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Abstract—Approximate computing is an attractive design method-
ology to achieve low power, high performance (low delay) and re-
duced circuit complexity by relaxing the requirement of accuracy. In 
this paper, approximate Booth multipliers are designed based on ap-
proximate radix-4 modified Booth encoding (MBE) algorithms and a 
regular partial product array that employs an approximate Wallace 
tree. Two approximate Booth encoders are proposed and analyzed 
for error-tolerant computing. The error characteristics are analyzed 
with respect to the so-called approximation factor that is related to 
the inexact bit width of the Booth multipliers. Simulation results at 45 
nm feature size in CMOS for delay, area and power consumption are 
also provided. The results show that the proposed 16-bit approxi-
mate radix-4 Booth multipliers with approximate factors of 12 and 14 
are more accurate than existing approximate Booth multipliers with 
moderate power consumption. The proposed R4ABM2 multiplier 
with an approximation factor of 14 is the most efficient design when 
considering both power-delay product and the error metric NMED. 
Case studies for image processing show the validity of the proposed 
approximate radix-4 Booth multipliers. 

Index Terms—Radix-4 multiplier, Booth encoder, approximate com-

puting, low power. 
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1 INTRODUCTION 

ULTIPLIERS are widely used in arithmetic units of 

microprocessors, multimedia and digital signal pro-

cessors; moreover, high performance and low power mul-

tipliers are in high demand for embedded systems. It is 

becoming extremely difficult to further improve perfor-

mance and reduce the power consumption of multipliers 

under the requirement of full accuracy; however, the re-

quirements of high precision and exactness are not so 

strict for many applications related to human perception, 

such as multimedia signal processing and machine learn-

ing. High precision and exactness in the operations of dig-

ital logic circuits are related to the generally accepted re-

quirement of correctness of information processing; nu-

merous error-tolerant applications can be found in com-

puting and by relaxing the requirement of strict accuracy, 

performance and power consumption can be substan-

tially improved [1]. This design principle is generally 

known as approximate or inexact computing [2]. 

As the basic operations of an arithmetic processor, ad-

dition and multiplication are very important for achiev-

ing high performance. Addition has been extensively 

studied for approximate computing for reduction in 

power consumption and delay [3-5]. New metrics includ-

ing error distance (ED), mean error distance (MED) and 

normalized error distance (NED) have been proposed for 

evaluating the designs of approximate adders [6].  

Approximate multiplication has not been extensively 

studied despite its importance for arithmetic processing 

and systems; multiplication is more complex compared 

with addition, because it requires the accumulation of 

partial product rows. The most widely used high perfor-

mance multiplier consists of a modified Booth encoding 

(MBE) to reduce the number of partial product rows by 

half as the first step [7, 8]. 

The current designs for an approximate multiplier can 

be categorized as truncation and non-truncation schemes. 

A truncation-based design relies on a simple approxima-

tion in which either the lower part of the partial products 

is removed, or the least significant partial products are es-

timated by a constant (so referred to as fixed-width mul-

tiplier design [9]); however, the error generated by the 

truncated partial product rows can be rather large. There-

fore, error compensation strategies have been proposed to 

increase the accuracy of truncated multipliers; an inexact 

array multiplier has been proposed by ignoring some of 

the least significant columns of the partial products and 

considering them as a constant [3]. In [10], the truncated 

multiplier utilizes a correction constant selected accord-

ing to both the reduction and rounding errors. However, 

this truncated multiplier incurs a very large error if the 

partial products in the least significant columns are all 

ones or all zeros; therefore, a truncated multiplier with 

variable correction has been also proposed in [11]. Re-

cently, a few error compensation strategies have been 

proposed to further improve the accuracy of fixed-width 

Booth multipliers [9, 12-15]. An error is compensated with 

the outputs of the Booth encoders in [9]; the error com-

pensation circuit proposed in [12] mainly uses a simpli-

fied sorting network. An adaptive conditional-probability 

estimator has been proposed in [15] to compensate the 

quantization error of a fixed-width Booth multiplier. 

These truncated Booth multipliers use error compensa-

tion circuits to improve the accuracy. However, the extra 

compensation circuits require additional hardware; ap-

proximate computing can be employed to reduce such 

overhead.  

