
2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

Abstract—Approximate computing has been considered to

improve the accuracy-performance trade-off in error-

tolerant applications. For many of these applications,

multiplication is a key arithmetic operation. Given that

approximate compressors are a key element in the design of

power-efficient approximate multipliers, we first propose

an initial approximate 4:2 compressor that introduces a

rather large error to the output. However, the number of

faulty rows in the compressor’s truth table is significantly

reduced by encoding its inputs using generate and

propagate signals. Based on this improved compressor, two

4×4 multipliers are designed with different accuracies and

then are used as building blocks for scaling up to 16×16 and

32×32 multipliers. According to the mean relative error

distance (MRED), the most accurate of the proposed 16×16

unsigned designs has a 44% smaller power-delay product

(PDP) compared to other designs with comparable

accuracy. The radix-4 signed Booth multiplier constructed

using the proposed compressor achieves a 52% reduction in

the PDP-MRED product compared to other approximate

Booth multipliers with comparable accuracy. The proposed

multipliers outperform other approximate designs in image

sharpening and joint photographic experts group (JPEG)

applications by achieving higher quality outputs with lower

power consumptions. For the first time, we show the

applicability and practicality of approximate multipliers in

multiple-input multiple-output (MIMO) antenna

communication systems with error control coding.

Index Terms—approximate computing, multiplier, MIMO,

image sharpening, JPEG.

I. INTRODUCTION

HE continuing shrinkage in the minimum feature size has

made integrated circuit behavior increasingly vulnerable to

process, voltage and temperature (PVT) variations as well as

soft errors [1], [2]. Thus the challenge of ensuring strictly

accurate computing is increasing [3]. On the other hand, there

exist many applications, such as multimedia and machine

learning, which do not necessarily need fully accurate results.

Such applications are tolerant of small inaccuracies [4]-[6] and

so approximate computing can be applicable due to its

potentially significant reduction in design costs while still

producing sufficiently accurate results [7], [8].

Multiplication is a key arithmetic operation that is optimized

in digital processors. Many approximate multiplier designs

have been proposed in the literature [9]-[18]. In [9], the authors

proposed two approximate error accumulation techniques to

perform partial product accumulation, resulting in approximate

multipliers AM1 and AM2. The truncation of the least

significant bits (LSBs) of the partial products is considered in

[5], resulting in designs referred to as TAM1 and TAM2.

Approximate compressors AC1 and AC2 are proposed in [11]

to reduce the delay and power consumption. While exact

compressors are used for the 8 most significant bits (MSBs), the

two proposed designs are employed for the 8 LSBs in a 16×16

multiplier, referred to as ACM3 and ACM4, respectively.

Approximation in the partial product tree is addressed in the

broken-array multiplier (BAM) [12], approximate Wallace tree

multiplier (AWTM) [13], and the error-tolerant multiplier

(ETM) [14]. The so-called under-designed multiplier (UDM)

uses 2×2 approximate multiplier blocks to construct larger

multiplier blocks [15]. The approximate multiplier proposed in

[16] approximates the binary logarithm of the multiplicand and

multiplier and then adds them and generates the final

approximate product using exponentiation.

In this article, we suggest an initial approximation for a 4:2

compressor in which several rows in the compressor’s truth

table are faulty. However, the inputs to the compressors, i.e.,

the partial products of the multiplication, can be encoded using

generate and propagate signals so that the error rate of the

compressor is reduced significantly. Using the proposed

compressor, we design two 4×4 multipliers in which

approximation is employed in the partial product reduction tree,

which is the most expensive part of the design of a multiplier

[18]. The two proposed designs are then used to construct

16×16 and 32×32 multipliers that are synthesized by the

Synopsys Design Compiler for ST’s 28-nm CMOS process.

The remainder of this article is organized as follows: Section

II provides the required background. Section III presents the

proposed multiplier designs and discusses the hardware

implementation in detail. Section IV reports the hardware and

error performance metrics of the proposed and other

approximate multipliers. Image sharpening, joint photographic

experts group (JPEG) compression, and multiple-input

multiple-output (MIMO) interference nulling applications are

considered in Section V to provide a practical evaluation of the

Mohammad Saeed Ansari, Honglan Jiang, Bruce F. Cockburn, Jie Han

Low-Power Approximate Multipliers Using

Encoded Partial Products and Approximate

Compressors

T

1

This work was financially supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) (Project No.

RES0018685).

M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han are with the

Department of Electrical and Computer Engineering, University of

Alberta, Edmonton, AB, T6G 1H9, Canada (e-mail: {ansari2,

honglan, cockburn, jhan8}@ ualberta.ca).

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

proposed designs. Finally, Section VI concludes the article.

II. BACKGROUND

A. Partial product accumulation in 4 × 4 multipliers

Consider two 4-bit unsigned operands 𝛼 = ∑ 𝛼𝑖2
𝑖3

𝑖=0

and 𝛽 = ∑ 𝛽𝑗2
𝑗3

𝑗=0 . The partial product array 𝒑𝒑 is a 4×4-bit

array of the partial product bits 𝑝𝑝i,j = αi. βj, where 𝑖, 𝑗 ∈

{0, 1, 2, 3}. Table 1 gives all the partial products for a 4-bit

multiplication and their corresponding product bits.

The product is denoted by 𝛾 = ∑ 𝛾𝑘2
𝑘7

𝑘=0 . The bits of γ are

produced in stages going from the LSB to the MSB. According

to Table 1, 𝛾0 = 𝑝𝑝0,0 and there is no further operation in Stage

0. In Stage 1, to generate γ1, we can simply use a half adder that

produces a sum bit γ1 and a carry bit (𝑐1) for the next stage.

Since the half adder circuit is already a simple design, there is

no need to approximate it.

Table 1. Original partial product of the multiplication.

Stage

7

Stage

6

Stage

5

Stage

4

Stage

3

Stage

2

Stage

1

Stage

0

 𝑝𝑝3,3 𝑝𝑝3,2 𝑝𝑝3,1 𝑝𝑝3,0 𝑝𝑝2,0 𝑝𝑝1,0 𝑝𝑝0,0

 𝑝𝑝2,3 𝑝𝑝2,2 𝑝𝑝2,1 𝑝𝑝1,1 𝑝𝑝0,1

 𝑝𝑝1,3 𝑝𝑝1,2 𝑝𝑝0,2

 𝑝𝑝0,3

𝜸𝟕 𝛾6 𝛾5 𝛾4 𝛾3 𝛾2 𝛾1 𝛾0

In Stage 2, there are three 𝑝𝑝 terms and the carry from the

previous stage (𝑐1) that must be added together. Thus, a 4:2

compressor is required to generate 𝛾2 and a carry for the next

stage.

B. Exact 4 ∶ 2 compressor

The function of the exact 4:2 compressor is implemented by

using two appropriately connected full adders (see Fig. 1(a)) as

given by

𝑆𝑢𝑚 = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝐶𝑖𝑛,

𝐶𝑜𝑢𝑡 = (𝑥1 ⊕ 𝑥2). 𝑥3 + (𝑥1 ⊕ 𝑥2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅). 𝑥1,

𝐶𝑎𝑟𝑟𝑦 = (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4). 𝐶𝑖𝑛 + (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 𝑥4.

(1)

The 𝑆𝑢𝑚 output has the same weight as the four input signals

while the 𝐶𝑜𝑢𝑡 is used as the carry in for the next higher-order

compressor and the output 𝐶𝑎𝑟𝑟𝑦 is weighted like a 𝑝𝑝 bit in a

one-bit-higher position. Note that 𝐶𝑜𝑢𝑡 and 𝐶𝑎𝑟𝑟𝑦 have the

same weight. The two stages of an exact 4:2 compressor chain

are shown in Fig. 1(b) [17].

Full

Adder

X1 X3

Full

Adder
Cin

X4

Cout

SumCarry

X2

(a) Compressor design.

4:2

Compressor

4:2

Compressor

X1 X2 X3 X4

Cout_(i)

Sum_iCarry_i

X7X6X5

Sum_iCarry_(i+1)

Cout_(i+1)

Cin
Cout_(i-1)

Cin

(b) Compressor chain.

