
IEEE TRANSACTIONS ON COMPUTERS 1

An Improved Logarithmic Multiplier for
Energy-Efficient Neural Computing

Mohammad Saeed Ansari, Bruce F. Cockburn, Jie Han

Abstract—Multiplication is the most resource-hungry operation in neural networks (NNs). Logarithmic multipliers (LMs) simplify
multiplication to shift and addition operations and thus reduce the energy consumption. Since implementing the logarithm in a compact
circuit often introduces approximation, some accuracy loss is inevitable in LMs. However, this inaccuracy accords with the inherent error
tolerance of NNs and their associated applications. This article proposes an improved logarithmic multiplier (ILM) that, unlike existing
designs, rounds both inputs to their nearest powers of two by using a proposed nearest-one detector (NOD) circuit. Considering that
the output of the NOD uses a one-hot representation, some entries in the truth table of a conventional adder cannot occur. Hence, a
compact adder is designed for the reduced truth table. The 8×8 ILM achieves up to 17.48% saving in power consumption compared to
a recent LM in the literature while being almost 8% more accurate. Moreover, the evaluation of the ILM for two benchmark NN workloads
shows up to 21.85% reduction in energy consumption compared to the NNs implemented with other LMs. Interestingly, using the ILM
increases the classification accuracy of the considered NNs by up to 1.4% compared to a NN implementation that uses exact multipliers.

Index Terms—neural network, logarithmic multiplier, adder, energy efficiency, error-tolerant.

F

1 INTRODUCTION

N EURAL networks (NNs) are a class of computing ar-
chitectures that are inspired by how a biological brain

processes information. An artificial NN is composed of
numerous highly interconnected processing elements, called
neurons [1]. More complex deep learning networks (DLNs)
are recent variants of NNs that have been shown to have
especially strong performance. With their remarkable ability
to create classification models from a large set of complex
data items [2], NNs and especially DLNs, are being used
successfully for a wide variety of real-world applications.

Due to the massive computation workloads of NNs,
developing improved hardware implementations of DLNs
is an important topic. The conventional architecture suffers
from relatively high energy consumption and area overhead
[3]. Several solutions that improve the hardware efficiency
of the DLNs have been developed for different abstraction
levels, ranging from architecture-level [4], [5] to transistor-
level techniques [6], [7].

Fortunately, NNs and their associated applications are
inherently error-tolerant. Typically, there is a range of ac-
ceptable, good-enough results rather than a unique required
result. This flexibility allows designers to exploit approxi-
mation to increase computational efficiency. Several recent
studies have exploited the use of approximation in NNs
at the hardware level. One particular technique is to use
reduced precision (e.g., use 8-bit fixed-point numbers rather
than 32-bit floating-point numbers) [8], [9], [10]. Since mul-
tiplying the inputs with their corresponding weights is the
most resource-hungry operation in NNs [11], reducing the
bit precision could allow a custom processor to complete a

This work was supported financially by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) (Project Nos. RES0018685 and
RES0025211).
The authors are with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, T6G 1H9, Canada (e-mail: ansari2,
cockburn, jhan8@ualberta.ca).

larger number of neuron evaluations per second. Reducing
the precision also reduces the area of the processor and the
memory size.

Given that multipliers are the main bottleneck of NNs,
several approximate multipliers have been proposed for the
implementation of NNs [12]. Cartesian Genetic Program-
ming (CGP) is used in [13] to generate approximate mul-
tipliers for NNs. This method requires a time-consuming
search to evolve and select approximate multipliers that
have favorable trade-offs between accuracy and hardware
cost. The so-called alphabet-set multipliers are proposed in
[11] with reduced alphabets that are used to approximate
the sum of partial products. However, these multipliers do
not support all the input combinations and they impose
restrictions on the weights. Both methods in [13] and [11]
incur some accuracy loss, and retraining is necessary to
approach the accuracy obtained by using exact multipliers.

Following a different approach, we propose a hardware-
efficient logarithmic multiplier (LM) for use in NNs. LMs
convert multiplication into only shift and addition opera-
tions, thus allowing it to be done faster and with smaller
area and power consumption [14], [15], [16]. LMs are in-
herently approximate designs due to: (1) a restricted bit-
width precision and (2) permitted inaccuracy in computing
the function log2(x) [14]. Using either piece-wise linear ap-
proximations over a finely subdivided input domain and/or
iterative techniques can compensate for the accuracy loss in
computing log2(x) [17].

Existing approaches for the hardware implementation
of logarithmic conversion can be classified into three main
categories [18]: (1) the digit-recurrence method, (2) look-up
table (LUT)-based methods, and (3) piece-wise polynomial
approximations. The digit-recurrence method is slow and
can have convergence problems while LUT-based methods
suffer from relatively large hardware and memory usage
[18]. On the other hand, piece-wise polynomial approxima-

IEEE TRANSACTIONS ON COMPUTERS 2

tion is often the most efficient solution [16], [18], [19], [20].
An early piece-wise polynomial approximation was pro-

posed by Mitchell [21]. It rounds a number N to the high-
est power of two, 2k, such that 2k ≤ N . Unfortunately,
Mitchell’s method can have relatively large approximation
errors [18]. Several Mitchell-based multipliers have been
proposed to improve the accuracy. They usually divide the
power-of-two intervals into more than one region and then
apply piece-wise linear approximation within each region.
The published designs differ in the number of regions and in
the piece-wise linear approximation functions used in each
region, for example [16].

The approximation error in the reported Mitchell-based
multipliers is always negative (i.e., the magnitude of the
approximate product is smaller than the exact product)
[17]. This systematic error causes problems in repetitive or
iterative operations, such as matrix multiplications, since
the errors do not cancel and are accumulated. Unlike the
previous designs, the proposed improved LM (ILM) has a
double-sided error distribution and benefits from a novel
exact adder structure for further hardware and energy
reductions. This is due to the design of a new nearest-
one detector (NOD) that rounds each input operand up
or down to its nearest power of two. The output of the
NOD uses a one-hot representation, and this property is
leveraged to simplify the structure of a conventional full
adder (FA). Specifically, not all of the entries in the truth
table of a conventional adder can occur when adding the
base-2 logarithms of the input operands, and so the truth
table can be reduced, which leads to a compact and yet still
accurate adder.

The proposed ILM and its variants (i.e., ILMs with a
few approximation bits) are evaluated for two well-known
benchmark NNs: a multi-layer perceptron (MLP) that clas-
sifies the Mixed National Institute of Standards and Tech-
nology (MNIST) dataset [22] and a convolutional neural
network (CNN), Alexnet [23], that classifies the Canadian
Institute For Advanced Research (CIFAR)-10 dataset [24].
The accurate multipliers in both networks are replaced with
LMs in each design during inference in order to compara-
tively evaluate different LMs. The training is done by using
exact multipliers since a NN is usually trained once (or
rarely) but is then evaluated many times thereafter.