A non-truncation scheme utilizes approximate circuits 

to assemble an approximate multiplier. An approximate 

2×2 multiplier has been proposed in [16] by simplifying 

its logic expression using a Karnaugh-Map (K-map); this 
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circuit is then used as a basic block for larger size multi-

pliers.  Compressors or counters are widely used to accel-

erate the accumulation of partial products in the design 

of a high-speed multiplier [17, 18]; an inexact 4:2 counter 

has been used to design an approximate 4×4 Wallace mul-

tiplier for assembling larger size multipliers [17].  Two ap-

proximate 4-2 compressors are proposed in [18] and used 

in a Dadda tree of 8×8 array multipliers. An 8×8 multiplier 

using approximate adders that ignore carry propagation 

between partial products, has been proposed in [19]. Hy-

brid Approximate Multiplier (HAM) schemes are pro-

posed by exploring perforation, logic approximation and 

voltage over-scaling techniques in [20]. It is found that 

higher power savings for the same error values can be 

achieved by applying hybrid approximation techniques 

than using only single design techniques. A dynamic 

range unbiased multiplier (DRUM) with a dynamic range 

selection scheme is proposed in [21]; this scheme based on 

approximation in operands has an unbiased error distri-

bution. In [22], approximate radix-8 Booth multipliers are 

proposed by using an approximate 2-bit adder for gener-

ating the odd multiples (×3) of the multiplicand.  

However, there is little study in the technical literature 

on the approximate design of a radix-4 Booth multiplier 

as one of the most popular schemes for signed multiplica-

tion. In the first step of a radix-4 Booth multiplier, a radix-

4 modified Booth encoding (MBE) is used to generate the 

partial products [23]; a radix-4 MBE can reduce the num-

ber of partial products by a factor of two. The implemen-

tation of the MBE significantly affects the area, delay and 

power consumption of Booth multipliers [24]; in the tra-

ditional MBE algorithm, an extra partial product bit is 

generated at the least significant bit (LSB) position of each 

partial product row due to the negative encoding. This 

leads to an irregular partial product array as requiring a 

complex reduction tree. 

In this paper, two approximate radix-4 MBE algo-

rithms are proposed and analyzed. Booth multipliers are 

designed based on the proposed radix-4 MBEs, in which 

a regular partial product array is achieved by using the 

proposed approximate Wallace tree structure. The error 

characteristics are analyzed with an approximation factor 

that is related to the inexact bit width of the Booth multi-

pliers. Simulation results at 45 nm CMOS technology on 

delay, area, power consumption are also provided. Case 

studies for image processing are presented to show the 

validity of the proposed approximate radix-4 Booth mul-

tipliers. 

This paper is an extension of our previous work pre-

sented in [25]; the main differences and novel contribu-

tions are summarized as follows: 

1) A more efficient approximate radix-4 Booth en-

coder is proposed in this paper. The designs of 

both approximate radix-4 Booth encoders are pre-

sented and extensively analyzed. 

2) Approximate Booth multipliers are proposed us-

ing approximate Booth encoders, in which the 

features of an approximate regular tree structure 

are illustrated in detail.  

3) An approximation factor is proposed to assist in 

the design of the approximate Booth multipliers 

and facilitate its error analysis. 

4) The proposed approximate Booth multipliers are 

comprehensively evaluated with respect to both 

hardware implementation and error analysis. 

5) The proposed approximate Booth multipliers are 

applied in image processing. 

The paper is organized as follows. Section 2 presents 

the design of approximate radix-4 Booth multipliers 

based on two approximate Booth encoders and an ap-

proximate Wallace tree, which are also discussed in detail 

in this section. Section 3 presents the error analysis and 

the simulation results on area, delay and power consump-

tion. The application of the proposed approximate Booth 

multipliers to image processing is presented in Section 4. 

Conclusion is provided in Section 5. 

2 APPROXIMATE RADIX-4 BOOTH MULTIPLIERS 

A Booth multiplier consists of three parts: partial prod-

uct generation using a Booth encoder, partial product ac-

cumulation using compressors and final product genera-

tion using a fast adder. The approximate design of radix-

4 Booth encoding is studied in this section. A more effi-

cient approximate radix-4 Booth encoding method is pro-

posed in this section by carefully considering the error 

characteristics. Furthermore, an approximate partial 

product array produced by the Booth encoding is also de-

signed to make it regular, such that a reduction stage is 

saved. Approximate Booth multipliers are designed 

based on the approximate Booth encoder and the regular 

approximate partial product array. 

2.1 Review of Radix-4 Booth Multiplication 

Booth encoding has been proposed for improving the 

performance of multiplication of twoʹs complement bi-

nary numbers [7]; it has been further improved by the 

MBE or radix-4 Booth encoding [8]. The Booth encoder 

plays an important role in the Booth multiplier, which re-

duces the number of partial product rows by half.  

Consider the multiplication of two N-bit integers, i.e., 

a multiplicand A and a multiplier B in twoʹs complement; 

this is given as follows: 

� = −����2
���

+ ∑ ��
���
��� 2

�,    (1) 

� = −����2
���

+ ∑ ��
���
��� 2

�.    (2) 

In a Booth encoder, each group is decoded by selecting 

the partial products as -2A, -A, 0, A, or 2A. The negation 

operation is performed by inverting each bit of A and 
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adding a ‘1’ (defined as Neg) to the LSB [23, 24].  