Fig. 1. Exact compressor.

III. PROPOSED MULTIPLIER DESIGN

A. Modified approximate 4:2 compressor

The function of an exact 4:2 compressor can be approximated

to reduce the hardware cost. It has been shown that 𝐶𝑜𝑢𝑡 does

not have a significant impact on the compressor’s accuracy

[11], so 𝐶𝑜𝑢𝑡 is ignored in our design. Moreover, our SPICE

simulations confirm that an 𝑋𝑂𝑅 gate consumes more power

and is slower than the 𝐴𝑁𝐷 and 𝑂𝑅 gates, as shown in Table 2.

Table 2. Normalized relative comparison of 𝐴𝑁𝐷, 𝑂𝑅 and 𝑋𝑂𝑅 gates.

Gate Delay Power consumption

AND 0.58 0.42

OR 0.79 0.40

XOR 1.00 1.00

Ignoring 𝐶𝑜𝑢𝑡 and not using 𝑋𝑂𝑅 gates as well as our goal to

use as few gates as possible led to the approximate compressor

truth table given in Table 3. As shown in Table 3, there are

five/seven incorrect values for the approximate 𝐶𝑎𝑟𝑟𝑦/𝑆𝑢𝑚

outputs which can contribute to error in the function output.

Table 3. Truth table of the proposed approximate compressor.

 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 Carry Sum

 0 0 0 0 0/0  0/0 

 0 0 0 1 0/0  1/1 

 0 0 1 0 0/0  1/1 

 0 0 1 1 1/1  0/1 

 0 1 0 0 0/0  1/1 

 0 1 0 1 1/0  0/1 

 0 1 1 0 1/0  0/1 

 0 1 1 1 1/1  1/1 

 1 0 0 0 0/0  1/1 

 1 0 0 1 1/0  0/1 

 1 0 1 0 1/0  0/1 

 1 0 1 1 1/1  1/1 

 1 1 0 0 1/1  0/1 

 1 1 0 1 1/1  1/1 

 1 1 1 0 1/1  1/1 

 1 1 1 1 0/1  0/1 

𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝒔𝒖𝒎 = (𝒙𝟏 + 𝒙𝟐) + (𝒙𝟑 + 𝒙𝟒)

𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝒄𝒂𝒓𝒓𝒚 = (𝒙𝟏. 𝒙𝟐) + (𝒙𝟑. 𝒙𝟒)

To manage this source of inaccuracy, we encode the inputs

to the compressor using 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 signals

given by

𝑃𝑖,𝑗 = 𝑝𝑝𝑖,𝑗 + 𝑝𝑝𝑗,𝑖,
(2)

𝐺𝑖,𝑗 = 𝑝𝑝𝑖,𝑗 . 𝑝𝑝𝑗,𝑖.

This encoding ensures that although the circuit may have a

fairly large number of faulty outputs, it in fact rarely produces

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

those outputs [18]. To see how this approach affects the

compressor’s accuracy, consider Stage 2 in which the following

terms are added: 𝑝𝑝2,0, 𝑝𝑝1,1, 𝑝𝑝0,2 and 𝑐1. Table 4, where 𝑁𝐴

stands for 𝑁𝑜𝑡 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒, shows how encoding the partial

products using (2) helps to improve the design accuracy

compared to the situation in Table 3.

Note that all possible input combinations for the 4×4

multiplier were considered (24×24=256) to obtain the

probability of each input combination in Table 4. Using the

proposed technique, the number of faulty 𝐶𝑎𝑟𝑟𝑦/𝑆𝑢𝑚 values

reduces from 5/7 to 2/4. Note that the two approximated cases

for the 𝑐𝑎𝑟𝑟𝑦 signal occur only with a small probability of

0.078 (0.0624+0.0156), see Table 4.

It is also worth mentioning that the following combinations

in Table 4 cannot occur, so they do not contribute to the output

errors for the approximate compressor:

1. “0, 1” for (𝑝𝑝1,1, 𝑐1): since 𝑐1 = 𝑝𝑝0,1. 𝑝𝑝1,0 =
(𝛼0. 𝛽1). (𝛼1. 𝛽0), 𝑐1 = “1” means that 𝛼0, 𝛽1, 𝛼1, and 𝛽0

are “1”. Consequently, 𝑝𝑝1,1 = 𝛼1. 𝛽1 = “1”. Hence, it is

impossible to have the “0, 1” combination for (𝑝𝑝1,1, 𝑐1).

2. “0, 1, 1” for (𝑐1, 𝑝𝑝1,1, 𝐺2,0): having 𝑐1 = 𝑝𝑝0,1. 𝑝𝑝1,0 =

(𝛼0. 𝛽1). (𝛼1. 𝛽0) = “0” and 𝑝𝑝1,1 = 𝛼1. 𝛽1 = “1” means at

least one of 𝑎0 or 𝑏0 is “0”, which leads to 𝐺2,0 =

𝑝𝑝2,0. 𝑝𝑝0,2 = (𝛼2. 𝛽0). (𝛼0. 𝛽2) = “0”. Thus, the “0, 1, 1”

combination for (𝑐1, 𝑝𝑝1,1, 𝐺2,0) is not applicable.

3. “0, 1” for (𝑃2,0, 𝐺2,0): 𝐺2,0 = 𝑝𝑝2,0. 𝑝𝑝0,2 = “1” means that

both 𝑝𝑝2,0 and 𝑝𝑝0,2 are “1”. Therefore, 𝑃2,0 =

𝑝𝑝2,0+𝑝𝑝0,2 = “1” and so we cannot have the “0, 1”

combination for (𝑃2,0, 𝐺2,0).

Table 4. Truth table for the Stage 2 compressor.

𝑷𝟐,𝟎 𝑮𝟐,𝟎 𝒑𝒑𝟏,𝟏 𝒄𝟏 Carry Sum Probability

0 0 0 0   0.4218

0 0 0 1 NA NA 0.0000

0 0 1 0   0.1251
0 0 1 1   0.0156

0 1 0 0 NA NA 0.0000

0 1 0 1 NA NA 0.0000
0 1 1 0 NA NA 0.0000

0 1 1 1 NA NA 0.0000

1 0 0 0   0.2814
1 0 0 1 NA NA 0.0000

1 0 1 0   0.0624

1 0 1 1   0.0312
1 1 0 0   0.0468

1 1 0 1 NA NA 0.0000

1 1 1 0 NA NA 0.0000
1 1 1 1   0.0156

According to (2) and the laws of Boolean algebra, when 𝑃2,0

and 𝐺2,0 are used as the 𝑥1 and 𝑥2 inputs to the compressor, the

𝑠𝑢𝑚 and 𝑐𝑎𝑟𝑟𝑦 signals in the compressor for Stage 2 can be

simplified as

𝑠𝑢𝑚 = 𝑥1 + 𝑥3,
(3)

𝑐𝑎𝑟𝑟𝑦 = 𝑥2 + 𝑥4.

To compute 𝛾3 in Stage 3, the four 𝑝𝑝𝑖,𝑗 terms and the carry

𝑐2 from Stage 2 should be added and therefore a 5:2 compressor

is required. Since the proposed compressor is a 4:2 design, we

can merge two of these five signals to reduce them to four, as

specified by

𝑥1 = 𝑐2, 𝑥2 = 𝐺3,0 + 𝐺2,1, 𝑥3 = 𝑃2,1, 𝑥4 = 𝑃3,0. (4)

where 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are the inputs to the compressor that

generates 𝛾3 and a carry out (𝑐3) for the next stage. Table 5

shows how altering the partial products affects the

compressor’s truth table in Stage 3. As in Stage 2, the design

can be simplified by using Boolean algebra. The resulting

simplified compressor design for Stage 3 is then given by

𝑠𝑢𝑚 = 𝑥1 + 𝑥3 + 𝑥4,
(5)

𝑐𝑎𝑟𝑟𝑦 = 𝑥1. 𝑥2 + 𝑥3. 𝑥4.