Some of our preliminary work was published in [25].
In this article, the NOD design in [25] is simplified for
use in NNs. In particular, we observed that large weights
are unlikely to appear in trained NNs and that removing
them would not significantly influence the performance of
NNs (this is elaborated upon in Section 2). Hence, the NOD
circuit in [25] is simplified further so that it produces an n-
bit output (instead of n + 1 bits in [25]) for an n-bit input.
Thus the particular properties of NNs are exploited for the
proposed ILM to achieve a higher energy efficiency. More-
over, as mentioned above, a novel exact adder is devised
that modifies the truth table of a FA by removing the entries
which cannot occur. Consequently, a simpler structure than
that of the conventional adder can be used.

The remainder of this article is organized as follows:
Section 2 is a brief introduction to NNs. Section 3 reviews
published LMs. The proposed approximation approach and
the hardware implementation of the ILM are discussed

in Section 4. Section 5 evaluates the error and hardware
performance of the proposed and state-of-the-art LMs. Two
benchmark NNs are considered in Section 6 to provide an
objective evaluation of the accuracy of the proposed ILM
design. Moreover, the hardware characteristics of the con-
sidered NNs using LMs are discussed in Section 6. Finally,
Section 7 concludes the article.

2 BASICS OF NEURAL NETWORKS

Neural networks process information in an entirely different
way than a conventional (von Neumann) computer [26].
During training, weights are adjusted in the neurons of a
NN to allow the NN to perform certain computations (e.g.,
pattern recognition and classification) [27]. The neurons in a
NN are arranged in several layers including an input layer, a
variable number of hidden layer(s) (of the same or different
types) followed by an output layer.

As experience is being gained in machine learning tasks,
diverse types of hidden NN layers are being proposed. The
authors in [28] employed convolutional layers that function
as local filters over the data from the previous layers. Other
common types of hidden layers are the average and max
pooling layers that are used for weighted sub-sampling [29].
More recently, several application-specific layers have been
proposed for image classification [23], segmentation [30]
and speech processing [31].

2.1 Artificial neuron
Neurons are the main processing units of NNs that compute
a weighted sum of their inputs and send the result through
an activation function (AF). The AF introduces non-linearity
into a neuron’s behavior and maps the resulting output
values into either the interval (-1, 1) or (0, 1) [13]. The AF
can be either a hard-limiting (e.g., a step function) or a soft-
limiting function (e.g., a sigmoid function) [11].

Fig. 1 shows the structure of an artificial neuron. A
neuron has n ≥ 2 inputs (depending on the network
structure) and one output. Each input xi is multiplied by its
corresponding synaptic weight wi, i = 0, 1, ..., n. An adder
tree is then used to sum up the products. The resulting sum
is then input to the AF. An external bias b is often added to
increase or lower the input value of the AF [27].

Fig. 1: Model of an artificial neuron.

2.2 Feed-forward neural networks
The two major operating modes for NNs are training and
inference. The training process is usually performed infre-
quently and off-line and, therefore, its energy consumption

IEEE TRANSACTIONS ON COMPUTERS 3

is less of a concern [11]. The inference process, on the other
hand, is done frequently. Although it is less computation-
intensive than the training process, inference still requires
significant computation for large networks. Fig. 2 shows a
simple feed-forward NN with n, k, and m neurons in the
input, hidden, and output layers, respectively.

Fig. 2: Structure of a feed-forward NN.

2.3 Synaptic weights in neural networks
The n multiplications of xi × wi in Fig. 1, where 1 ≤ i ≤ n,
are the main bottleneck in the performance of NNs. Hence,
it is helpful to have insight into the synaptic weights when
designing multipliers for NNs. Here are the three main
observations that have been found to be helpful:

• Past research has investigated the effects of reduced
precision on the performance of NNs and has found
that the precision can be safely reduced without
significant negative impact on the accuracy of NNs
[8], [9], [10].

• The authors in [32] showed that the trained weights
in NNs are mostly centered near zero. Hence, even
after up-scaling, as will be discussed in Section 5,
the chances of having large weights, i.e. weights at
both the positive and negative ends of the scaled
spectrum, are small.

• Large synaptic weights are not desirable in NNs
and it is common to use weight decay techniques to
reduce them. During weight decay, after each update,
the weights are multiplied by a factor slightly less
than 1 to prevent them from growing too large [33].

Consequently, large weights are unlikely to appear in
trained NNs and limiting them should not significantly
influence the performance of NNs. We exploit this insight
in the design of the proposed multiplier, more specifically
in the design of the NOD circuit, as discussed in Section 4.2.

3 REVIEW OF LOGARITHMIC MULTIPLIERS

Let Z = zn−1zn−2...z1z0 be the n-bit binary representation
of a positive integer N . Without loss of generality, let zk,
where k < n, be the most significant ‘1’ in Z . Hence, N can
be represented as:

N = 2k(1 + x), (1)

where 0 ≤ x < 1.

Let A and B be the multiplicand and the multiplier,
respectively. Following (1), once the base-2 logarithms of
input operands A = 2k1(1 + x1) and B = 2k2(1 + x2) are
calculated as:

log2A = k1 + log2(1 + x1), (2)

log2B = k2 + log2(1 + x2), (3)

their product A×B is given by:

A×B = 2k1+k2(1 + x1)(1 + x2). (4)

Depending on the computation process, different values for
log2A and log2B and, consequently, different approximate
products can be obtained. For example, the Mitchell algo-
rithm for an LM uses the following approximation:

A×B ≈
{
2k1+k2(1 + x1 + x2), x1 + x2 < 1,

2k1+k2+1(x1 + x2), x1 + x2 ≥ 1.
(5)

It was found in [34] that the average error for given k1, k2,
x1 ∈ [0, 1), and x2 ∈ [0, 1), for the Mitchell algorithm can
be expressed as:

EA = −0.08333× 2k1+k2 . (6)

Hence, an error correction term c can be added to the
Mitchell algorithm to reduce the average error [34]:

A×B ≈

2k1+k2(1 + x1 + x2 + c), x1 + x2 < 1,

2k1+k2+1(x1 + x2 +
c

2
), x1 + x2 ≥ 1.

(7)

However, this modified technique increases the area and
power consumption compared to the Mitchell algorithm
[34].