The circuit diagrams of the radix-4 Booth encoder and 

decoder are provided in [23]. The output (i.e., the partial 

product, ����) of the Booth encoder is given as follows: 

���� = ���� ⊕ ������������⨁��� +  

����⨁������������⨁����������⨁�����.  (3) 

2.2 Approximate Radix-4 Booth Encoding Method 
1  

The K-map of the first approximate radix-4 Booth en-

coding (R4ABE1) method is shown in Table 1, where ○0

denotes an entry in which a ʹ1ʹ is replaced by a ʹ0ʹ. Only 

four entries are modified to simplify the Booth encoding; 

the strategy for the first approximate design is to make 

the truth table as symmetrical as possible and introduce a 

small error. Thus, the advantage of the R4ABE1 design is 

that a very small error occurs, as only four entries are 

modified; however, all modifications change a ʹ1ʹ to a ʹ0ʹ, 

so the absolute value of approximate product is always 

smaller than its exact counterpart.  
TABLE 1 

K-MAP OF R4ABE1 

       ������������� 

 

������ 
000 001 011 010 110 111 101 100 

00 0 0 0 0 1 0 1 ○0  

01 0 0 ○0  0 1 0 1 0 

11 0 1 ○0  1 0 0 0 0 

10 0 1 0 1 0 0 0 ○0  

The modified truth table shows two XOR functions; 

therefore, the output of R4ABE1 is given as follows: 

���� = �������������������������+�����������������������������   

  +��	�������������������� + ��	�����������������  

         = ���� ⊕ ������������⨁���.    (4) 

Compared with the exact MBE (Eq. 3), R4ABE1 can sig-

nificantly reduce both the complexity and the critical path 

delay of Booth encoding. The error rate (defined as the 

probability that at least a bit differs from the exact result, 

given a uniform distribution of inputs), denoted by �	 , is 

given by: 

�	 = 4/32=12.5%.     (5) 

The gate level structure of R4ABE1 is shown in Fig. 1(a); 

the conventional design of MBE [23] consists of four 

XNOR-2 gates, one XOR-2 gate, one OR-3 gate, one OR-2 

gate and one NAND-2 gate. The R4ABE1 design only re-

quires two XOR-2 gates and one AND-2 gate. If the 2-in-

put XOR and XNOR gates are implemented using trans-

mission gates and the other gates are implemented as a 

complex gate, the transistor count of the MBE for a full 

CMOS implementation is 34 [23], while the transistor 

count of the proposed R4ABE1 is only 12, i.e., a reduction 

of over 64% in terms of circuit complexity is achieved.  

By using a normalized gate delay model of [23] (Table 

2), the conventional MBE has a normalized delay of 2.5; 

therefore, its critical path delay is reduced to 1.7 unit de-

lay in the R4ABE1 design, i.e. an improvement of 32% in 

delay.  

2.3 Approximate Radix-4 Booth Encoding Method 
2  

The truth table of the second approximate radix-4 

Booth encoding (R4ABE2) method is shown in Table 3, 

where ○1  denotes a ʹ0ʹ entry that has been replaced by a 

ʹ1ʹ; eight entries in the K-map are modified to simplify the 

logic of the Booth encoding. The strategy for R4ABE2 is 

that in addition to having a symmetric truth table at a 

small error, the number of prime implicants (identified by 

rectangle) should be as small as possible too. Although the 

error introduced by R4ABE2 is nearly doubled compared 

with R4ABE1, the modification is achieved by not only 

changing a ʹ1ʹ to a ʹ0ʹ, but also changing a ʹ0ʹ to a ʹ1ʹ. Thus, 

the approximate product can be either larger or smaller 

than the exact product and errors can complement each 

other in the partial product reduction process. Therefore, 

when using R4ABE2 in a Booth multiplier, the error may 

not be larger than for a Booth multiplier with R4ABE1. 

This is further discussed in Section 3.2. 

         

(a)                                  (b) 

Fig. 1. The gate-level circuit of: (a) R4ABE1 and (b) R4ABE2. 

TABLE 2 

NORMALIZED GATE DELAY [23] 

Normalized Delay Gate Type 

1.0 XOR-2, XNOR-2, OR-3 

0.7 AND-2, OR-2 

0.5 NAND-2 

TABLE 3 

K-MAP OF R4ABE2 

       b����b��b���� 

 
a�a��� 

000 001 011 010 110 111 101 100 

00 0 0 0 0 1 ○1  1 1 

01 0 0 ○0  0 1 ○1  1 ○1  

11 ○1  1 1 1 0 0 0 0 

10 ○1  1 ○1  1 0 0 0 ○0  

The modified truth table contains only two prime im-

plicant rectangle; therefore, the output of R4ABE2 is given 

as follows: 

���� = �������������� + ��	����� = �����⨁��.    (6) 
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R4ABE2 further reduces the complexity and critical 

path delay compared with R4ABE1 (Eq. 4). The error rate 

is now given by: 

�	 =8/32=25%.     (7) 

The gate-level circuit of R4ABE2 is shown in Fig. 1(b). 