The calculation of 𝛾4 in Stage 4 is exactly like the calculation

of 𝛾2 in Stage 2. It uses a 4:2 compressor to add 𝑝𝑝3,1, 𝑝𝑝2,2,

𝑝𝑝1,3 and 𝑐3 to generate 𝛾4 and a carry out for the next stage

(𝑐4). Table 6 shows the effect of the change on the partial

products. As shown in Table 6, the number of faulty cases has

been reduced and those that remain are less likely to happen.

Note that the only output that differs in Table 6 and Table 4

is the carry signal. In fact, the carry signals in these two stages

are generated from different terms. Using the same argument as

in Table 4, when 𝐺3,1 = 1, 𝑃3,1 must be “1”. Hence, the entries

that do not follow this are 𝑁𝐴 entries. Also, note that according

to the laws of Boolean algebra, the 𝑐𝑎𝑟𝑟𝑦 and 𝑠𝑢𝑚 signals in

the compressor for Stage 4 can be simplified as:

𝑠𝑢𝑚 = 𝑥1 + 𝑥2 + 𝑥3,
(6)

𝑐𝑎𝑟𝑟𝑦 = 𝑥2 + 𝑥3. 𝑥4.

Table 5. Truth table for the Stage 3 compressor.

𝒄𝟐 𝑮𝟑,𝟎 + 𝑮𝟐,𝟏 𝑷𝟐,𝟏 𝑷𝟑,𝟎 Carry Sum Probability

0 0 0 0   0.3087

0 0 0 1   0.1953

0 0 1 0   0.1952

0 0 1 1   0.1092

0 1 0 0 NA NA 0.0000

0 1 0 1   0.0273

0 1 1 0   0.0315

0 1 1 1   0.0233

1 0 0 0   0.0079

1 0 0 1   0.0156

1 0 1 0   0.0158

1 0 1 1   0.0314

1 1 0 0 NA NA 0.0000

1 1 0 1   0.0079

1 1 1 0   0.0038

1 1 1 1   0.0273

Table 6. Truth table for the Stage 4 compressor.

𝑷𝟑,𝟏 𝑮𝟑,𝟏 𝒑𝒑𝟐,𝟐 𝒄𝟑 Carry Sum Probability

0 0 0 0   0.4057
0 0 0 1   0.0156

0 0 1 0   0.1173

0 0 1 1   0.0233
0 1 0 0 NA NA 0.0000

0 1 0 1 NA NA 0.0000

0 1 1 0 NA NA 0.0000
0 1 1 1 NA NA 0.0000

1 0 0 0   0.2106

1 0 0 1   0.0700
1 0 1 0   0.0390

1 0 1 1   0.0547

1 1 0 0   0.0193
1 1 0 1   0.0272

1 1 1 0   0.0039

1 1 1 1   0.0116

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

B. Two approximate 4 × 4 multipliers

The two proposed 4×4 approximate multipliers are referred

to as: (1) M1, that considers the carry from the previous stage

(𝑐4) and uses an exact full-adder to add 𝑝𝑝 terms 𝑝𝑝3,2, 𝑝𝑝2,3,

and 𝑐4; and (2) M2, that ignores 𝑐4 and uses an exact half adder

to add 𝑝𝑝3,2 and 𝑝𝑝2,3. They differ in how the product bit 𝛾5 is

produced. Hence, M1 and the larger multipliers that are

constructed using it are more accurate than M2 and its scaled-

up variants. However, since 𝑐4 is generated from the four LSBs,

it does not introduce a large error in an 8×8 multiplier. Note

that ignoring 𝑐4 breaks the longest path (that is, the carry

propagation) and it is a common technique to reduce the

circuit’s latency [14], [19].

The sixth 𝑆𝑢𝑚 output of the full adder in design M1 and the

half adder in design M2 are both denoted by 𝛾5 and the

corresponding carry signal, 𝑐5, goes to the next stage to be

added to 𝑝𝑝3,3 using an exact half adder. The 𝑆𝑢𝑚 and 𝐶𝑎𝑟𝑟𝑦

outputs of this final half adder produce 𝛾6 and 𝛾7, respectively,

see Fig. 2. Fig. 2 summarizes the two mentioned designs by

showing the employed blocks for reducing the partial products.

These blocks include: (1) half adders, (2) full adders, and (3)

4:2 compressors. The structure of compressors for Stage 2, 3

and 4 are specified in Tables 4, 5, and 6, respectively.

Fig. 2. Partial product reduction in multipliers M1 and M2.

C. Scaling up to larger multipliers

In order to construct larger, e.g. 16×16 and 32×32,

approximate multipliers, the two proposed 4×4 multipliers are

combined in an array structure. For instance, to construct an

8×8 multiplier using a 4× 4 design, the two 8-bit operands 𝐴

and 𝐵 are partitioned into two 4-bit nibbles, namely 𝛼𝐻 and 𝛼𝐿

for 𝐴 and 𝛽𝐻 and 𝛽𝐿 for 𝐵. Note that 𝛼𝐻 and 𝛽𝐻 are the 4 MSBs

and 𝛼𝐿 and 𝛽𝐿 indicate the 4 LSBs of 𝐴 and 𝐵, respectively.

Each two of these four nibbles (in total 4 possible

combinations) are multiplied using 4×4 multipliers and the

partial products are then shifted (based on the nibble’s

importance) and added together (using a Wallace tree

architecture) to produce the final multiplication result. Building

2n×2n multipliers using n×n multipliers is specified in Fig. 3

and is described by:

𝛾 = 𝛼 × 𝛽 = (2𝑛 × 𝛼𝐻 + 𝛼𝐿) × (2𝑛 × 𝛽𝐻 + 𝛽𝐿)
= 22𝑛 × (𝛼𝐻 × 𝛽𝐻) + 2𝑛

× ((𝛼𝐻 × 𝛽𝐿) + (𝛼𝐿 × 𝛽𝐻)) + (𝛼𝐿 × 𝛽𝐿)

= 22𝑛 × 𝑃1 + 2𝑛 × (𝑃2 + 𝑃3) + 𝑃4.

(7)

Note that each partial product 𝑃𝑖 where 𝑖 ∈ {1, 2, 3, 4} in (7)

is generated using an n×n multiplier and multiplications by 22𝑛

and 2𝑛 are simply done by 2𝑛-bit and 𝑛-bit left shifts,

respectively. Given that 𝑃4 is the least and 𝑃1 is the most

significant partial products, whereas 𝑃2 and 𝑃3 are equivalently

significant, multipliers with different accuracies can be

designed with different configurations. We propose six 8×8

approximate multipliers, three of which, i.e. M8-1, M8-3, and

M8-5, use M1 and the other three use M2 as their main building

block. Table 7 shows how each of these six 8×8 multipliers is

constructed.

αH αL

βH βL

P4 = αL x βL

P3 = αH x βL

P2 = αL x βH

P1 = αH x βH

Fig. 3. Building 2n×2n multipliers using n×n multipliers.

Table 7. Using M1 and M2 to construct 8×8, 16×16, and 32×32 designs.

Size Design P1 P2 P3 P4

8×8

M8-1 M1 M1 M1 M1

M8-2 M2 M2 M2 M2

M8-3 Exact M1 M1 M1

M8-4 Exact M2 M2 M2

M8-5 Exact Exact Exact M1

M8-6 Exact Exact Exact M2

16×16

M16-1 M8-1 M8-1 M8-1 M8-1

M16-2 M8-2 M8-2 M8-2 M8-2

M16-3 M8-3 M8-3 M8-3 M8-3

M16-4 M8-4 M8-4 M8-4 M8-4

M16-5 M8-5 M8-5 M8-5 M8-5

M16-6 M8-6 M8-6 M8-6 M8-6

𝟑𝟐 × 𝟑𝟐
M32-5 M16-5 M16-5 M16-5 M16-5

M32-6 M16-6 M16-6 M16-6 M16-6

According to Table 7, M8-1 and M8-2 use 4×4 approximate

multipliers M1 and M2, respectively, to generate all four partial

products from 𝑃1 to 𝑃4. M8-3 and M8-4 are more accurate

designs in which the most significant partial product, 𝑃1, is

generated using an exact 4×4 multiplier and M1 and M2 are

respectively used to generate 𝑃2, 𝑃3, and 𝑃4. M8-5 and M8-6 are

the most accurate designs in which only the least significant

partial product, 𝑃4, uses approximate multipliers M1 and M2,

respectively, and the other three partial products are generated

using exact multipliers.