The approximate LM in [17] uses a so-called set-to-one
adder (ALM-SOA). The set-one-adder (SOA) with k approx-
imation bits (SOA-k) assigns 1 to the k LSBs and, therefore,
the actual product is overestimated. Given the fact that
the Mitchell multiplier always underestimates the actual
product, using a SOA can compensate for the accuracy loss
in the multiplier. This technique is used in [17] to improve
the accuracy of the Mitchell multiplier with less hardware
cost.

A low-power implementation of the Mitchell multiplier
is proposed in [35]. As extended work, a parameter w is
introduced in [36] for a customizable LM in which only
the most significant w bits of the operands are taken into
account. Subsequently, truncation is performed after the
approximate logarithms of the operands are calculated (by
using the Mitchell algorithm). This differs from truncating
the input operands before computing their logarithm. Due
to the truncation, this multiplier is more hardware-efficient
than the Mitchell multiplier. However, it is less accurate than
it in terms of both the mean and worst-case errors.

4 IMPROVED LOGARITHMIC MULTIPLIERS

Here we propose a method to approximate log2N which,
unlike the existing approaches, has a double-sided error dis-
tribution and can be used as a more accurate baseline design
instead of the Mitchell approach. The existing techniques
in the literature for improving the accuracy of the Mitchell
method are also applicable to the proposed method.

IEEE TRANSACTIONS ON COMPUTERS 4

4.1 Proposed approximation approach
In addition to the expression (1), any positive integer N can
be also represented as:

N = 2k+1(1− y), (8)

where 0 < y ≤ 1.
The conventional logarithmic approximation (1) uses the

highest power of two smaller than the given number N .
Instead, we propose the approximation given in Algorithm
1. Note that 2k ≤ N < 2k+1. As shown in Algorithm 1,
when N − 2k < 2(k+1) −N we underestimate the value of
log2N as k; otherwise, we overestimate it as k + 1.

Algorithm 1 Proposed approximation for log2N

1: N = 2k(1 + x) = 2k+1(1− y)
2: if N − 2k < 2(k+1) −N then . use underestimate
3: x = N/2k − 1
4: log2N ≈ k + x
5: else . use overestimate
6: y = 1−N/2k+1

7: log2N ≈ k + 1− y
8: end if

The exact, Mitchell, and the proposed methods for com-
puting log2N are plotted in Fig. 3. The values of k corre-
sponding to the N values, obtained from Algorithm 1, are
also shown in Fig. 3. Only k ≥ 3 is shown in order to keep
the figure clear and easy to read. One power-of-two interval,
i.e. k = 6, is also enlarged and depicted as an inset in Fig. 3
to better show the behavior of the two approximate methods
compared to the exact log2N function.

Fig. 3: Approximation of log2N .

Note that the proposed approximation results in a more
than 6× smaller average error (over the range [1, 255])
than the Mitchell method (0.0088 vs. 0.0568), which is due
to the double-sided error distribution of the proposed ap-
proach. With respect to the root mean square error (RMSE),
the Mitchell approach is slightly more accurate than the
proposed method (0.0627 vs. 0.0794). It is also evident in
Fig. 3 that the magnitude of the error can be larger than

the Mitchell method for the proposed method. However,
the error analysis of the resulting multipliers with respect
to two other error metrics, i.e. the common mean relative
error distance (MRED) and the normalized mean error
distance (NMED, by the maximum output of the accurate
design) ([37], [38], [39]) shows that the proposed designs
are actually more accurate. This occurs because using the
proposed method for approximating log2N , the errors are
likely to cancel out each other and, therefore, the proposed
multiplier’s accuracy increases.

To further illustrate the error behavior of the proposed
method, we compare the mean error distance (MED) and
the mean square error (MSE) values of the proposed and the
Mitchell approaches. In the Mitchell approach log2(1+x) ≈
x. On the other hand, using (1) and (8) and according to
Algorithm 1, log2N can be approximated as follows:

log2N ≈
{
k + x, forN = 2k(1 + x),

k + 1− y, forN = 2k+1(1− y).
(9)

Given the approximated values for log2N , the MED and
MSE for the proposed and the Mitchell approaches can
be easily calculated. The resulting MSEM for the Mitchell
method is as follows:

MSEM =
1

n
×

n−1∑
k=0

[
1

2k
×

2k−1∑
i=0

(
log2(1 +

i

2k
)− i

2k

)2
]
. (10)

Similarly, the MEDM for the Mitchell method can be easily
calculated as:

MEDM =
1

n
×

n−1∑
k=0

[
1

2k
×

2k−1∑
i=0

∣∣∣∣log2(1 + i

2k
)− i

2k

∣∣∣∣
]
. (11)

The summation over k, where k ∈ {0, 1, ..., n − 1}, is
provided to cover the entire input range for an n-bit design.
Similarly, the MED and MSE for the proposed approach can
be calculated. For the proposed method, we need to divide
the input domain into two regions. In the first region, the
input operand is closer to the largest power of two smaller
than or equal to it. In the second region, on the other hand,
the input operand is closer to the smallest power of two that
is larger than it. This can be done for the MSEP as follows:

MSEP =
1

n
×

n−1∑
k=0

[
1

2k
×
[2k−1−1∑

i=0

(
log2(1 +

i

2k
)− i

2k

)2

+

2k−1∑
i=2k−1

(
log2(

2k + i

2k+1
)− 2k − i

2k+1

)2]]
.

(12)

We can use a similar approach to calculate the MED of the
proposed method, MEDP , as given by:

MEDP =
1

n
×

n−1∑
k=0

[
1

2k
×
[2k−1−1∑

i=0

∣∣∣∣log2(1 + i

2k
)− i

2k

∣∣∣∣
+

2k−1∑
i=2k−1

∣∣∣∣log2(2k + i

2k+1
)− 2k − i

2k+1

∣∣∣∣]
]
.

(13)

IEEE TRANSACTIONS ON COMPUTERS 5

The proofs for (10) and (12) are provided in Appendix
A.1 and A.2, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/, re-
spectively. (11) and (13), on the other hand, can be easily
obtained by replacing the square of the error with the
absolute values. Hence, the proofs for these two equations
are not provided.

These equations are useful to mathematically evaluate
the accuracy of the proposed method against the Mitchell
method. As absolute values are considered in these equa-
tions, the Mitchell approach for estimating the base-2 log-
arithm of a positive integer provides smaller values of the
MSE and MED, i.e., 0.0039 and 0.0568 for an 8-bit integer
(n = 8), whereas those values are 0.0063 and 0.0681, respec-
tively, for the proposed method. However, as mentioned
earlier, the signed errors in the proposed method help with
error cancellation and, consequently, multipliers that use the
proposed method are shown to achieve a higher accuracy
(in Section 5.1).

