out of the range. The maximum probability within this
range is the MTRER, which can be used to characterize the
random error tolerance of this resilient data subset. On the
other hand, when the probability of the random error is giv-
en, we need to determine which parts of data can be stored
in such approximate cells while others must be precise. In
most cases, LSBs can be stored in approximate cells while
MSBs must be protected. Therefore, the amount of protect-



Table 2: Data Volume Statistics of Dominant Data Subsets
Network Validation Dominant Data Subsets (Major contribution to the total data volume)
w Data Set subset1 subset2 subset3 subset4 subseth sum
) weight_fcl weight_fc2 weight_conv2 | neuron_conv2 weight_fc3

LeNet-5 | MNIST (65.59%) (21.52%) (5.12%) (1.84%) (1.79%) 95.86%

. weight_conv3 | weight_conv2 weight_fcl neuron_conv2 neuron_convl
Cifarl0-full | CIFAR-101 7 g 5707) (24.64%) (9.85%) (7.88%) (2.06%) | 9400%

weight_fcl weight_fc2 weight_fc3 weight_conv3 weight_conv4
AlexNet | ImageNet | 1500 (27.33%) (6.67%) (1.44%) (1.08%) 98.02%

) weight_fcl weight_fc2 weight_fc3 neuron_convl-2 | weight_conv5-3
VGG-16 | TmageNet | 50’6007 (11.38%) (2.78%) (2.18%) (1.60%) 87.627%

Notes: Subset weight_layer means the weights of this layer, while subset neuron_layer means the neurons of this layer.
For example, weight_fcl means the weights of layer fcl (the first full-connection layer), while neuron_convl means the
neurons of layer convl (the first convolution layer). The percentages are their contributions to total data volume.

ed MSBs can be used as a metric to evaluate the random
error tolerance of these resilient bits.

3.4 Data Resilience Characterization

Data resilience evaluation goes through the whole process
of the proposed DRE framework. It gives periodical evalu-
ations as indicated in the three analysis modules and draws
a concluding evaluation of data resilience for a given CN-
N. A periodical evaluation for single layer analysis mainly
contains the bit-width requirement of each single layer and
the benefits of corresponding bit-truncated operations. In a
comprehensive analysis of multi-layers, we derive a complete
numerical representation scheme based on the periodical e-
valuation in the single layer analysis. An MTRER and the
amount of protected MSBs with a specific error probability
are given in the random error tolerance evaluation. Addi-
tionally, the impact on prediction accuracy is also estimated
during every evaluation in the above three modules.

4. SIMULATION RESULTS

The DRE framework is applied on a benchmark suite in-
cluding CNNs with different scales and validation data sets
with different kinds of features. The benchmark suite is
shown in Table 2. We characterize the data resilience us-
ing the DRE framework and present the results in this sec-
tion. Simulations are implemented on the Caffe platform
[16]. The inputs of the framework include a network de-
scription (.prototxt), synaptic weights (.caffemodel), a rep-
resentative validation data set and a user-defined prediction
accuracy requirement. The network definitions (.prototx-
t) and pre-trained synaptic weights (.caffemodel) are taken
from BVLC Caffe GitHub [17]. We assume that the accept-
able relative reduction of prediction accuracy is 3% and use
it as an example to conduct the following simulations.

4.1 Single Layer Evaluation

The intent of the proposed DRE framework is to evalu-
ate the data resilience of dominant resilient subsets rather
than all the data in the algorithm. Dominant subsets in
our framework are defined as those mainly contributing to
the total data volume. The dominant subsets of the bench-
mark suite and their contributions are shown in Table 2. It
can be seen that top-5 subsets occupy a major contribution
to the total data volume. The sum of the contribution of
these subsets ranges from 87.62% to 98.02%. Therefore, it is
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Figure 4: Benefits of single subset optimizations.

Table 3: Single Layer Bit-Width Requirements

Network Bit-Width Requirement
subsetl| subset2| subset3| subset4| subsetb
LeNet-5 3 3 3 3 3
Cifar10-full 6 5 4 4 3
AlexNet 5 5 5 7 7
VGG-16 5 5 4 5 8

sufficient to focus approximate memory techniques on these
subsets.

In this section, a bit-truncated operation is conducted on
a single data subset to explore its numerical representation
requirement, while other subsets remain as 32-bit floating-
point numbers. The format of the target subset is first trans-
formed from 32-bit floating-point to 32-bit fixed-point num-
bers. The 32-bit fixed-point numbers are then truncated
into fewer bits. Table 3 shows the numerical representation
requirement of the dominant data subsets in the single layer
analysis. The bit-width requirements of these subsets range
from 3 to 8 bits, which are far less than the original nu-
merical representation (32-bit floating-point number) of the
Calffe platform. This demonstrates a high degree of inherent
resilience in these subsets. Benefits of those truncated oper-
ations (by single subset optimization) are presented in Fig-
ure 4. It can be seen that a larger reduction of data volume
is obtained by the optimization of a more dominant subset.
According to this observation, certain subsets can be target-
ed and processed (bit-truncated) with priority in the com-
prehensive multi-layer analysis, thereby reducing the search
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space of the optimization problem. The processing priority
is determined by the size of each data subset.