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

Note that 16×16 and 32×32 approximate multipliers can be

constructed by considering (6). We scaled up the six 8×8

designs in Table 7 to form six 16×16 and 32×32 multipliers.

Using the six 8×8 multipliers in Table 7 to construct 16×16

ones, as specified in Fig. 3 and (6), we obtain 64 possible 16×16

multiplier designs. Since this is a large number, we only

consider six designs using the simple scheme shown in Table 7.

These designs are (1) the most accurate scaled-up variants using

M1 and M2, referred to as M16-5 and M16-6, respectively; (2)

the most hardware efficient scaled-up variants using M1 and

M2, referred to as M16-1 and M16-2, respectively; and (3) two

designs (one using M1, i.e.M16-3 and the other one using M2,

i.e. M16-4) that have a good trade-off between accuracy and

hardware. Only one type of 8×8 multipliers is used to construct

the 16×16 designs. The most accurate variants of the 16×16

multipliers, i.e. M16-5 and M16-6, are selected to construct

32×32 multipliers M32-5 and M32-6, respectively, as

described in Table 7.

The same design approach can be applied to any n×n

multiplier where n is a power of 2. Since we have six 8×8

multipliers and four n×n multipliers are required to build a

2n×2n multiplier, the number of possible designs is given by:

(64)log2(
𝑛
8
)
= (64)log2(𝑛)−3 = 6

(
𝑛2

64)
. (8)

According to (8), the number of possible designs

exponentially increases with n2. These designs have a wide

range of accuracy-hardware trade-offs and could be utilized in

different applications, based on application requirements.

D. Extension to signed Booth multipliers

The proposed approximate compressor can also be utilized in

signed Booth multipliers. In a Booth multiplier, the partial

products are generated using a Booth encoder, and the major

difference between the unsigned and signed Booth

multiplication is in the generation of the partial products.

Therefore, the partial products in Booth multipliers can be

accumulated using approximate compressors, but not the sign

extension bits [18]. Table 8 shows the radix-4 encoding

algorithm in which the multiplier 𝑋 is divided into overlapping

groups of three bits (𝑋𝑖−1, 𝑋𝑖, and 𝑋𝑖+1), starting from the LSB.

𝑍 is the encoded value to be multiplied with the multiplicand 𝑌.

Following [20], an 8×8 Booth multiplier was designed and

implemented using the proposed approximate compressors for

the 8 LSBs while the 8 MSBs use exact compressors, see Fig.

4. Note that the sign extension of the partial product array is

usually simplified by using the Baugh-Wooley algorithm as

shown in Fig. 4 [20]. The hot one (HO) in Fig. 4 indicates the

negative encoded values, i.e. HO = 1 for the -2Y and -1Y entries

in Table 8 and HO = 0 for the +2Y and +1Y entries. ∆̅ denotes

a negated sign bit.

Table 8. Radix-4 Booth encoding.

Xi+1 Xi Xi-1 Z Operation on Y

0 0 0 0 0Y

0 0 1 +1 +1Y
0 1 0 +1 +1Y

0 1 1 +2 +2Y

1 0 0 -2 -2Y
1 0 1 -1 -1Y

1 1 0 -1 -1Y

1 1 1 0 0Y

Partial productsSign extension bit

15 14 13 12 0123611 910 458 7

Half Adder

Approximate Compressor, Table 4

Approximate Compressor, Table 5

OR gate

1

1

1

Hot one

Fig. 4. Using approximate compressors in Booth multipliers.

Approximate encoders for constructing approximate radix-4

Booth multipliers are proposed in [19]. To evaluate the

proposed compressor, however, we use exact encoders and

apply approximate compressors to the exact partial products.

IV. PERFORMANCE EVALUATION

A. Accuracy analysis

An important metric for an approximate design is the output

accuracy with respect to the exact result. We used the mean

relative error distance (MRED) [21] as the metric to quantify

the accuracy of the approximate designs. In order to compute

the MRED, we first define the relative error distance (RED) by

𝐸𝐷 = |𝑀′ − 𝑀|,

𝑅𝐸𝐷 =
𝐸𝐷

𝑀
.

(9)

In (9), 𝑀’ denotes the generated approximate result while 𝑀

denotes the exact result. The average value of all the REDs over

the entire input space gives the MRED for each design.

Table 9 shows the MRED, the error rate (ER), and the

normalized mean error distance (NMED, the mean error

distance normalized by the maximum output of the accurate

design) for several 16×16 unsigned multipliers recently

reported in the literature. Note that the ER is the percentage of

the multiplications for which the approximate design produces

a different result than the exact one. Better designs will tend to

have a low ER in addition to a small MRED.

Since an exhaustive simulation of all possible input

combinations is very time-consuming, we simulated the

accuracy of the approximate multipliers using Matlab with 10

million uniformly distributed input combinations [8], [10].

Altogether, MRED, ER, and NMED were simulated for 8×8

multipliers over their entire input space (65536 cases) and the

results are also provided in Table 9.

The results in Table 9 show that the most accurate of the

proposed 16×16 designs, M16-5 and M16-6, are more accurate

than their competitors except AM2-16, which has the same

MRED as M16-5. However, with respect to the ER and NMED,

M16-5 is clearly more accurate than AM2-16. It is worth

mentioning that the parameter k for AM2 and TAM2 is the

number of MSBs used for error reduction [9], [5] and for ETM

k indicates the number of LSBs in the non-multiplication part

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

[14]. k is also the mode number for AWTM and ACM [13], [11]

and the vertical broken length in BAM [12]. Note that according

to Table 9, the same trend as in 16×16 multipliers can be seen

in 8×8 multipliers. In fact, the more significant MRED metric

have similar values in both 16×16 and 8×8 multipliers.

Table 9. Accuracy comparison for 16×16 approximate multipliers.

Multiplier

Size

Multiplier

Type
MRED ER (%) NMED

16×16

M16-1 0.0644 96.71 5.7×10-2

M16-2 0.0839 96.67 7.2×10-2

M16-3 0.0168 94.74 1.2×10-3

M16-4 0.0224 94.65 1.9×10-3

M16-5 0.0013 72.49 5. 1×10-6

M16-6 0.0017 72.33 5.7×10-6

UDM [15] 0.0333 80.99 1.4×10-2

AM2-16 [9] 0.0013 97.96 5.3×10-6

ETM-7 [14] 0.0156 99.99 2.2×10-3

ACM4 [11] 0.0026 99.97 6.4×10-6

MUL2 [18] 0.0020 84.67 7.1×10-6

DSM-8 [22] 0.0026 99.88 1.0×10-5

BAM-16 [12] 0.0021 99.97 3.5×10-5

TAM2-16 [5] 0.0020 99.98 3.1×10-5

AWTM-4 [13] 0.0033 99.94 8.3×10-6

8×8

M16-1 0.0649 73.17 1.9×10-2

M16-2 0.0846 73.17 2.8×10-2

M16-3 0.0170 66.36 2.1×10-3

M16-4 0.0227 66.43 3.2×10-3

M16-5 0.0013 36.22 6.8×10-5

M16-6 0.0018 36.22 9.6×10-5

UDM [15] 0.0328 47.09 1.4×10-2

AM2-16 [9] 0.0014 95.23 5.3×10-4

ETM-3 [14] 0.0846 93.10 1.3×10-2

ACM4 [11] 0.0028 99.03 1.2×10-4

MUL2 [18] 0.0022 79.23 3.1×10-4

DSM-8 [22] 0.0031 99.47 5.6×10-3

BAM-16 [12] 0.0176 99.23 1.8×10-2

TAM2-16 [5] 0.0024 99.11 7.2×10-4

AWTM-4 [13] 0.1532 99.92 5.4×10-3

We also measured the MRED, ER, and NMED for the radix-

4 Booth multiplier. This proposed design is referred to as the

compressor-based approximate Booth multiplier (CABM) and

is compared to two state-of-the-art approximate Radix-4 Booth

multipliers and the results are given in Table 10.