4.2 Improved LM (ILM) design

4.2.1 High-level description of the ILM design

The proposed ILM first transforms the multiplicand A and
multiplier B to the closest powers of two plus an additional
term, as given by:

A = 2k1 + q1, (14)

B = 2k2 + q2, (15)

and, therefore, the product A×B can be approximated as:

A×B ≈ (2k1+k2 + q22
k1 + q12

k2) +��q1q2. (16)

As shown in (16), the three most significant terms are all
multiples of powers of two that can be efficiently imple-
mented as left-shift operations in hardware. In this design,
the least significant term (q1q2) is ignored and left as the
approximation error. A more detailed description of the
ILM is provided in Algorithm 2, where NOD, PE and
DEC denote the nearest-one detector, the priority encoder,
and the decoder, respectively. Detailed descriptions of these
three components are given in the following subsection.

Algorithm 2 Proposed logarithmic multiplication

1: procedure M(A, B)
2: A, B: inputs, γ: approximate output
3: 2k1 ← NOD(A),
4: k1 ← PE(2k1),
5: q1 ← A− 2k1 , . for steps 3-5 see (14)
6: 2k2 ← NOD(B),
7: k2 ← PE(2k2),
8: q2 ← B − 2k2 , . for steps 6-8 see (15)
9: q12

k2 ← q1 << k2,
10: q22

k1 ← q2 << k1,
11: 2k1+k2 ← DEC(k1 + k2),
12: γ ← 2k1+k2 + q22

k1 + q12
k2 . . see (16)

4.2.2 Hardware implementation
The ILM can be implemented by either: (1) implementing
the logic to calculate the nearest powers of two, or (2) using
look-up tables (LUTs). We decided not to use LUTs as that
would increase the memory usage, which is often a serious
bottleneck for neural network applications [7], [11].

The block diagram of the 8-bit ILM is given in Fig.
4(a). The NOD circuits (Figs. 4(b) and 4(c)) are based on
a leading-one detector (LOD) circuit. However, unlike the
LOD, the NODs find the nearest power of two to a given
input. Similar to some existing LODs [40], [41], the proposed
NODs evaluate from the MSB to the LSB.

The priority encoder (PE) in Fig. 4(a) determines the
number of required shifts based on the NOD’s output.
The two residue terms q1 and q2 are also calculated and
shifted according to the k2 and k1 values, respectively, and a
decoder generates the most significant term, 2k1+k2 . Finally,
the three resulting terms are summed up to obtain the
approximate product. For hardware savings, we used the
PE proposed in [35].

Fig. 4(b) depicts the design of the proposed NOD, where
I and O are the primary input and output signals, respec-
tively. The design is a simplified version of the NOD in
[25]. Normally, nine bits are needed to represent the nearest
power of two to an 8-bit input. However, as previously
discussed, large synaptic weights are unlikely to appear in
trained NNs and removing them would not significantly
influence the performance of a NN. Hence, the NOD in [25]
is simplified by rounding down the output of the NOD to
the largest power of two representable in 8 bits, i.e. 128. In
other words, up-rounding is not performed if the nearest-
power of two is greater than 128. This will not have a
significant detrimental impact on the performance of NNs,
as supported by the simulation results in Section 5.

Note that the ILM needs to use the sign-magnitude rep-
resentation for applications that require signed multiplica-
tions. It may not be as hardware-efficient as the 2’s comple-
ment representation when multiply-accumulate operations
are required. However, it is widely-used for logarithmic
and non-logarithmic arithmetic circuits that are designed for
unsigned numbers, e.g. [11], [12], [13]. Using this method,
the sign bits of the two input operands are XOR-ed to obtain
the sign of the final product and only the magnitude is
computed using the design described here.

In order to further improve the hardware efficiency, we
also propose a novel adder. This adder is used in the final
stage, i.e. the adder that produces A × B in Fig. 4(a). There
are three inputs to this adder (i.e., 2k1+k2 , q1 × 2k2 , and
q2 × 2k1 , step 12 in Algorithm 2), hence an adder tree
composed of two adders is required. The conventional 8-
bit adder (composed of conventional FAs) is used to add
q1×2k2 and q2×2k1 and the proposed adder is used to add
the result to the third term, 2k1+k2 , see Fig. 4(a).

Note that the proposed adder is not an approximate
design, however it has a simplified structure. Since 2k1+k2

is in a one-hot representation, the structure of the 8-bit
adder can be modified and simplified accordingly. The truth
tables for both the conventional and the proposed FAs are
shown in Table 1. Note that the “not applicable” (N/A)
entries in Table 1 cannot happen because there is only one
‘1’ in one of the inputs. If A is a one-hot number and the

IEEE TRANSACTIONS ON COMPUTERS 6

(a) Block diagram of the ILM and the priority encoder [35].

(b) Proposed nearest-one detector (NOD) Circuit.

Fig. 4: The proposed 8-bit improved logarithmic multiplier (ILM) design.

‘1’ is at bit position i, then it is not possible to have a
carry in from less significant positions. The performance

TABLE 1: The proposed vs. conventional full adder.

a b cin
Conventional FA Proposed FA
sum cout sum cout

0 0 0 0 0 0 0
0 0 1 1 0 1 0
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 0 1 0
1 0 1 0 1 N/A N/A
1 1 0 0 1 0 1
1 1 1 1 1 N/A N/A

Conventional sum = abcin + abcin + abcin + abcin
cout = ab+ acin + bcin

Proposed sum = bcin + abcin + ab
cout = ab+ bcin

of the proposed adder was compared to the conventional
FA and the results are given in Table 2. Both adders were
implemented in VHDL and then synthesized using the
Synopsys Design Compiler (DC) for ST Micro’s CMOS 28-
nm process. As shown, the proposed adder is 33.3% smaller
and 60.27% more energy-efficient, with respect to the power-
delay product (PDP) than the conventional full adder. This

can significantly reduce the hardware implementation cost,
as discussed in the next section. To further improve the

TABLE 2: Hardware comparison of the conventional and
proposed full adders.

Full adder Power
(µW)

Delay
(nS)

Area
(µm2)

PDP
(fJ)

Conventional 1.32 0.09 3.42 0.1188
Proposed 0.59 0.08 2.28 0.0472

hardware efficiency, the “conventional/approximate adder”
in Fig. 4(a) is implemented with an approximate adder. A
modified SOA-k adder is used in which, instead of setting
all of the k LSBs to ‘1’, these bits are set alternately to ‘1’ and
‘0’. By doing so, the resulting adder can either overestimate
or underestimate the result. Therefore, the double-sided er-
ror distribution property in the proposed ILM is preserved.
The resulting ILM with the k modified LSBs will be referred
to as ILM-k.