4.2 Numerical Representation Scheme

The objective of the comprehensive multi-layer analysis is
to derive a numerical representation scheme for dominant
resilient data subsets. Truncations of each subset are con-
ducted step by step to explore the connected bit-width re-
quirements of these subsets. The first step in this section
is to set the first dominant subset (subsetl) as its bit-width
requirement in a single layer evaluation. In Step 7 (i ranges
from 2 to 5), the bit-width of subset ¢ is scaled to reach
its bit-width requirement based on the previous truncated
operations. Bit-truncated operations work together to affect
the output quality of a given CNN in this process. The com-
plete numerical representation scheme is obtained through
the above 5 steps, as presented in Table 4. Compared with
their single layer bit-width requirements in Table 3, the com-
bined bit-width requirements of some subsets are the same
as those in the single layer analysis, while others are several
(from 1 to 3) bits more. This implies that a combined oper-
ation can make a better use of the inherent data resilience.
With this numerical representation scheme, the total data
volume decreases on average by 80.38% with 2.69% decrease
in relative prediction accuracy.

Table 4: Numerical Representation Scheme

Complete Scheme 1 2
Network ST TS 1S3 [S1TS5 DVR RPA
LeNet-5 3 3 4 | 4 | 4 |86.60% | 97.93%
Cifar10-full | 6 5 5 4 3 | 78.71% | 97.09%
AlexNet 5 5 5 8 | 10 | 82.40% | 97.09%
VGG-16 5 5 4 6 8 | 73.80% | 97.13%

4.2.1 Impact on Prediction Accuracy

Prediction accuracy is the most important metric to mea-
sure a CNN’s performance. The impact on prediction accu-
racy of the above steps is explored in this section, as shown
in Figure 5. Basically, the prediction accuracy decreases
step by step. Occasionally, it increases in a specific step,
which implies that the bit-width requirement of different
data subsets are interconnected with each other. Sometimes

'DVR: Data Volume Reduction.
2RPA: Relative Prediction Accuracy.
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combined operations of serval subsets can achieve a better
effect than single subset optimization.

4.2.2 Gain and Loss

Gain and loss must be considered in the tradeoff of data
volume reduction (DVR) benefits and accuracy loss. The
gain in this section is defined as the reduction of data vol-
ume, while the loss is defined as the decline in relative pre-
diction accuracy. The data volume reduction after step n
can be calculated by (1). In (1), DV R,, represents the per-
centage of data volume reduction after step n, while DV C;
and BWj represent the contribution (as shown in Table 2)
and the bit-width of subset i. Figure 6 shows the trend of the
ratio of gain and loss (G/L). For all the CNNs in the bench-
mark suite, this ratio follows a decreasing trend. However,
the ratios are all larger than 20.0 after the above 5 step-
s. That means a small loss in relative prediction accuracy
can be used to trade for larger benefits (DVR) that is over
20 times more than the loss in such context. Such trade-
off between data volume reduction and relative prediction
accuracy is cost effective.

32 — BW;

DVRy =3 DVCix =

1=1

(1)

4.3 Random Error Tolerance

For most approximate memories, bit flipping is considered
as the error model and the error rate varis from 1078 to 10~ *
[4, 5, 11]. The difference between different accuracy levels is
in several orders of magnitude. Therefore, using the order
of magnitude of MTRER is sufficient to characterize the
tolerance of random errors. In the first part of this section,
we assume that random errors with certain probability (from
1078 to 1071) are uniformly introduced into approximate
memory bit cells and all the synaptic weights of CNNs in
the benchmark suite are stored in the approximate memory.
Their impacts on prediction accuracy are shown in Figure 7.
The relative accuracy is acceptable (i.e., greater than 97%)
when the probability of random error is less than 107%. It
indicates that it is feasible to use approximate memories
with error rates less than 10™* for the storage of synaptic
weights in these CNNs. It is realizable for many approximate
memory techniques to attain an error rate of bit cells below
107 [4, 5, 11].

When the injected error probability is larger than MTR-
ER (10™%), several MSBs must be protected to restrict the
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magnitude of errors and to alleviate their impacts on pre-
diction accuracy. In the second part of this section, we use
fixed error probability (i.e., 10™%) to explore how many MS-
Bs should be protected while others can be stored in ap-
proximate bit cells for this error probability. Figure 8 shows
the trend of prediction accuracy with various numbers of
protected MSBs. It can be seen that the prediction accura-
cy is acceptable (i.e., greater than 97%) when the protected
MSBs are more than 3 bits. Designers need to take mea-
sures to protect at least 3 MSBs to produce an acceptable
output quality when using an approximate memory with a
fixed error rate as 1075.

S.  CONCLUSIONS

In this paper, an analytical framework is proposed for
the data resilience evaluation (DRE) of CNNs. We apply
the proposed DRE framework to four prevalent CNNs and
demonstrate that a high degree of data resilience exists in
these networks. For off-chip memory access, bit-width scal-
ing can be used to reduce the amount of data from off-chip
memory to on-chip memory. On average, the data volume
can be reduced by 80.38% with a 2.69% loss in relative pre-
diction accuracy. For approximate memory with random
errors, all the synaptic weights can be stored in approxi-
mate part when the error rate is less than 10~*, which is
attainable in many approximate memories. When the er-
ror rate is fixed at 1072, 3 MSBs must be protected while
other LSBs can be stored in the approximate part. Exten-

3The injected random error rate is 10™2 in this simulation.

sive simulations will be conducted in our subsequent work to
explore appropriate approximate memory architectures for
implementations in CNN hardware.
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