Table 10. Accuracy comparison of 8×8 Radix-4 Booth multipliers.

Multiplier Type MRED ER (%) NED

AWBM1 [20] 0.051 98.26 0.30

AWBM2 [20] 0.029 91.49 0.18

CABM 0.014 84.72 0.18

Table 10 shows that the proposed design has the same NED

as the AWBM2 while it has a smaller error rate. NED refers to

the normalized error distance, which is the average error

distance normalized by the maximum possible error. Moreover,

CABM is the most accurate design with respect to the 𝑀𝑅𝐸𝐷.

B. Hardware analysis

All the designs were implemented in VHDL and then

synthesized by using the Synopsys Design Compiler (DC) for

ST’s CMOS 28-𝑛𝑚 process. The supply voltage and the

temperature in all simulations were set to 1𝑉 and 25∘𝐶,

respectively. All designs were synthesized with the high effort

on boundary optimization with a cell library that includes AND-

OR-Inverter (AOI) logic gates. Note that the same timing

constraints were used when synthesizing all multiplier

designs. No attempt was made to find the optimal PDP since

that search would impose different delays on the multipliers.

Moreover, we used the default input-drive strength, output load,

and switching activities for power analysis. It is also worth

mentioning that we used Wallace-16 as the baseline exact

multiplier for the comparison.

Table 11 shows the synthesized results for the circuit area,

critical path delay, power consumption and the power-delay

product for several designs. Note that the logic to produce

generate and propagate signals is included in the

implementation of the proposed designs.

As shown in Table 11, for the 16×16 unsigned designs, the

fastest and the smallest design is ETM-7, which is 3.08% faster

and 40.74% smaller and than our fastest and smallest design,

M16-2; however, ETM-7 consumes 15.22% more power than

M16-2. With respect to power consumption, the proposed

designs M16-2 and M16-1 are the most power-efficient

multipliers. Even our most accurate designs, M16-5 and M16-

6, are among the most power-efficient and energy-efficient ones

with relatively small PDP values. The only design that

consumes less energy than M16-5 and M16-6, is ETM-7;

however, ETM-7 is almost 10x less accurate than M16-5 and

M16-6. Table 11 also shows that the proposed M16-2 has the

lowest PDP value among all the designs.

Table 11. Hardware comparison of unsigned multipliers.

Multiplier

size

Multiplier

type

Delay

(𝒏𝑺)

Power

(µ𝑾)

Area

(µ𝒎𝟐)

PDP

(𝒇𝑱)

16×16

M16-1 1.65 302.4 627.5 498.9

M16-2 1.62 268.4 588.6 434.8

M16-3 1.66 338.8 702.3 562.4

M16-4 1.64 315.2 673.5 516.9

M16-5 1.82 408.7 852.8 743.8

M16-6 1.82 402.2 843.5 732.0

UDM [15] 2.01 707.2 829.2 1421.47

AM2-16 [9] 1.73 767.1 1045.1 1327.08

ACM4 [11] 2.00 492.7 723.5 985.40

MUL2 [18] 2.11 508.7 1011.5 1073.35

ETM-7 [14] 1.57 316.6 348.8 497.06

DSM-8 [22] 2.11 400.6 560.2 845.26

BAM-16 [12] 2.34 442.6 441.0 1348.87

TAM2-16 [5] 1.71 458.8 648.9 788.66

AWTM-4 [13] 1.74 554.2 714.5 964.30

Wallace-16 2.18 837.3 1034 1825.31

32×32

M32-5 3.35 841.1 1723.4 2817.68

M32-6 3.35 839.7 1718.9 2812.99

AM2-32 [9] 3.19 1601.4 2088.4 5108.46

ACM4 [11] 3.54 1013.8 1501.6 3588.85

MUL2 [18] 3.61 1203.7 2004.9 4345.35

AWTM4 [13] 3.16 1344.9 1431.1 4249.88

The hardware measurements for 32×32 multipliers are also

reported in Table 11. Note that the results for 16×16 designs

showed that AM2, ACM4, MUL2 and AWTM4 are the four

designs that have a comparable accuracy with M16-5 and M16-

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

6 (in terms of MRED and NMED). Hence, we only report the

power consumption, circuit area, and critical path delay for

these six multipliers.

The same trend as in 16×16 designs can be seen in 32×32

multipliers. Clearly, M32-5 and M32-6 are the most hardware-

efficient designs with at least 21.51% (for M32-5) and 21.61%

(for M32-6) smaller PDP compared to ACM4, which has the

smallest PDP among the other designs.

A similar comparison was done for the radix-4 Booth

multipliers. As the results in Table 12 show, AWBM2 is

slightly more efficient than the proposed CABM in terms of

delay, power, and area; according to Table 10, however, it is

more than 2x less accurate than the CABM. We further

considered both MRED and PDP to evaluate different designs

as in [8]. Fig. 5(a) compares the products of MRED and PDP

values and Fig. 5(b) shows the -log10(MRED) vs. PDP for the

considered unsigned 16×16 multipliers.

Since the MRED values are so close, they are plotted on a

logarithmic scale for better clarity. Note that designs at the

top-left corner are the best designs, which have small PDPs

with high accuracies. As the results in Fig. 5(a) show, M16-5

and M16-6 have the smallest PDP-MRED products.

(a) PDP-MRED product.

(b) MRED vs. PDP.

Fig. 5. MRED and PDP of the approximate multipliers.

The MRED-PDP products are also obtained for Radix-4

Booth multipliers and the results are given in Table 13. It is

shown that the proposed CABM has the lowest MRED-PDP

product.

Table 12. Hardware comparison of Radix-4 Booth multipliers.

Multiplier
Delay

(𝒏𝑺)

Power

(µ𝑾)

Area

(µ𝒎𝟐)

PDP

(𝒇𝑱)

AWBM1 [20] 1.80 99.375 393.12 178.875

AWBM2 [20] 1.66 68.750 285.62 114.125
CABM 1.63 69.678 284.32 113.575

Exact Booth 2.01 125.42 436.87 252.094

Table 13. MRED-PDP product for three Radix-4 Booth multipliers.

Multiplier PDP (𝒇𝑱) MRED PDP × MRED

AWBM1 [20] 178.875 0.051 9.122

AWBM2 [20] 114.125 0.029 3.309
CABM 127.699 0.014 1.788

V. APPLICATIONS

To evaluate the effectiveness of the proposed designs, we

consider image sharpening and JPEG applications. In addition,

an interference nulling calculation for the receiver in a MIMO

wireless communication system is also considered as a new

benchmark to evaluate approximate multipliers.

Note that 8×8 and 16×16 multipliers have been widely used

in image processing applications in related articles [8]. Also, we

scaled up the floating-point numbers in both JPEG and MIMO

applications (numbers between 0 and 1) to 16-bit to have a good

precision.

A. Image Sharpening

Image sharpening algorithms are widely used in image

processing applications to enhance the sharpness of an image

without producing halo artifacts [23], [24]. One image

sharpening algorithm that uses approximate arithmetic is

proposed in [25] and given by the following special filter:

𝑆(𝑥, 𝑦) =
1

4368
∑ ∑ 𝐺(𝑖 + 3, 𝑗 + 3)2

𝑗=−2
2
𝑖=−2 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗),

𝐺 =

(

16 64 112 64 16
64
112
64

256 416 256
416 656 416
256 416 256

64
112
64

16 64 112 64 16)

.
(10)

In (10), I(x, y) denotes a pixel in the original image, S is the

resulting processed image (using exact multipliers) and G

defines the 5×5 impulse response of the spatial filter that

operates on 5×5 blocks of pixels in the image [23].

The peak signal-to-noise ratio (PSNR) is an objective quality

measure that is based on the mean squared error (MSE). (11)

and (12) show how the MSE and PSNR are computed,

respectively. Note that 𝑆̂ denotes the processed image using

approximate multipliers.