5 PERFORMANCE EVALUATION OF LOGARITHMIC
MULTIPLIERS

A performance analysis of the LMs is presented in this
section using both (1) accuracy and (2) hardware metrics.

IEEE TRANSACTIONS ON COMPUTERS 7

Note that as 8-bit precision has been shown to be sufficient
for most NN applications [8], [9], [10], only 8-bit multipliers
are considered in this work.

5.1 Accuracy metrics

The error for the multiplication of A = 2k1(1+x1) and B =
2k2(1+x2) depends on k1 and k2, i.e. the intervals of powers
of two into which the input operands fall. Accordingly, the
difference between the exact and approximate products is
plotted for two designs, the Mitchell and the proposed ILM
multipliers, in Fig. 5 for A,B ∈ [0, 255] to provide a better
visualization of the error behavior.

As shown in Fig. 5, the error tends to increase as k1 and
k2 increase. However, the proposed design has a smaller
peak error (3844 vs. 4096, magnitude-wise). As shown in Fig.
3, the proposed log2N approximation has a double-sided
error distribution. Note that the errors may cancel out even
for a single multiplication, when the base-2 logarithm of the
input operands are added.

Fig. 5 shows the error behavior over the multiplier’s
entire input domain. However, it has been shown that the
trained synaptic weights in NN applications do not have a
uniform distribution and they are mostly centered around
zero [32] and [42]. On the other hand, the input distribution
varies for the NN; it would depend on the application.
Therefore, in Table 3 the accuracy metrics are reported for
the two most common general distributions, the uniform
and standard normal. In fact, a standard normal distribution
with zero mean and unit variance is generated and the
samples are then mapped to the range of [0, 255]. Note
that since the sign-magnitude method is used, we do not
need to worry about the sign of the generated samples. 106

input pairs were generated for multiplications using exact
and logarithmic multipliers; the MRED, average error (AE),
and the NMED [43] were then calculated. Note that the error
distance is defined as the absolute difference between the
exact and the approximate products, Pe and Pa, while the
AE is calculated as:

AE =
1

M
×
∑M

i=1(Pa − Pe), (17)

where M is the number of random input pairs, 106 in the
simulations. The parameter k in the ALM-SOA-k in Tables 3
and 4 indicates the number of LSBs to which approximation
is applied. Similarly, IML-k indicates that the k LSBs are
approximated (see section 4) in the proposed ILM.

The results in Table 3 show that the proposed ILM-0 is
the most accurate design in terms of MRED and |AE|, for
both input distributions. ILM-5, on the other hand, is the
second most accurate design when the inputs are uniformly
distributed. However, for the normal input distribution, the
Mitchell, ALM-SOA-3, and the ALM-SOA-5 LMs perform
better than the ILM-5 with respect to the MRED. Finally,
ILM-9 has the worst error behavior as it approximates the
nine LSBs, as explained in Section 4.2. The error metrics for
the LMs when used in the two considered NN workloads
are given in Table 4. Instead of assuming a general input
distribution, as in Table 3, we performed all of the multipli-
cations xi × wi in the NNs using LMs and then calculated
their error metrics. The results in Table 4 show that ILM-0

(a) Mitchell’s multiplier, errormaximum = −4096.

(b) The proposed ILM multiplier, errormaximum = −3844.

Fig. 5: Error characteristics for LMs (with outputs in [0,
65535]).

TABLE 3: Error metrics of the LMs for general input
distributions.

Distribution Multiplier Type |AE| MRED NMED

Uniform

Mitchell [21] 618.91 0.0382 0.0095
ALM-SOA-3 [17] 541.63 0.0336 0.0083
ALM-SOA-5 [17] 550.84 0.0432 0.0085

ILM-0 0.25 0.0275 0.0068
ILM-5 28.03 0.0296 0.0068
ILM-9 288.49 0.1069 0.0086

Normal

Mitchell [21] 93.90 0.0368 0.0014
ALM-SOA-3 [17] 61.18 0.0292 0.0009
ALM-SOA-5 [17] 46.00 0.0396 0.0007

ILM-0 5.24 0.0269 0.0008
ILM-5 19.26 0.0951 0.0010
ILM-9 270.60 1.6982 0.0044

and ILM-5 achieve the smallest AE and an average MRED
for the two benchmark NNs. Because the error rate (ER) is
generally high (more than 98% [17], [25]) for LMs due to the
approximation in the base-2 logarithm and because it does
not give any insight as to how close the approximated result
is to the exact one, the ER values are not reported here.

IEEE TRANSACTIONS ON COMPUTERS 8

TABLE 4: Error metrics of the LMs for the two NN
workloads.

NN Type Multiplier Type |AE| MRED NMED

MLP(784-128-10)
MNIST dataset

Mitchell [21] 520.8 0.1374 0.0444
ALM-SOA-3 [17] 43.1 0.1352 0.0319
ALM-SOA-5 [17] 491.0 0.4361 0.0733

ILM-0 13.1 0.1193 0.0296
ILM-5 55.3 0.2539 0.0299
ILM-9 602.4 0.4757 0.0933

Alexnet
CIFAR-10 dataset

Mitchell [21] 181.20 0.0279 0.0133
ALM-SOA-3 [17] 77.15 0.0297 0.0105
ALM-SOA-5 [17] 46.13 0.0511 0.0189

ILM-0 25.13 0.0300 0.0087
ILM-5 6.73 0.0303 0.0083
ILM-9 261.66 0.0869 0.0349

5.2 Hardware metrics
All of the designs were implemented using the VHDL
hardware description language and then synthesized using
the Synopsys Design Compiler (DC) for ST Micro’s CMOS
28-nm process. The supply voltage and the temperature in
all simulations were set to 1V and 25 ◦C respectively. Ad-
ditionally, a 250 MHz clock frequency is used for estimating
the power dissipation. All designs were synthesized with a
cell library that includes AND-OR-Inverter (AOI) logic gates
and without any optimization. Although the designs in DC
can be optimized with respect to different metrics (delay,
area, and power consumption) during the synthesis process,
we neither performed any optimization nor imposed any
timing constraint on any of the designs to ensure a fair
comparison. Moreover, we used the default toggle rate for
power estimation (i.e., 0.5), input-drive strength, and output
capacitive load for all the simulations.

The hardware measurements for four key metrics are
given in Table 5. The design in [44] was considered as
the reference Mitchell multiplier as [21] does not detail
any particular hardware implementation. Only the basic
block in [44] was implemented, i.e. no iterations, as iterative
algorithms can be applied to any logarithmic design and
they would significantly increase the hardware costs [35].

TABLE 5: Hardware metrics of the logarithmic multipliers.