R4ABE2 only requires one XOR-2 gate by using transmis-

sion gates, so the transistor count of R4ABE2 is 4. R4ABE2 

reduces the complexity of the Booth encoder by over 88% 

compared with MBE. By using the normalized gate delay 

model in Table 2 [23], the critical path delay of R4ABE2 is 

1.0; so, it improves the delay by 60% compared with MBE. 

2.4 Approximate Regular Partial Product Array 

For a more regular partial product array (requiring a 

smaller reduction stage), the Neg term in the (N/2+1)th 

row of the approximate design of a Booth multiplier can 

be ignored (shown as △   in Fig. 2(a)). For an N-bit radix-

4 Booth multiplier when N is a power of 2, removing the 

extra Neg term significantly reduces the critical path, area 

and power when the 4-2 compressor is used for the partial 

product accumulation. In the approximate partial prod-

uct array (Fig. 2(b)), one reduction stage is saved; this sig-

nificantly reduces the complexity and critical path delay. 

The error rate of the approximate partial product array 

with the ignored Neg bit is 37.5% and its logic function is 

given by: 

�	
�/��� = ���
���� + ���
������ = ���
���������. (8) 

2.5 Design of Approximate Booth Multipliers 

R4ABE1 and R4ABE2 are applied to a Booth multiplier 

design. In the approximate Booth multiplier, the pro-

posed approximate Booth encoders, i.e. R4ABE1 and 

R4ABE2, are used in the first part to generate the inexact 

partial products. The approximate Booth encoders can 

then be used in all or only part of the partial product gen-

eration process; therefore, an approximation factor p (p=1, 

2, ..., 2N) is defined as the number of least significant par-

tial product columns that are generated by the approxi-

mate Booth encoders. The approximate partial products 

are accumulated with the exact 4-2 compressor. The last 

part uses an exact carry-lookahead adder (CLA) to com-

pute the final product result. 

Two types of approximate Booth multipliers are proposed: 

1. The first approximate radix-4 Booth multiplier 

(R4ABM1) uses R4ABE1 (to generate the p least sig-

nificant partial product columns) and the regular ap-

proximate partial product array. The exact MBE is 

used for generating the 2N-p most significant partial 

product columns. The exact 4-2 compressors are 

used to accumulate both approximate and exact par-

tial products. 

2. Similar as R4ABM1, the second approximate radix-4 

Booth multiplier (R4ABM2) uses R4ABE2 (to gener-

ate the p least significant partial product columns), 

the regular approximate partial product array and 

the exact 4-2 compressors. 

As the error is controlled by the approximation factor p, a 

reasonable accuracy can be achieved for different applica-

tions; Fig. 2(b) shows an approximate 8×8 Booth multiplier 

using either R4ABE1, or R4ABE2 with p=8.  

 
 (a) 

 
(b) 

Fig. 2 The 8×8 Booth multiplier using: (a) exact irregular partial 

product array, (b) approximate regular partial product array by ig-

noring the Neg term in the 5th partial product row. (The exact partial 

product term is represented by ●, while the approximate partial 

product term is represented by ■. ○ and ◎ represent the sign exten-

sion bit and the Neg term.) 

 

For p<7 of any word length, the delay of an approximate 

Booth multiplier is only improved by the approximate regu-

lar partial product array, since the critical path starts from 

p=7. For p>6, the delay of the entire multiplier can be further 

reduced due to the approximate Booth encoder. However, 

for both cases, the approximate design of a Booth encoder 

can significantly reduce the area and power consumption. 

3 EVALUATION AND ANALYSIS 

3.1 Encoder Design Evaluation 

The proposed two approximate Booth encoders, i.e. 

R4ABE1 and R4ABE2, are described at gate-level in Veri-

log HDL and verified by Synopsys VCS. Both designs are 

then synthesized by the Synopsys Design Compiler using 
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the NanGate 45 nm Open Cell Library. In the simulation 

of each design, a supply voltage of 1.25 V and room tem-

perature are assumed. Standard buffers of a 2X strength 

are used for both the input driver and the output load; the 

average power consumption is found using the Synopsys 

Power Compiler with a back annotated switching activity 

file generated from the random input vectors. 

Table 4 summarizes the power, delay, area, power-de-

lay product (PDP) and error rates of the exact and approx-

imate Booth encoders. 
TABLE 4 

COMPARISON BETWEEN EXACT AND APPROXIMATE BOOTH ENCODERS 

TO GENERATE ONE PARTIAL PRODUCT BIT. 

Booth Encoder 
Power 

(µW) 

Delay 

(ns) 

Area 

(µm2) 

PDP 

(aJ) 

Error 

Rate 

MBE 1.99 0.08 9.84 159.20 0% 

R4ABE1 0.93 0.07 3.99 65.10 12.5% 

R4ABE2 0.23 0.05 1.60 11.50 25% 

The approximate Booth encoders significantly reduce 

the PDP; R4ABE2 reduces the PDP by over an order of 

magnitude compared with MBE, as the best performing 

Booth encoder. However, the error rate introduced by 

R4ABE2 is also the largest; R4ABE1 generates half of the 

error of R4ABE2 and reduces the PDP by up to 59% com-

pared with MBE. The error characteristics of approximate 

multipliers using these approximate Booth encoders are 

studied next. 