𝑀𝑆𝐸 =
1

𝑚𝑛
× ∑ ∑ [𝑆̂(𝑖, 𝑗) − 𝑆(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0 . (11)

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
). (12)

Fig. 6 shows the original Lena test image and the seven

sharpened images that used an exact multiplier and the six

proposed approximate designs.

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

(a)

(b)

(c)

(d)

(e)

(f)

 (g)

(h)

Fig. 6. Image sharpening. (a) Original image, and those sharpened using (b)
Exact design, (c) M16-1, (d) M16-2, (e) M16-3, (f) M16-4, (g), M16-5, (h)

M16-6.

Structural similarity SSIM [29] is another metric that

measures the similarity between two images and is widely used

as an image quality metric. We used the predefined Matlab

function ssim to measure the SSIM between the sharpened

image using the exact multiplier and those using an

approximate multiplier. The PSNR and SSIM values for several

approximate multipliers are depicted in Fig. 7, which shows that

M16-5 is more accurate than the other designs. Note that with

respect to the SSIM, our proposed designs, M16-5 and M16-6,

are the best designs with the highest SSIM values. In general,

the rankings of the weaker designs are slightly different in some

cases but the trend is roughly the same as the PSNR values.

Comparing the designs that provide a PSNR of more than 30

dB (often a PSNR of 30 dB can be considered as good enough)

reveals that M16-4 and M16-3 have a better trade-off with

almost 72% and 70% smaller PDPs compared to the exact

design (Table 11), respectively. Even the most accurate design,

M16-5, achieves 59.25% saving on PDP, whereas the second-

best design in terms of PSNR, AM2-16, has only 43.95%

smaller PDP compared to the exact design (Table 11).

B. JPEG Compression

The JPEG compression standard is widely-used for saving

storage space or transmission bandwidth for digital images [26].

This compression causes image quality degradation depending

on the compression quality factor (QF). QF is a scaling factor

ranging from 1 (high recovered image quality) to 100 (high

compression ratio).

A basic strategy in JPEG image compression is to reduce the

data correlation by transforming it from the time domain into

the frequency domain. The human visual system is less

sensitive to higher frequencies, therefore images can be

compressed by suppressing their high-frequency components.

The spatial-to-frequency domain transformation is done by

applying the discrete cosine transform (DCT) [27].

Fig. 7. PSNR and SSIM values for the image sharpening application.

In standard JPEG compression, the input image is divided

into 8×8 pixel blocks. Then the DCT of each 8×8 pixel block

is computed and unimportant DCT elements (that encode high

frequencies) are discarded by multiplying the DCT coefficient

matrix with a quantization matrix. The resulting matrix is then

dequantized and its inverse DCT is computed. Finally, all the

blocks are reassembled to form an image of the same size as the

original one [28].

The matrix multiplication in the JPEG algorithm makes it a

good application for evaluating approximate multipliers.

Matlab code was written to compress the standard “camera

man” image using the JPEG algorithm with the standard

quantization matrix (Q) as given in

𝑄 =

[

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99]

. (13)

The original image and seven decompressed images, one

using an exact multiplier and six using the proposed

approximate multipliers, are shown in Fig. 8. The QF is set to

70 in all seven images. The quality of the decompressed images

obtained by using exact and approximate multipliers are

compared by using the PSNR and SSIM measures.

Table 14 reports the PSNR and SSIM values for several

approximate multipliers for four increasing QFs. As the results

in Table 14 show, M16-5 has the highest PSNR and SSIM

values for the four considered QFs, followed by M16-6.

Note that the reference image for computing the SSIM and

PSNR values in image sharpening application is the

reconstructed image using exact multipliers. However, it would

be more reasonable to use the original image, i.e. the image

before compression, as the reference image in the JPEG

compression application.

The results in Table 14 show that the exact multipliers in a

JPEG compressor can be replaced by approximate multipliers

for power and area saving purposes at the cost of negligible

image quality degradation.

M16-5 AM2-16 M16-6 TAM2-16 BAM-16 DSM ACM4 AWTM4 M16-3 M16-4 ETM-7 UDM M16-1 M16-2
0

10

20

30

40

50

60

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

SS
IM

PSNR SSIM

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

(a) (b) (c)

(d) (e) (f)

 (g) (h)

Fig. 8. JPEG compression for QF=70. (a) Original image, (b) Exact
reconstruction, and those reconstructed using (c) M16-1, (d) M16-2, (e) M16-

3, (f) M16-4, (g), M16-5, (h) M16-6.

Table 14. Decompressed image quality comparison.

Metric Multiplier QF=60 QF=70 QF=80 QF=90

PSNR

Exact 27.81 27.34 27.01 26.91

M16-1 23.54 17.21 22.22 18.26

M16-2 22.93 13.27 19.11 13.96

M16-3 25.21 25.72 23.17 18.65

M16-4 24.51 23.80 19.63 14.11

M16-5 26.43 26.65 25.72 25.54

M16-6 26.41 26.63 25.62 25.28

AM2-16 [9] 26.17 26.07 25.51 24.48

ACM4 [11] 26.02 25.95 25.13 24.21

MUL2 [18] 26.21 26.44 25.64 25.37

AWTM4 [13] 25.88 25.67 24.82 24.03

SSIM

Exact 0.98 0.98 0.97 0.97

M16-1 0.83 0.79 0.79 0.79

M16-2 0.83 0.79 0.79 0.73

M16-3 0.95 0.93 0.90 0.87

M16-4 0.95 0.93 0.90 0.83

M16-5 0.97 0.97 0.96 0.95

M16-6 0.97 0.96 0.96 0.95

AM2-16 [9] 0.96 0.93 0.92 0.90

ACM4 [11] 0.95 0.92 0.92 0.89

MUL2 [18] 0.96 0.96 0.95 0.95

AWTM4 [13] 0.93 0.92 0.91 0.88

C. Multiple-Input Multiple-Output (MIMO) Systems

Today, MIMO technology is being employed in wireless

communications instead of the conventional single-input

single-output (SISO) technology due to its higher data

bandwidth and power efficiency over multipath fading channels

[30], [31].

In digital communication, a transmitted '1/0' could be

changed to a '0/1' due to various factors, such as noise and

fading. The ratio of erroneous bits to the total number of

transmitted bits over a channel is called the bit error rate (BER).

Channel coding is a technique where functionally dependent

bits are inserted so that most of the errors occur in data

transmission over noisy communication channels can be

detected and corrected.

Given the error tolerance provided by error correcting

codes, computation errors in an approximate design are mixed

with the errors caused by noise so a system can recover some

of the approximation errors using error detection and correction

coding. We use four coding schemes to evaluate the

performance produced by the proposed approximate

multipliers. The evaluation is done by using BER vs. SNR

(signal-to-noise ratio) curves in the standard way that is used to

illustrate the error correcting performance of codes. Note that

the BER is a function of the noise power, i.e. the higher the SNR

the better (i.e. the lower) the BER.

1. Methodology and experimental setup

MIMO methods take advantage of multiple transceiver and

receiver antennas to produce higher total data throughput,

however they require sophisticated, and costly, signal

processing in the receiver. We modeled an 8 × 8 MIMO system

in which all multiplications in the receiver block use the

proposed approximate multipliers. In addition, three different

codes were considered: Hamming (7, 4), extended Golay (24,

12) [32] and two variants of low density parity check (LDPC)

codes: LDPC (1024, 512), and LDPC (2048, 1024) [33]. The

input bit stream is coded using one of the above coding

techniques and then it is transmitted over a noisy channel from

8 antennas, as shown in Fig. 9.

 X1

 X2

 X8

.

.

.

.

.

.

 R1

 R2

 R8

Transmitter Receiver

Encoder Decoder

Input data Output data

 X7

 R7

Fig. 9. Block diagram of an 8×8 MIMO system.

The system model for Fig. 9 is given by

𝒚 = 𝑯𝒙 + 𝑵. (14)

in which 𝒙 is the coded user bit stream, 𝑯 is the channel matrix

that models the interference in the channel, 𝑵 models the

additive white Gaussian channel noise, and 𝒚 is the received

corrupted bit stream. In an 8 × 8 MIMO system, 𝒚, 𝒙 and 𝑵 are

8 × 1 complex matrices while 𝑯 is a complex 8 × 8 matrix.

