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Abstract—Approximate computing has been considered to 

improve the accuracy-performance trade-off in error-

tolerant applications. For many of these applications, 

multiplication is a key arithmetic operation. Given that 

approximate compressors are a key element in the design of 

power-efficient approximate multipliers, we first propose 

an initial approximate 4:2 compressor that introduces a 

rather large error to the output. However, the number of 

faulty rows in the compressor’s truth table is significantly 

reduced by encoding its inputs using generate and 

propagate signals. Based on this improved compressor, two 

4×4 multipliers are designed with different accuracies and 

then are used as building blocks for scaling up to 16×16 and 

32×32 multipliers. According to the mean relative error 

distance (MRED), the most accurate of the proposed 16×16 

unsigned designs has a 44% smaller power-delay product 

(PDP) compared to other designs with comparable 

accuracy. The radix-4 signed Booth multiplier constructed 

using the proposed compressor achieves a 52% reduction in 

the PDP-MRED product compared to other approximate 

Booth multipliers with comparable accuracy. The proposed 

multipliers outperform other approximate designs in image 

sharpening and joint photographic experts group (JPEG) 

applications by achieving higher quality outputs with lower 

power consumptions. For the first time, we show the 

applicability and practicality of approximate multipliers in 

multiple-input multiple-output (MIMO) antenna 

communication systems with error control coding.  

 
Index Terms—approximate computing, multiplier, MIMO, 

image sharpening, JPEG. 
 

I. INTRODUCTION 

 

HE continuing shrinkage in the minimum feature size has 

made integrated circuit behavior increasingly vulnerable to 

process, voltage and temperature (PVT) variations as well as 

soft errors [1], [2]. Thus the challenge of ensuring strictly 

accurate computing is increasing [3]. On the other hand, there 

exist many applications, such as multimedia and machine 

learning, which do not necessarily need fully accurate results. 

Such applications are tolerant of small inaccuracies [4]-[6] and 

so approximate computing can be applicable due to its 

potentially significant reduction in design costs while still 

producing sufficiently accurate results [7], [8]. 

Multiplication is a key arithmetic operation that is optimized 

in digital processors. Many approximate multiplier designs 

have been proposed in the literature [9]-[18]. In [9], the authors 

proposed two approximate error accumulation techniques to 

perform partial product accumulation, resulting in approximate 

multipliers AM1 and AM2. The truncation of the least 

significant bits (LSBs) of the partial products is considered in 

[5], resulting in designs referred to as TAM1 and TAM2. 

Approximate compressors AC1 and AC2 are proposed in [11] 

to reduce the delay and power consumption. While exact 

compressors are used for the 8 most significant bits (MSBs), the 

two proposed designs are employed for the 8 LSBs in a 16×16 

multiplier, referred to as ACM3 and ACM4, respectively. 

Approximation in the partial product tree is addressed in the 

broken-array multiplier (BAM) [12], approximate Wallace tree 

multiplier (AWTM) [13], and the error-tolerant multiplier 

(ETM) [14]. The so-called under-designed multiplier (UDM) 

uses 2×2 approximate multiplier blocks to construct larger 

multiplier blocks [15]. The approximate multiplier proposed in 

[16] approximates the binary logarithm of the multiplicand and 

multiplier and then adds them and generates the final 

approximate product using exponentiation. 

In this article, we suggest an initial approximation for a 4:2 

compressor in which several rows in the compressor’s truth 

table are faulty. However, the inputs to the compressors, i.e., 

the partial products of the multiplication, can be encoded using 

generate and propagate signals so that the error rate of the 

compressor is reduced significantly. Using the proposed 

compressor, we design two 4×4 multipliers in which 

approximation is employed in the partial product reduction tree, 

which is the most expensive part of the design of a multiplier 

[18]. The two proposed designs are then used to construct 

16×16 and 32×32 multipliers that are synthesized by the 

Synopsys Design Compiler for ST’s 28-nm CMOS process. 

The remainder of this article is organized as follows: Section 

II provides the required background. Section III presents the 

proposed multiplier designs and discusses the hardware 

implementation in detail. Section IV reports the hardware and 

error performance metrics of the proposed and other 

approximate multipliers. Image sharpening, joint photographic 

experts group (JPEG) compression, and multiple-input 

multiple-output (MIMO) interference nulling applications are 

considered in Section V to provide a practical evaluation of the 
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proposed designs. Finally, Section VI concludes the article. 
 