3.2 Error Analysis and Evaluation 

Although the error rate of each approximate circuit (or 

module) has been presented, the error characteristics of 

the entire approximate Booth multiplier must be also con-

sidered. For approximate designs, several metrics have 

been proposed to measure the error of approximate ad-

ders and multipliers including the mean error distance 

(MED), the relative error distance (RED) and the normal-

ization of MED (NMED) [6] [22]. Several error metrics are 

used to fairly compare different approximate designs of 

various sizes: 

• The NMED is defined as the normalized MED by the 

maximum output of the accurate design.  

• RED is defined as the ED over the absolute accurate 

result. Mean RED (MRED) and PRED are usually used 

to evaluate the error distribution of approximate 

multipliers, where PRED is the probability of obtain-

ing a RED smaller than a specific percentage value 

that is assumed to be 2% throughout the paper.  

The error metrics of the proposed approximate multi-

pliers are provided in Table 5 for 8-bit and 16-bit designs; 

Table 5 shows that with an increase of p, the accuracy of 

both approximate multipliers decreases. MRED increases 

with an increase of p and the MRED of R4ABM2 is gener-

ally larger than that of R4ABM1. PRED (the probability of 

getting a RED smaller than 2%) of both the 8-bit R4ABM1 

and R4ABM2 decrease rapidly when 4<p<12. PRED of the 

16-bit designs is larger than 90% when p<16.  The error 

rates for 8-bit and 16-bit approximate Booth multipliers 

are also shown in Table 5; the error rate is increased by 

increasing p. The error rate of R4ABM1 is smaller than for 

R4ABM2 at the same value of p because the error rate of 

R4ABE-1 (12.5%) is significantly smaller than for R4ABE2 

(25%). However, for error analysis, the most important er-

ror metric is in this case the difference between the exact 

and the approximate values, so related to the error dis-

tance (i.e. NMED). 
TABLE 5 

ERROR OF PROPOSED 8-BIT AND 16-BIT APPROXIMATE MULTIPLIERS AT 

DIFFERENT APPROXIMATION FACTORS (ER: ERROR RATE) 

 

Approxi-

mate  

Design 

p 

8-bit Approximate Booth 

Multipliers 

16-bit Approximate Booth 

Multipliers 

NMED 

(10-2) 

MRED 

(10-2) 

PRED 

(%) 

ER 

(%) 

NMED 

(10-5) 

MRED 

(10-2) 

PRED 

 (%) 

ER 

(%) 