In the receiver block, the minimum mean squared error

(MMSE) interference nulling matrix 𝒘 is multiplied by the

https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Data_transmission

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

incoming signal vector 𝒚. The MMSE approach aims to find the

matrix 𝑤 that minimizes the criterion, 𝐸{[𝒘𝒚 − 𝒙][𝒘𝒚 − 𝒙]𝑯}.
𝒘 is specified in

𝒘 = [𝑯∗𝑯 + 𝑵𝟎𝑰]
−1𝑯∗. (15)

where 𝑵𝟎 is 2× the variance of the noise at the receiver

antennas and (.)* is the conjugate transpose operator [34]. The

final results at each receiver can be obtained by left-multiplying

(using the approximate multipliers) the incoming signal vector

𝑦 by the obtained 𝑤.

For the Hamming (7, 4) code, we generated 1420 4-bit

samples and encoded them into 7-bit codewords. The extended

(24, 12) Golay code works similarly to the Hamming (7, 4)

code. The only difference is that 416 12-bit samples are

generated, and the receiver decodes them using the maximum

likelihood decoding technique [35]. Given a received

codeword 𝒙, the maximum likelihood decoding approach

selects the codeword 𝒚 from the codeword set that maximizes

the conditional probability of 𝑃(𝑥|𝑦 𝑠𝑒𝑛𝑡). For both LDPC

codes, the min-sum algorithm is used for decoding [36] with a

maximum of 64 iterations. Note that the termination criterion is

set to 1000 errors. At each SNR level, the min-sum algorithm is

performed for either 64 iterations or 1000 errors, whichever

condition is satisfied first. Clearly, increasing the number of

iterations or the maximum number of errors in a block reduces

the BER; however, doing so significantly increases the runtime.

In this article, we aim to determine the general trend and reveal

the practicality of the proposed approximate designs in MIMO

receiver applications.

2. Results and discussion

The BER vs. SNR characteristic was computed for seven

different cases: one for the exact multiplier and six for the six

variants of the proposed design. The results are shown in Figs.

10 to 13 for the Hamming (7, 4), extended Golay (24, 12),

LDPC (1024, 512), and LDPC (2048, 1024) codes,

respectively.

Since the six proposed 16×16 approximate multipliers

cover a wide range of accuracy, such that M16-2 and M16-5 are

the least and the most accurate designs (Table 9), we only

consider these six designs in this sub-section. First we aim to

show the practicality of approximate multipliers in MIMO

receiver applications in general. Second, we hypothesize that

the performance of the other designs in the described MIMO

system (Fig. 9) would be similar to one of the six proposed

multipliers with the closest accuracy.

Figs. 10 to 13 show that for the lowest SNRs, and

consequently, relatively high BERs, the exact and approximate

designs are equally affected by noise. This implies that the

computation errors caused by the use of approximate

multipliers are insignificant compared to the errors caused by

noise. Although the least accurate approximate multiplier

designs should be quite acceptable at low SNR operation, there

are few applications that will operate in that regime. When

operating at higher, more typical SNR levels, Figs. 10 to 13

show that the most accurate variants of the proposed design,

namely M16-5 and M16-6, can match the BER vs. SNR

performance of a design that uses exact multipliers down to

lower BERs.

As the SNR increases, the computation errors caused by the

use of approximate multipliers will eventually dominate the

random errors and produce a leveling off of the BER curve, a

so-called error floor [37]. This is the operating region where the

error correcting code cannot compensate for the multiplier’s

inaccuracies. This error floor can be easily seen, especially in

Figs. 10 and 11 where the weakest codes, i.e. the (7, 4)

Hamming code and the extended (24, 12) Golay code, are

employed. Note that depending on the accuracy of the

approximate design, the error floor is encountered at different

SNR levels. The more accurate multipliers, such as M16-5 and

M16-6, produce BERs that follow those of the exact design for

higher SNRs compared to the BERs of the less accurate

multipliers.

Fig. 10. BER vs. SNR for the (7, 4) Hamming code.

Fig. 11. BER vs. SNR for the extended (24, 12) Golay code.

According to the results in Figs. 10 and 11, the (7, 4)

Hamming and the extended Golay codes are relatively weak, so

they cannot compensate for the multipliers’ inaccuracies and

the BER cannot get lower than 10−3 for the (7, 4) Hamming

code and almost 8 × 10−5 for the extended Golay code, which

are entirely unacceptable for modern applications. However,

Figs. 12 and 13 show that the most accurate designs, M16-5 and

M16-6, produce BER performance that matches that of the

exact multiplier down to much lower BERs when stronger

LDPC codes are used.

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

Fig. 12. BER vs. SNR for the (1024, 512) LDPC code.

Fig. 13. BER vs. SNR for the (2048, 1024) LDPC code.

Generally, when stronger codes, such as the (2048, 1024)

LDPC code, are employed, the approximate multipliers can

match the BER performance of the exact design for higher

SNRs (and hence lower BERs) since a stronger code can correct

both random channel errors and approximation errors. In Fig.

13 the results of the strongest code that we considered, a (2048,

1024) LDPC code, show that the error floor for M16-4 happens

at a BER lower than 10−4. This means that for more accurate

designs, such as M16-5 and M16-6, the error floor occurs at

much lower BERs, probably somewhere closer to 10−7.

Figs. 10 to 13 showed that approximate multipliers,

especially M16-5 and M16-6, can safely replace exact

multipliers in the MIMO system to reduce the power, delay, and

area (M16-5 and M16-6 have 59.25% and 59.89% smaller PDP

compared to the exact Wallace-tree multiplier, respectively) at

a low cost in performance degradation. The advantages of the

approximate multiplier implementation could be even more

significant in larger MIMO systems, such as massive MIMO

systems with 128 antennas, and also if many parallel multipliers

are required to meet the required data throughput.

We performed some simulations and realized that using

approximate multipliers increases the number of required

iterations to get to a desired BER at a given SNR; the results are

given in Table 15.

According to Table 15 the number of required iterations

increases at higher SNR levels, where the errors caused by

approximate multipliers dominate channel noise. Table 15 also

shows that less accurate multipliers require more iterations to

get to the desired BER at a given SNR level.

Table 15. Required increase in the number of iterations to get to a desired

BER at a given SNR level.

Approximate

Multiplier

(BER, SNR)

(10-5, 3 dB) (5×10-6, 4 dB)

M16-5 3.5 % 9.3 %

M16-3 6.1 % 15.6 %

Analyzing the results at a reasonable operating point, e.g. an

SNR of 4 dB for the (2048, 1024) LDPC code using the M16-5

approximate multiplier, shows a 9.3% increase in the number

of required iterations. More iterations means more execution

time and, consequently, more energy consumption. In fact, the

energy consumption increases by 9.3%. However, as previously

mentioned, M16-5 consumes 59% less energy than the exact

multiplier and saves 20% on the area. Hence, it would still be

practical to use approximate multipliers in this application.

Note that because LDPC simulation is intrinsically a

probabilistic process because of the white Gaussian channel

noise, we repeated the simulations 20 times and so the reported

results in Table 15 are the average values.

VI. CONCLUSIONS

This article introduces an approximate 4:2 compressor that

is employed to construct two 4×4 multipliers with different

accuracies. The 4×4 designs are then scaled up to 16×16 and

32×32 multipliers that provide a wide range of accuracy-

performance trade-offs. All six proposed multipliers are low-

power designs. The least accurate of the proposed designs,

M16-2, has the smallest PDP among other approximate designs

(Table 11) while the most accurate of the proposed designs,

M16-5, has 44% smaller PDP compared to AM2-16 that has a

similar accuracy in MRED. Moreover, M16-5 is more accurate

than the other approximate designs in the literature (Table 9).

The proposed compressor is also employed in a radix-4 Booth

multiplier, resulting in a low-power signed multiplier (CABM)

with a small MRED. The simulation results reveal the

advantages of the CABM over other designs in terms of MRED

and PDP-MRED product.