Multiplier Power
(µW)

Delay
(nS)

Area
(µm2)

PDP
(fJ)

Array 91.01 1.39 293.5 126.5
Wallace 99.30 1.06 235.9 105.2

Mitchell [21] 66.26 1.42 281.2 94.09
ALM-SOA-5 [17] 61.04 1.39 255.4 84.84

ILM-0 53.72 1.68 287.4 90.25
ILM-5 50.37 1.64 255.3 82.61

As shown in Table 5, the smallest design is ILM-5, which
is 14.68% smaller than the reference Mitchell design while
being almost 20% more accurate (see Tables 3 and 4). With
respect to delay, the ALM-SOA and Mitchell multipliers
are 17.98% and 15.49% faster than the proposed ILM-5.
However, the results in Table 5 show that ILM-5 has the
lowest PDP among all the considered designs. In term of
power consumption, ILM-5 is the most efficient design,
consuming 21.18% less power than its closest competitor,
ALM-SOA-5. Note that the array and Wallace multipliers are
standard (non-logarithmic) multipliers that were simulated
only to confirm the benefits of using LMs.

Although ILM uses a more complex method for calculat-
ing the base-2 logarithm of the input operands, it uses some
other simplifications that make it more power-efficient than
the Mitchell multiplier. For example, ILM uses a compact
adder at the final stage that is almost 3x more energy-
efficient than the conventional adder used in the Mitchell
multiplier. The other simplification lies in the approximation
of a few LSBs (in ILM-5) for further hardware saving.
Finally, a more power-efficient PE is used in the ILA.

Fig. 6 shows the MRED versus PDP for the considered
multipliers. The designs with lower MRED and smaller PDP
and area (in the bottom-left corners of the two figures) are
preferable. It can be seen that ILM-5 is the most hardware-
efficient design, while being the third most accurate one.
Note that the MRED in Fig. 6 is the average MRED over the
two benchmark NNs, which are given in Table 4.

Fig. 6: MRED vs. PDP trade-off: the proposed ILM can
achieve a higher accuracy (ILM-0) and a better trade-off in

accuracy and hardware efficiency (ILM-5), compared to
other LMs.

The hardware complexity of the LMs, including the
proposed design, increases almost linearly with the input
size N , while that of the conventional multipliers increases
almost quadratically with N [17]. Hence, more significant
savings can be expected when the proposed multiplier is
extended to larger designs (e.g., 64-bit multipliers).

6 NEURAL NETWORK APPLICATIONS

The proposed ILM can be used in various types of NNs;
however, the most common feed-forward NNs are studied
in this work. Two NNs are considered to evaluate the LMs.
The first one is an MLP that classifies the MNIST dataset and
the other one is a CNN that classifies the CIFAR-10 dataset.

6.1 Neural network workloads
6.1.1 An MLP for classifying the MNIST dataset
MNIST is a dataset of handwritten numbers that consists
of a training set of 60,000 and a test set of 10,000 28 × 28
images and their labels [22]. We used an MLP network with
784 input neurons (one for each pixel of the monochrome
image), 128 neurons in the hidden layer and 10 output

IEEE TRANSACTIONS ON COMPUTERS 9

neurons. The outputs are interpreted to be the probability
of classification into the 10 target classes of the digits 0 to
9 [22]. The MLP uses the soft-limiting sigmoid activation
function.

The exact multipliers in the considered MLP are replaced
with each of the LMs and the top-1 [23] classification
accuracy is evaluated. The weights are plotted in Fig. 7
to determine if the trained synaptic weights are normally
distributed. Since an 8-bit width is used for inference and
the most significant bit is the sign bit, the trained synaptic
weights are mapped into the range [-127, 127] in Fig. 7.

Fig. 7: Probability distribution of the trained weights for
the (784-128-10) MLP, mapped into the range [-127, 127].

6.1.2 A CNN for classifying the CIFAR-10 dataset
CIFAR-10 is a dataset containing images for ten classes,
namely, airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. The dataset consists of a training
set of 50,000 and a test set of 10,000 32×32 colour images. It
is a common dataset that is widely used in machine learning
algorithms, NNs in particular [24].

Fig. 8: Probability distribution of the trained weights for
Alexnet, mapped into the range [-127, 127].

AlexNet is used to classify the CIFAR-10 dataset [23].
AlexNet is a CNN configuration that uses rectified linear

unit (ReLU) activation functions and has three convolu-
tional layers, two fully-connected (FC) layers, max-pooling
layers and average pooling layers. Similarly, the exact multi-
pliers (in the convolutional and fully-connected layers) were
replaced with each type of the LMs and the resulting top-1
classification accuracy was evaluated. The ReLUs were used
as the activation functions in this network. An ReLU has
an output of zero if the input is less than zero, otherwise
the output is equal to the input [45]. The weights are also
plotted in order to investigate the distribution of the trained
synaptic weights. The weights are mapped into the range
[-127, 127], as shown in Fig. 8.

Figs. 7 and 8 clearly show that, as mentioned before,
it is less likely to have larger weights (magnitude-wise) in
trained neural networks. This justifies the proposed simpli-
fication in the design of the NOD, i.e. rounding down the
output of the NOD to the largest power of two representable
in 8 bits.

6.2 Accuracy analysis
The top-1 classification accuracy comparison for both the
MNIST and the CIFAR-10 datasets using the various LMs
are plotted in Fig. 9. Unlike previous studies, such as [11],
[13], retraining has not been performed. The proposed de-
signs ILM-5 and ILM-9 show only 0.08% and 0.12% accuracy
degradation, respectively, compared to the NN with exact
multipliers for the MNIST dataset (with accuracy 98.13%).
The ALM-SOA-3, on the other hand, has the same accuracy
as the NN with exact multipliers.

As also shown in Fig. 9, all three variants of the proposed
ILM increase the classification accuracy for the CIFAR-10
dataset compared to the NN with exact multipliers (with
accuracy 82.53%). We can obtain up to 1.4% accuracy im-
provement by using ILM-0 instead of the exact multipli-
ers. The double-sided (signed) error distribution and the
low error magnitude of the proposed design help mitigate
any overfitting in Alexnet. In fact, the double-sided errors
with lower magnitudes effectively introduce noise into the
proposed ILM. Hence, by using the ILM multiplier we are
adding noise to the NN. It has already been shown that
adding noise is often an effective way of improving the
performance of NNs [46], [47], [48]. This result indicates
that higher classification accuracies can be obtained with
lower hardware costs by replacing the exact multipliers with
appropriately chosen approximate multipliers.