R4ABM1 

2 0.073 0.051 83.72 53.12 0.2542 0.0264 99.80 50.00 

4 0.082 0.092 80.05 62.89 0.2543 0.0529 99.79 60.42 

6 0.137 0.641 66.45 71.92 0.2545 1.37 99.78 69.40 

8 0.427 5.256 40.30 75.89 0.2547 15.8 99.71 76.74 

10 1.269 19.917 30.23 78.15 0.2557 133 99.44 82.46 

12 3.369 55.125 28.44 78.69 0.3082 916 98.51 85.72 

14 7.022 104.73 28.14 78.81 0.9303 5326 95.89 93.75 

16 - - - - 3.1026 1.76*104 90.61 93.98 

18 - - - - 12.295 1.37*105 81.64 94.04 

20 - - - - 46.134 4.61*105 63.59 94.05 

24 - - - - 580.47 3.42*106 32.08 94.05 

28 - - - - 5558.2 1.12*107 12.15 94.06 

32 - - - - 11115 2.53*107 12.15 94.06 

R4ABM2 

2 0.073 0.048 83.81 60.93 0.2543 0.344 99.79 73.95 

4 0.076 0.134 80.29 78.75 0.2543 0.689 99.79 77.34 

6 0.104 2.142 70.20 88.87 0.2543 9.61 99.76 88.27 

8 0.409 24.120 37.16 94.16 0.2545 125 99.66 94.03 

10 1.400 124.692 16.01 96.12 0.2550 1165 99.23 96.99 

12 4.089 469.695 10.08 96.57 0.2671 8837 97.81 98.49 

14 10.138 1291.11 8.56 96.66 0.6243 5.78*104 93.44 99.61 

16 - - - - 3.0173 3.39*105 86.07 99.86 

18 - - - - 11.241 1.58*106 77.12 99.96 

20 - - - - 40.973 6.83*106 57.11 99.99 

24 - - - - 542.48 1.03*108 34.80 99.99 

28 - - - - 7270.3 1.07*109 0.217 99.99 

32 - - - - 17879 2.52*109 0.123 99.99 

Consider next the NMED; although the error rate of 

R4ABM1 is smaller than for R4AMB2, the NMED of 

R4ABM1 is larger than for R4ABM2 when 2<p<10 for 8-bit 

and when 6<p<28 for 16-bit. This occurs because there are 

only positive errors in R4ABE1, while both positive and 

negative errors are introduced in R4ABE2. Hence, they 

can complement each other, such that smaller errors are 

generated overall when using R4ABE2 in an approximate 

multiplier. This is further demonstrated with the peak 

signal-noise ratio (PSNR) results for the image applica-

tion in Section 4. An 8-bit approximate Booth multiplier 

design with a value of p not larger than 8 is a good choice 



6 IEEE TRANSACTIONS ON COMPUTERS 

for an error-tolerant application; for a 16-bit approximate 

Booth multiplier design, p should not be larger than 20 for 

a reasonable tradeoff between accuracy and low power.  

3.3 Approximate Multiplier Hardware Evaluation 

Evaluation by simulation is pursued for the proposed 

approximate multipliers under the same conditions as in 

Section 3.1. The critical path delay, area, power consump-

tion and PDP are reported in Tables 6 and 7 for 8-bit, 16-

bit and 32-bit exact radix-4 Booth multipliers (R4EBM), 

R4ABM1 and R4ABM2 at different values of the approxi-

mation factor. With an increase of the approximation fac-

tor p, the power consumption and PDP decrease signifi-

cantly. The PDPs of both R4ABM1 and R4ABM2 are sig-

nificantly lower than for R4EBM; the critical path delay is 

also reduced, leading to an overall better performance. 

R4ABM2 is better than R4ABM1 in terms of power, delay, 

area and PDP; this is consistent with the comparison re-

sults for R4ABE1 and R4ABE2. Not surprisingly, the use 

of a simpler approximate Booth encoder in R4ABM2 leads 

to a high-performance and power-efficient approximate 

design. 
TABLE 6 

DESIGNS (45 NM TECHNOLOGY) OF 8-BIT AND 16-BIT APPROXIMATE 

MULTIPLIERS AT DIFFERENT APPROXIMATION FACTORS 

Booth  

Multiplier   

Designs 

p 

8-bit Booth Multipliers 16-bit Booth Multipliers 

Power 

(μW) 

Delay 

(ns) 

Area 

(μm2) 

PDP 

(pJ) 

Power 

(μW) 

Delay 

(ns) 

Area 

(μm2) 

PDP 

(pJ) 

R4EBM 0 188.0 0.70 788.4 0.131 634.0 1.02 2645 0.646 

R4ABM1 

2 167.5 0.62 671.9 0.103 609.9 0.96 2426 0.585 

4 160.6 0.60 648.8 0.096 600.9 0.96 2425 0.576 

6 148.3 0.60 625.1 0.088 589.4 0.96 2345 0.565 

8 138.0 0.58 581.7 0.080 557.5 0.95 2278 0.529 

10 109.7 0.58 515.5 0.063 547.3 0.95 2242 0.519 

12 104.3 0.57 500.6 0.059 535.0 0.95 2209 0.508 

14 101.3 0.57 495.0 0.057 516.6 0.95 2169 0.490 

16 - - - - 479.9 0.94 2066 0.451 

18 - - - - 448.4 0.94 2002 0.421 

20 - - - - 408.1 0.93 1875 0.379 

24 - - - - 371.8 0.93 1780 0.345 

28 - - - - 351.2 0.92 1756 0.323 

32 - - - - 342.2 0.92 1733 0.314 

R4ABM2 

2 164.8 0.62 667.9 0.102 601.3 0.96 2403 0.577 

4 162.6 0.60 649.3 0.097 600.2 0.96 2412 0.576 

6 139.1 0.58 575.0 0.080 571.8 0.95 2314 0.543 

8 127.4 0.58 538.6 0.073 563.2 0.95 2276 0.535 

10 111.7 0.57 480.4 0.063 551.8 0.94 2217 0.518 

12 93.3 0.56 423.2 0.052 515.4 0.94 2077 0.484 

14 88.4 0.55 405.3 0.048 479.7 0.92 2004 0.441 

16 - - - - 448.7 0.92 1875 0.412 

18 - - - - 437.4 0.89 1788 0.389 

20 - - - - 394.6 0.89 1642 0.351 

24 - - - - 358.3 0.89 1489 0.318 

28 - - - - 343.1 0.89 1423 0.305 

32 - - - - 339.0 0.89 1408 0.301 

 

TABLE 7 

DESIGNS (45 NM TECHNOLOGY) OF 32-BIT APPROXIMATE MULTIPLIERS 

AT DIFFERENT APPROXIMATION FACTORS 

32-bit Booth  

Multiplier  

Designs 

p 

R4ABM1 R4ABM2 

Power 

(μW) 

Delay 

(ns) 

Area 

(μm2) 