II. BACKGROUND 
 

A. Partial product accumulation in 4 × 4 multipliers 
 

Consider two 4-bit unsigned operands 𝛼 = ∑ 𝛼𝑖2
𝑖3

𝑖=0  

and 𝛽 = ∑ 𝛽𝑗2
𝑗3

𝑗=0 . The partial product array 𝒑𝒑 is a 4×4-bit 

array of the partial product bits 𝑝𝑝i,j = αi. βj, where 𝑖, 𝑗 ∈

{0, 1, 2, 3}. Table 1 gives all the partial products for a 4-bit 

multiplication and their corresponding product bits. 

The product is denoted by 𝛾 = ∑ 𝛾𝑘2
𝑘7

𝑘=0 . The bits of γ are 

produced in stages going from the LSB to the MSB. According 

to Table 1, 𝛾0 = 𝑝𝑝0,0 and there is no further operation in Stage 

0. In Stage 1, to generate γ1, we can simply use a half adder that 

produces a sum bit γ1 and a carry bit (𝑐1) for the next stage. 

Since the half adder circuit is already a simple design, there is 

no need to approximate it. 
 

Table 1. Original partial product of the multiplication. 
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𝜸𝟕 𝛾6 𝛾5 𝛾4 𝛾3 𝛾2 𝛾1 𝛾0 
 

In Stage 2, there are three 𝑝𝑝 terms and the carry from the 

previous stage (𝑐1) that must be added together. Thus, a 4:2 

compressor is required to generate 𝛾2 and a carry for the next 

stage. 
 

B. Exact 4 ∶ 2 compressor 
 

The function of the exact 4:2 compressor is implemented by 

using two appropriately connected full adders (see Fig. 1(a)) as 

given by 
 

𝑆𝑢𝑚 = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝐶𝑖𝑛, 
 

𝐶𝑜𝑢𝑡 = (𝑥1 ⊕ 𝑥2). 𝑥3 + (𝑥1 ⊕ 𝑥2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). 𝑥1, 

 

𝐶𝑎𝑟𝑟𝑦 = (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4). 𝐶𝑖𝑛 + (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 𝑥4. 

(1) 

 

The 𝑆𝑢𝑚 output has the same weight as the four input signals 

while the 𝐶𝑜𝑢𝑡 is used as the carry in for the next higher-order 

compressor and the output 𝐶𝑎𝑟𝑟𝑦 is weighted like a 𝑝𝑝 bit in a 

one-bit-higher position. Note that 𝐶𝑜𝑢𝑡 and 𝐶𝑎𝑟𝑟𝑦 have the 

same weight. The two stages of an exact 4:2 compressor chain 

are shown in Fig. 1(b) [17]. 
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(b) Compressor chain. 

Fig. 1. Exact compressor.  
 

III. PROPOSED MULTIPLIER DESIGN 
 

A. Modified approximate 4:2 compressor 
 

The function of an exact 4:2 compressor can be approximated 

to reduce the hardware cost. It has been shown that 𝐶𝑜𝑢𝑡 does 

not have a significant impact on the compressor’s accuracy 

[11], so 𝐶𝑜𝑢𝑡 is ignored in our design. Moreover, our SPICE 

simulations confirm that an 𝑋𝑂𝑅 gate consumes more power 

and is slower than the 𝐴𝑁𝐷 and 𝑂𝑅 gates, as shown in Table 2.  
 

Table 2. Normalized relative comparison of 𝐴𝑁𝐷, 𝑂𝑅 and 𝑋𝑂𝑅 gates. 
 

Gate Delay Power consumption 

AND 0.58 0.42 

OR 0.79 0.40 

XOR 1.00 1.00 
 

Ignoring 𝐶𝑜𝑢𝑡 and not using 𝑋𝑂𝑅 gates as well as our goal to 

use as few gates as possible led to the approximate compressor 

truth table given in Table 3. As shown in Table 3, there are 

five/seven incorrect values for the approximate 𝐶𝑎𝑟𝑟𝑦/𝑆𝑢𝑚 

outputs which can contribute to error in the function output. 

 

Table 3. Truth table of the proposed approximate compressor. 
 