6.3 Hardware analysis
The hardware characteristics of the LMs were discussed in
Section 5. In this section, an artificial neuron is implemented
using different types of LMs to replace the conventional
ones. The implemented neuron has three inputs and an
adder tree composed of two adders to accumulate the three
multiplication products. This is a widely-used technique for
the performance analysis of multipliers in NNs [11], [49].

The hardware characteristics for the implemented neu-
ron are given in Table 6. The results show that the neuron
constructed using the proposed ILM-5 has the lowest en-
ergy consumption. It is 21.85% more energy-efficient than
the neuron using ALM-SOA-5 while being 2.25% smaller.
Truncation needs to be considered in the implementation of

IEEE TRANSACTIONS ON COMPUTERS 10

Fig. 9: Comparison of the top-1 classification accuracy of the MNIST and CIFAR-10 datasets with LMs (decrease or
increase in accuracy from using accurate multipliers).

TABLE 6: Hardware characteristics of the artificial neuron
when implemented using four different LMs.

Multiplier used in the neuron Energy (fJ) Area (µm2)
Mitchell [21] 93.85 1019.5

ALM-SOA-5 [17] 68.23 915.1
ILM-0 87.17 1004.8
ILM-5 53.32 894.5

the artificial neuron. Eight-bit precision is used for each of
the three inputs and their corresponding synaptic weights
and, therefore, the multiplication products would be 16-
bit. However, since the output will be connected to another
layer of neurons, truncation to 8 bits is required. The trun-
cation is done by performing hard-limiting, i.e. using the
maximum 8-bit number (-127 or 127) for all output values
that need more than 8-bit precision.

7 CONCLUSION

This work proposes a novel approximation method to ef-
ficiently compute log2N . Using this method, an improved
logarithmic multiplier (ILM) is designed. The proposed
ILM is more accurate and has the smallest MRED values
compared to other logarithmic designs in the literature.
We observed that a few LSBs can be approximated in the
ILM for saving hardware without a significant effect on its
accuracy. For example, ILM with five approximation bits,
ILM-5 can be 6.78%-17.48% more power-efficient and up to
6.07% smaller than the recent design in [17]. Finally, two
well-known NNs were considered as benchmark applica-
tions, for which the proposed designs show a higher top-
1 classification accuracy than the other designs. The exact
multipliers in both NNs were replaced with LMs and the
ILM-5 resulted in the most energy-efficient NN structure.
Interestingly, higher classification accuracies are obtained
for the CIFAR-10 dataset by using the ILM compared to the
use of exact (and other LM) multipliers.

REFERENCES

[1] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[2] L. Shao, D. Wu, and X. Li, “Learning deep and wide: A spectral
method for learning deep networks,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 12, pp. 2303–2308, 2014.

[3] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations.” Journal of Machine Learning
Research, vol. 18, pp. 187–1, 2017.

[4] N. Sudha, A. Mohan, and P. K. Meher, “A self-configurable systolic
architecture for face recognition system based on principal com-
ponent neural network,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 21, no. 8, pp. 1071–1084, 2011.

[5] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y.
Ng, “On optimization methods for deep learning,” Proceedings of
the 28th International Conference on Machine Learning, pp. 265–272,
2011.

[6] B. Rajendran, Y. Liu, J. S. Seo, K. Gopalakrishnan, L. Chang,
D. J. Friedman, and M. B. Ritter, “Specifications of nanoscale
devices and circuits for neuromorphic computational systems,”
IEEE Transactions on Electron Devices, vol. 60, no. 1, pp. 246–253,
2013.

[7] G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal, and K. Roy,
“Significance driven hybrid 8T-6T SRAM for energy-efficient
synaptic storage in artificial neural networks,” Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 151–156, 2016.

[8] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Ba-
jwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA),
pp. 1–12, 2017.

[9] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” International
Conference on Machine Learning, pp. 1737–1746, 2015.

[10] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human
and machine translation,” arXiv:1609.08144. [Online]. Available:
https://arxiv.org/abs/1609.08144, 2016.

[11] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and
K. Roy, “Energy-efficient neural computing with approximate
multipliers,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 14, no. 2, p. 16, 2018.

[12] U. Lotrič and P. Bulić, “Applicability of approximate multipliers
in hardware neural networks,” Neurocomputing, vol. 96, pp. 57–65,
2012.

IEEE TRANSACTIONS ON COMPUTERS 11

[13] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “De-
sign of power-efficient approximate multipliers for approximate
artificial neural networks,” IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–7, 2016.

[14] V. Paliouras and T. Stouraitis, “Low-power properties of the
logarithmic number system,” 15th IEEE Symposium on Computer
Arithmetic, pp. 229–236, 2001.

[15] S. Gandhi, M. S. Ansari, B. F. Cockburn, and J. Han, “Approxi-
mate leading one detector design for a hardware-efficient Mitchell
multiplier,” IEEE Canadian Conference of Electrical and Computer
Engineering (CCECE), pp. 1–4, 2019.

[16] J. Y. L. Low and C. C. Jong, “Unified Mitchell-based approximation
for efficient logarithmic conversion circuit,” IEEE Transactions on
Computers, vol. 64, no. 6, pp. 1783–1797, 2015.

[17] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi,
“Design and evaluation of approximate logarithmic multipliers
for low power error-tolerant applications,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2856–2868,
2018.

[18] D. De Caro, N. Petra, and A. G. Strollo, “Efficient logarithmic
converters for digital signal processing applications,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 58, no. 10, pp.
667–671, 2011.

[19] T. B. Juang, S.-H. Chen, and H.-J. Cheng, “A lower error and ROM-
free logarithmic converter for digital signal processing applica-
tions,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 56, no. 12, pp. 931–935, 2009.

[20] B.-G. Nam, H. Kim, and H.-J. Yoo, “Power and area-efficient uni-
fied computation of vector and elementary functions for handheld
3D graphics systems,” IEEE Transactions on Computers, vol. 57, pp.
490–504, 2008.

[21] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, no. 4, pp.
512–517, 1962.

[22] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten
digit database,” AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, 2001.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, pp. 1097–1105, 2012.

[24] A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10 dataset,”
online: http://www. cs. toronto. edu/kriz/cifar. html, 2014.

[25] M. S. Ansari, B. Cockburn, and J. Han, “A hardware-efficient log-
arithmic multiplier with improved accuracy,” Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 922–925, 2019.

[26] C. Teuscher, Turing’s connectionism: an investigation of neural network
architectures. Springer Science & Business Media, 2012.

[27] B. C. Csáji, “Approximation with artificial neural networks,” Fac-
ulty of Sciences, Etvs Lornd University, Hungary, vol. 24, p. 48, 2001.

[28] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[29] S. Mittal, “A survey of FPGA-based accelerators for convolutional
neural networks,” Neural computing and applications, pp. 1–31, 2018.