The proposed multipliers are evaluated in image sharpening

and JPEG applications. It is shown that M16-5 produces more

accurate output than other approximate multipliers by achieving

a higher quality (in terms of PSNR) while consuming less

power. In addition, for the first time, approximate multipliers

are evaluated in the interference nulling calculation of the

MIMO baseband receiver. We measured how computation

errors can be corrected along with errors caused by channel

noise so that the transmitted data can be recovered without

additional hardware cost using error detection and correction

codes that are already present in the communication systems. It

is shown that approximate multipliers can replace exact ones

with low performance degradation. In the presence of strong

channel codes, such as the LDPC (2048, 1024), the proposed

most accurate design produces results close to the exact design

with almost no performance loss for BERs of up to 10-6.

ACKNOWLEDGMENT

The authors are grateful to Dr. Seok-Bum Ko and Suganthi

Venkatachalam from the University of Saskatchewan for their

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

comments and suggestions that led to improvements to the

article. We would like to acknowledge the reviewers of this

paper for their constructive comments, which we believe have

strengthened the manuscript.

REFERENCES

[1] A. J. Sanchez-Clemente, L. Entrena, R. Hrbacek, and L.

Sekanina, “Error mitigation using approximate logic circuits: a

comparison of probabilistic and evolutionary approaches,” IEEE

Transactions on Reliability, vol. 65, no. 4, pp. 1871-1883, 2016.

[2] J. Schlachter, V. Camus, K. V. Palem, and C. Enz, “Design and

applications of approximate circuits by gate-level pruning,” IEEE

Transactions on Very Large Scale Integration Systems, vol. 25,

no. 5, pp.1694-1702, 2017.

[3] B. Moons and M. Verhelst, “Energy-efficiency and accuracy of

stochastic computing circuits in emerging technologies,” IEEE

Journal on Emerging and Selected Topics in Circuits and

Systems, vol. 4, no. 4, pp. 475–486, 2014.

[4] J. Han and M. Orshansky, “Approximate computing: an emerging

paradigm for energy-efficient design,” IEEE European Test

Symposium, pp. 1-6, 2013.

[5] C. Liu, “Design and analysis of approximate adders and

multipliers,” Master's Thesis, University of Alberta, Canada,

2014.

[6] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan,

“AxNN: energy-efficient neuromorphic systems using

approximate computing,” International Symposium on Low

power electronics and design, pp. 27-32, 2014.

[7] K. Roy, A. Raghunathan, “Approximate computing: an energy-

efficient computing technique for error resilient applications,”

IEEE Computer Society Annual Symposium on VLSI, pp. 473-

475, 2015.

[8] H. Jiang, C. Liu, L. Liu, F. Lombardi and J. Han, “A review,

classification and comparative evaluation of approximate

arithmetic circuits,” ACM Journal on Emerging Technologies in

Computing Systems, vol. 13, no. 4, Article no. 60, 2017.

[9] C. Liu, J. Han, and F. Lombardi, “A low-power, high-

performance approximate multiplier with configurable partial

error recovery,” Design, Automation & Test in Europe, 2014, no.

1, pp. 1–4, 2014.

[10] C. H. Lin and I. C. Lin, “High accuracy approximate multiplier

with error correction,” IEEE International Conference on

Computer Design, pp. 33–38, 2013.

[11] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and

analysis of approximate compressors for multiplication,” IEEE

Transactions on Computers, vol. 64, no. 4, pp. 984–994, 2015.

[12] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-

inspired imprecise computational blocks for efficient VLSI

implementation of soft-computing applications,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 57,

no. 4, pp. 850–862, 2010.

[13] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and area-

efficient approximate Wallace tree multiplier for error-resilient

systems,” International Symposium on Quality Electronic

Design, pp. 263–269, 2014.

[14] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed

multiplier for error-tolerant application,” IEEE International

Conference on Electron Devices and Solid-State Circuits, pp. 1-

4, 2010.

[15] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for

power with an underdesigned multiplier architecture,” IEEE

International Conference on VLSI Design, pp. 346-351, 2011.

[16] J. N. Mitchell, “Computer multiplication and division using

binary logarithms,” IRE Transactions on Electronic Computers,

vol. 4, pp. 512–517, 1962.

[17] N. Maheshwari, Z. Yang, J. Han, and F. Lombardi, “A design

approach for compressor based approximate multipliers,” IEEE

International Conference on VLSI Design, pp. 209-214, 2015.

[18] S. Venkatachalam, S. B. Ko, “Design of power and area efficient

approximate multipliers,” IEEE Transactions on VLSI, vol. 25,

no. 5, pp. 1–5, 2017.

[19] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi,

“Design of approximate Radix-4 Booth multipliers for error-

tolerant computing,” IEEE Transactions on Computers, vol. 66,

no. 8, pp. 1435-1441, 2017.

[20] L. Qian, C. Wang, W. Liu, F. Lombardi, and J. Han, “Design and

evaluation of an approximate Wallace-Booth multiplier,” IEEE

International Symposium on Circuits and Systems, pp. 1974-

1977, 2016.

[21] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability

of approximate and probabilistic adders,” IEEE Transactions on

Computers, vol. 62, no. 9, pp. 1760–1771, 2013.

[22] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N.

S. Kim, “Energy-efficient approximate multiplication for digital

signal processing and classification applications,” IEEE

Transactions on Very Large Scale Integrgration Systems, vol. 23,

no. 6, pp. 1180–1184, 2014.

[23] A. C. Bovik, “Handbook of image and video processing,” USA,

NY, New York, Academic Press, 2005.

[24] C. C. Pham and J. W. Jeon, “Efficient image sharpening and

denoising using adaptive guided image filtering,” IET Image

Processing, vol. 9, no. 1, pp. 71–79, 2015.

[25] M. S. K. Lau, K. V. Ling, and Y. C. Chu, “Energy-aware

probabilistic multiplier: design and analysis,” International

Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, pp. 281-290, 2009.

[26] J. Yang, G. Zhu, Y. Q. Shi, “Analyzing the effect of JPEG

compression on local variance of image intensity,” IEEE

Transactions on Image Processing, vol. 25, no. 6, pp. 2647-2656,

2016.

[27] M. Shah, “Future of JPEG XT: privacy and security,” PhD Thesis,

University of Texas Arlington, Texas, USA, 2016.

[28] N. Rathore, “JPEG image compression,” International Journal of

Engineering Research and Applications, vol. 4, no. 3, pp. 435-

440, 2014.

[29] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: from error visibility to structural similarity”,

IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-

612, 2004.

[30] Z. Babar, S. X. Ng, and L. Hanzo, “EXIT-chart-aided near-

capacity quantum turbo code design,” IEEE Transactions on

Vehicular Technology, vol. 64, no. 3, pp. 866–875, 2015.

[31] J. M. Chung, J. Kim, and D. Han, “Multihop hybrid virtual MIMO

scheme for wireless sensor networks,” IEEE Transactions on

Vehicular Technology, vol. 61, no. 9, pp. 4069–4078, 2012.

[32] P. Adde and R. Le Bidan, “A low-complexity soft-decision

decoding architecture for the binary extended Golay code,” IEEE

International Conference on Electronics, Circuits and Syst.

ICECS 2012, pp. 705–708, 2012.

[33] H. Zhong, W. Xu, N. Xie, and T. Zhang, “Area-efficient min-sum

decoder design for high-rate quasi-cyclic low-density parity-

check codes in magnetic recording,” IEEE Transactions on

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

Magnetics, vol. 43, no. 12, pp. 4117–4122, 2007.

[34] D. Tse, “Fundamentals of Wireless Communications,”

Cambridge University Press, 2005.

[35] M. Shirvanimoghaddam and S. Johnson, “Raptor codes in the low

SNR regime,” IEEE Transactions on Communications, vol. PP,

no. 99, pp. 1–12, 2016.

[36] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On

implementation of min-sum algorithm and its modifications for

decoding low-density parity-check (LDPC) codes,” IEEE

Transactions on Communications, vol. 53, no. 4, pp. 549–554,

2005.

[37] W. Ryan and S. Lin, “Channel codes: classical and modern,”

Cambridge University Press, 2009.