PDP 

(pJ) 

Power 

(μW) 

Delay 

(ns) 

Area 

(μm2) 

PDP 

(pJ) 

R4EBM 0 2489.8 1.59 10222.1 3.958 2489.8 1.59 10222.1 3.958 

R4ABM 

8 2386.2 1.54 9598.1 3.674 2449.1 1.52 9572.8 3.722 

16 2309.7 1.52 9289.7 3.510 2292.6 1.48 9258.3 3.393 

24 2241.8 1.52 8901.1 3.407 2086.3 1.48 8540.1 3.087 

28 2133.5 1.51 8557.4 3.221 2034.2 1.48 8103.9 3.010 

32 2050.0 1.51 8200.5 3.095 1870.9 1.46 7684.5 2.731 

36 2008.8 1.49 7960.3 2.993 1728.7 1.46 7145.5 2.523 

44 1845.2 1.49 7452.5 2.749 1537.0 1.45 6413.5 2.228 

52 1774.4 1.47 7162.3 2.608 1402.8 1.45 5973.6 2.034 

60 1730.4 1.47 7007.7 2.543 1343.3 1.45 5768.7 1.947 

3.4 Comparison of Approximate Booth Multipliers 

The proposed designs at large p values have large 

NMEDs, but small PDPs; moreover, the proposed 16-bit 

R4ABM1 and R4AMB2 with p<20 show a good tradeoff 

between PDP and NMED. Therefore, both proposed 16-

bit designs with p=12, 14, 16 and 18 are compared with 

previous approximate 16-bit Booth multipliers that have 

been proposed in [9] (R4BM04), [12] (R4ABM11), [15] 

(R4ABM12), and [22] (R8ABM1, R8ABM2-C9 and 

R8ABM2-C15).  R8ABM1, R8ABM2-C9 and R8ABM2-C15 

are all radix-8 approximate Booth multipliers with no 

truncation, 9-bit truncation and 15-bit truncation, respec-

tively. R8ABM2-C9 and R8ABM2-C15 are also designed 

with the compensation circuits. Also in these cases, all de-

signs are described in Verilog as combinational multipli-

ers and synthesized by the Synopsys Design Compiler us-

ing the NanGate 45 nm Open Cell Library.  

The power consumption, delay, area, PDP, NMED and 

error rate are reported in Table 8. The proposed R4ABM1 

and R4ABM2 can reduce the power consumption signifi-

cantly (in a range of 25%~31%) compared with the accu-

rate design, i.e. R4EBM.  The area of the proposed designs 

is also much smaller (up to 32%) than that of their exact 

counterpart. The delay of the proposed approximate de-

signs can be improved by up to 12% when p=18. Therefore, 

the PDPs of both R4ABM1 and R4ABM2 are significantly 

smaller than R4EBM (up to 39%).  

Although the approximate radix-8 designs show good 

performance in terms of power consumption and PDP, 

their delay is generally higher than the proposed designs. 

The power and PDP results of R8ABM2-C15 are the best 

among all approximate Booth multipliers; however, it 

also has a large NMED and error rate. The most accurate 

approximate radix-8 design is R8ABM1; and its accuracy 

cannot be further increased. This is also the drawback of 

the fixed-width Booth multipliers, i.e., R4ABM04, 
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R4ABM11, and R4ABM12, where accuracy is not adjusta-

ble and their NMED and ER are significantly larger than 

the proposed designs when p<16. However, the accuracy 

of our proposed designs can be changed along with PDP 

to meet various application requirements. 

Among all approximate Booth multipliers, only the 

proposed designs with p=12 and p=14 have NMEDs that 

are smaller than 10-5; and their accuracy can be further im-

proved by applying a smaller p. This is achieved with no 

error compensation or recovery. The choice of p is de-

pendent on different specific applications that are error-

tolerant; for applications that can tolerant more error, the 

proposed approximate Booth multipliers with larger p 

can be used to further reduce the power and delay. 
TABLE 8 

COMPARATIVE PERFORMANCE OF APPROXIMATE BOOTH MULTIPLIERS 

16-bit Booth  

Multipliers 

Power 

(μW) 

Delay 

(ns) 

Area 

(μm2) 

PDP 

(pJ) 

NMED 

(10-5) 

ER 

 (%) 