[30] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Semantic image segmentation with deep convolutional
nets and fully connected CRFs,” Proceedings of the 3rd Inter-
national Conference on Learning Representations, [online] Available:
http://arxiv.org/abs/1412.7062, 2015.

[31] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[32] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra,
“Weight uncertainty in neural networks,” Proceedings of the 32nd
International Conference on Machine Learning, pp. 1613–1622, 2015.

[33] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing
co-adaptation of feature detectors,” CoRR, abs/1207.0580. [online]
Available: http://arxiv.org/abs/1207.0580, 2012.

[34] H. Saadat, H. Bokhari, and S. Parameswaran, “Minimally biased
multipliers for approximate integer and floating-point multipli-
cation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2623–2635, 2018.

[35] M. S. Kim, A. A. Del Barrio, R. Hermida, and N. Bagherzadeh,
“Low-power implementation of Mitchell’s approximate logarith-

mic multiplication for convolutional neural networks,” 23rd Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 617–
622, 2018.

[36] M. S. Kim, A. A. D. B. Garcia, L. T. Oliveira, R. Hermida, and
N. Bagherzadeh, “Efficient Mitchell’s approximate log multipliers
for convolutional neural networks,” IEEE Transactions on Comput-
ers, 2018.

[37] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review,
classification, and comparative evaluation of approximate arith-
metic circuits,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 13, no. 4, p. 60, 2017.

[38] H. Jiang, F. J. Santiago, M. S. Ansari, L. Liu, B. F. Cockburn,
F. Lombardi, and J. Han, “Characterizing approximate adders
and multipliers optimized under different design constraints,” pp.
393–398, 2019.

[39] M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, “Low-power
approximate multipliers using encoded partial products and ap-
proximate compressors,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 8, no. 3, pp. 404–416, 2018.

[40] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a
low-power logarithmic converter,” IEEE Transactions on Computers,
vol. 52, no. 11, pp. 1421–1433, 2003.

[41] K. Kunaraj and R. Seshasayanan, “Leading one detectors and lead-
ing one position detectors-an evolutionary design methodology,”
Canadian Journal of Electrical and Computer Engineering, vol. 36,
no. 3, pp. 103–110, 2013.

[42] Y. Xie, S. Liao, B. Yuan, Y. Wang, and Z. Wang, “Fully-parallel area-
efficient deep neural network design using stochastic computing,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64,
no. 12, pp. 1382–1386, 2017.

[43] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability
of approximate and probabilistic adders,” IEEE Transactions on
computers, vol. 62, no. 9, pp. 1760–1771, 2013.

[44] Z. Babić, A. Avramović, and P. Bulić, “An iterative logarithmic
multiplier,” Microprocessors and Microsystems, vol. 35, no. 1, pp. 23–
33, 2011.

[45] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, p. 436, 2015.

[46] C. Wang and J. C. Principe, “Training neural networks with
additive noise in the desired signal,” IEEE Transactions on Neural
Networks, vol. 10, no. 6, pp. 1511–1517, 1999.

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[48] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of
neural networks using approximate multipliers,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 2019.

[49] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy,
“Multiplier-less artificial neurons exploiting error resiliency for
energy-efficient neural computing,” Proceedings of the 2016 Con-
ference on Design, Automation & Test in Europe, pp. 145–150, 2016.

Mohammad Saeed Ansari received the B.Sc.
and M.Sc. degrees in electrical and electronic
engineering in 2013 and 2015, respectively,
from Iran University of Science and Tech-
nology, Tehran, Iran. In 2019 he received
the Ph.D. degree in Integrated Circuits and
Systems from the University of Alberta, Ed-
monton, AB, Canada. He is presently a dig-
ital design engineer at Eideticom Computa-
tional Storage, Calgary, AB, Canada. His re-
search interests include approximate com-

puting and developing hardware accelerator IP cores for data
compression/decompression, neural networks, and digital signal
processing applications.

IEEE TRANSACTIONS ON COMPUTERS 12

Bruce F. Cockburn (S’86-M’90) received the
B.Sc. degree in engineering physics in
1981 from Queens University, Kingston, ON,
Canada. In 1985 and 1990 he received the
M.Math. and Ph.D. degrees, respectively, in
computer science from the University of Wa-
terloo, Waterloo, ON. He is presently a Pro-
fessor in the Department of Electrical and
Computer Engineering at the University of
Alberta, Edmonton, AB, Canada. From 1981
to 1983 he was a Test Engineer and Soft-

ware Designer at Mitel Corporation in Kanata, ON. In 2001 he was
a sabbatical visitor at Agilent Technologies Inc. in Santa Clara,
CA, USA. From 2014 to 2015 he was a sabbatical visitor at the
University of British Columbia in Vancouver, BC, Canada. His re-
search interests include the testing and verification of integrated
circuits, application-specific hardware accelerators, applications
of high-level synthesis and field-programmable gate arrays, het-
erogeneous parallel computing, stochastic and approximate com-
puting, and genetic data processing. Dr. Cockburn is a member
of the Association for Computing Machinery and is registered
as a Professional Engineer with the Association of Professional
Engineers and Geoscientists of Alberta.

Jie Han (S02-M05-SM16) received the B.Sc.
degree in electronic engineering from Ts-
inghua University, Beijing, China, in 1999
and the Ph.D. degree from Delft University
of Technology, The Netherlands, in 2004.
He is currently a Professor in the Depart-
ment of Electrical and Computer Engineer-
ing at the University of Alberta, Edmonton,
AB, Canada. His research interests include
approximate computing, stochastic compu-
tation, reliability and fault tolerance, nano-

electronic circuits and systems, novel computational models for
nanoscale and biological applications. Dr. Han was a recipient
of the Best Paper Award at the International Symposium on
Nanoscale Architectures (NanoArch 2015) and Best Paper Nomina-
tions at the 25th Great Lakes Symposium on VLSI (GLSVLSI 2015),
NanoArch 2016 and the 19th International Symposium on Quality
Electronic Design (ISQED 2018). He was nominated for the 2006
Christiaan Huygens Prize of Science by the Royal Dutch Academy
of Science. His work was recognized by Science, for developing
a theory of fault-tolerant nanocircuits (2005). He is currently an
Associate Editor for the IEEE Transactions on Emerging Topics in
Computing (TETC), IEEE Transactions on Nanotechnology, IEEE
Circuits and Systems Magazine and Microelectronics Reliability
(Elsevier Journal). He served as a General Chair for GLSVLSI
2017 and the IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT 2013), and
a Technical Program Committee Chair for GLSVLSI 2016 and DFT
2012.