R4EBM [23] 634.0 1.02 2645 0.646 0 0 

R4ABM04 [9] 427.3 0.95 1939 0.406 5.31 99.99 

R4ABM11 [12] 404.4 0.94 1859 0.380 2.18 99.98 

R4ABM12 [15] 394.6 0.95 1808 0.374 2.26 99.98 

R8ABM1 [22] 376.7 1.23 1516 0.463 1.92 44.06 

R8ABM2-C9 [22] 332.6 1.22 1332 0.406 4.43 99.74 

R8ABM2-C15 [22] 217.3 1.18 912 0.256 5.73 99.99 

R4ABM1 (p=12) 535.0 0.95 2209 0.508 0.31 85.72 

R4ABM1 (p=14) 516.6 0.95 2169 0.490 0.93 93.75 

R4ABM1 (p=16) 479.9 0.94 2066 0.451 3.10 93.98 

R4ABM1 (p=18) 448.4 0.94 2002 0.421 12.29 94.04 

R4ABM2 (p=12) 515.4 0.94 2077 0.484 0.27 98.49 

R4ABM2 (p=14) 479.7 0.92 2004 0.441 0.62 99.61 

R4ABM2 (p=16) 448.7 0.92 1875 0.412 3.02 99.86 

R4ABM2 (p=18) 437.4 0.89 1788 0.389 11.24 99.96 

The approximate Booth multipliers are further com-

pared in terms of both PDP and NMED. Fig. 3 shows that 

the proposed R4ABM2 (p=14) is the most efficient design 

when considering both PDP and NMED. Both R4ABM1 

and R4ABM2 with p=12 show better NMED but larger 

PDP, while R4ABM11 and R4ABM12 have better PDP but 

larger NMED. Although an approximate radix-8 design, 

especially R8ABM2-C15, has a small PDP, its large NMED 

makes it less attractive when considering both power con-

sumption and accuracy. These results confirm that both 

proposed designs with p=12 and p=14 are more accurate 

than previous approximate Booth multipliers with mod-

erate power consumption. 

4 CASE STUDY: IMAGE PROCESSING 

In this section, 8-bit R4ABM1 and R4ABM2 with various 

p are applied to image processing; two images are multi-

plied on a pixel-by-pixel basis to blend them into a single 

output image. As Booth multipliers perform signed mul-

tiplication, the pixel values have been shifted from 0~255 

to -128~127. The approximate designs are modeled in C 

that is called by Matlab for image processing. The peak 

signal-to-noise ratio (PSNR) is used to assess the quality 

of the output image. 

 
Fig. 3 PDP versus NMED for approximate Booth multipliers. 

 

As shown in Figs. 4 and 5, the quality of the processed 

image deteriorates with an increase of p. The output im-

age is still viable when p is smaller than 12, thus confirm-

ing the error analysis presented previously. The PSNRs of 

all subfigures shown in Figs. 4 and 5 are provided in Table 

9; the PSNR drops significantly when p is larger than 10. 

The PSNR of the output images processed by R4ABM2 is 

larger compared with R4ABM1; this finding is again con-

sistent with the previously presented error analysis in 

Section 3.2. Both R4ABM1 and R4ABM2 with p<10 can be 

used in image processing applications with no significant 

loss of quality. 

 
Fig. 4 Image multiplication using R4ABM1 with different p: (a) p=0, 

(b) p=2, (c) p=4, (d) p=6, (e) p=8, (f) p=10, (g) p=12, and (h) p=14. 

 

 
Fig. 5 Image multiplication using R4ABM2 with different p: (a) p=0, 

(b) p=2, (c) p=4, (d) p=6, (e) p=8, (f) p=10, (g) p=12, and (h) p=14. 

5 CONCLUSION 

Designs of approximate radix-4 Booth multipliers have 

been studied in this paper. Two approximate Booth encoders 
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have been proposed to reduce the complexity of MBE by in-

troducing incorrect terms in the truth table, resulting in a re-

duction of the PDP by up to 59%. An approximation factor 

has been proposed to indicate the inexact bit width of the 

Booth multiplier and facilitate the error analysis of pro-

posed designs. Based on the two proposed approximate 

Booth encoders, i.e., R4ABE1 and R4ABE2, two approxi-

mate Booth multipliers have been designed with different 

approximation factors. An approximate Wallace tree 

structure has been designed for use in the partial product 

accumulation array. The power, delay and PDP of the 

proposed designs have been evaluated at 45nm CMOS 

technology. 
TABLE 9 

PSNR OF PROCESSED IMAGES USING APPROXIMATE BOOTH MULTIPLI-

ERS AT DIFFERENT APPROXIMATION FACTORS. 

Approximation 

Factor (p) 

R4ABM1 

(dB) 

R4ABM2 

(dB) 

2 57.043 57.043 

4 56.733 56.885 

6 54.485 55.022 

8 52.514 53.598 

10 37.818 39.646 

12 30.340 33.918 

14 17.576 24.643 

The error characteristics of the proposed designs have 

been studied at different values of the approximation fac-

tor (p) to establish a suitable balance between various fig-

ures of merit such as PDP and NMED. The proposed de-

signs have been compared with previous approximate 

Booth multipliers; results presented in this paper have 

shown that the proposed R4ABM2 with p=14 is the most 

efficient design when considering both PDP and NMED. 

Both proposed designs with p=12 and p=14 are more ac-

curate than previous approximate Booth multipliers with 

moderate power consumption. The proposed designs 

have also been applied to image processing, resulting in a 

very small loss of accuracy. 
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