 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 Carry Sum 

 0 0 0 0 0/0  0/0  

 0 0 0 1 0/0  1/1  

 0 0 1 0 0/0  1/1  

 0 0 1 1 1/1  0/1  

 0 1 0 0 0/0  1/1  

 0 1 0 1 1/0  0/1  

 0 1 1 0 1/0  0/1  

 0 1 1 1 1/1  1/1  

 1 0 0 0 0/0  1/1  

 1 0 0 1 1/0  0/1  

 1 0 1 0 1/0  0/1  

 1 0 1 1 1/1  1/1  

 1 1 0 0 1/1  0/1  

 1 1 0 1 1/1  1/1  

 1 1 1 0 1/1  1/1  

 1 1 1 1 0/1  0/1  

𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆  𝒔𝒖𝒎 = (𝒙𝟏 + 𝒙𝟐) + (𝒙𝟑 + 𝒙𝟒) 

𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆  𝒄𝒂𝒓𝒓𝒚 = (𝒙𝟏. 𝒙𝟐) + (𝒙𝟑. 𝒙𝟒) 
 

To manage this source of inaccuracy, we encode the inputs 

to the compressor using 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 signals 

given by 
 

𝑃𝑖,𝑗 = 𝑝𝑝𝑖,𝑗 + 𝑝𝑝𝑗,𝑖, 
(2) 

𝐺𝑖,𝑗 = 𝑝𝑝𝑖,𝑗 . 𝑝𝑝𝑗,𝑖. 
 

This encoding ensures that although the circuit may have a 

fairly large number of faulty outputs, it in fact rarely produces 
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those outputs [18]. To see how this approach affects the 

compressor’s accuracy, consider Stage 2 in which the following 

terms are added: 𝑝𝑝2,0, 𝑝𝑝1,1, 𝑝𝑝0,2 and 𝑐1. Table 4, where 𝑁𝐴 

stands for 𝑁𝑜𝑡 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒, shows how encoding the partial 

products using (2) helps to improve the design accuracy 

compared to the situation in Table 3. 

Note that all possible input combinations for the 4×4 

multiplier were considered (24×24=256) to obtain the 

probability of each input combination in Table 4. Using the 

proposed technique, the number of faulty 𝐶𝑎𝑟𝑟𝑦/𝑆𝑢𝑚 values 

reduces from 5/7 to 2/4. Note that the two approximated cases 

for the 𝑐𝑎𝑟𝑟𝑦 signal occur only with a small probability of 

0.078 (0.0624+0.0156), see Table 4. 

It is also worth mentioning that the following combinations 

in Table 4 cannot occur, so they do not contribute to the output 

errors for the approximate compressor: 

1. “0, 1” for  (𝑝𝑝1,1, 𝑐1): since 𝑐1 = 𝑝𝑝0,1. 𝑝𝑝1,0 =
(𝛼0. 𝛽1). (𝛼1. 𝛽0), 𝑐1 = “1” means that 𝛼0, 𝛽1, 𝛼1, and 𝛽0 

are “1”. Consequently, 𝑝𝑝1,1 = 𝛼1. 𝛽1 = “1”. Hence, it is 

impossible to have the “0, 1” combination for (𝑝𝑝1,1, 𝑐1). 

2. “0, 1, 1” for (𝑐1, 𝑝𝑝1,1, 𝐺2,0): having 𝑐1 = 𝑝𝑝0,1. 𝑝𝑝1,0 =

(𝛼0. 𝛽1). (𝛼1. 𝛽0) = “0” and 𝑝𝑝1,1 = 𝛼1. 𝛽1 = “1” means at 

least one of 𝑎0 or 𝑏0 is “0”, which leads to 𝐺2,0 =

𝑝𝑝2,0. 𝑝𝑝0,2 = (𝛼2. 𝛽0). (𝛼0. 𝛽2) = “0”. Thus, the “0, 1, 1” 

combination for (𝑐1, 𝑝𝑝1,1, 𝐺2,0) is not applicable. 

3. “0, 1” for (𝑃2,0, 𝐺2,0): 𝐺2,0 = 𝑝𝑝2,0. 𝑝𝑝0,2 = “1” means that 

both 𝑝𝑝2,0 and 𝑝𝑝0,2 are “1”. Therefore, 𝑃2,0 =

𝑝𝑝2,0+𝑝𝑝0,2 = “1” and so we cannot have the “0, 1” 

combination for (𝑃2,0, 𝐺2,0). 
 

Table 4. Truth table for the Stage 2 compressor. 
 

𝑷𝟐,𝟎 𝑮𝟐,𝟎 𝒑𝒑𝟏,𝟏 𝒄𝟏 Carry Sum Probability 

0 0 0 0   0.4218 

0 0 0 1 NA NA 0.0000 

0 0 1 0   0.1251 
0 0 1 1   0.0156 

0 1 0 0 NA NA 0.0000 

0 1 0 1 NA NA 0.0000 
0 1 1 0 NA NA 0.0000 

0 1 1 1 NA NA 0.0000 

1 0 0 0   0.2814 
1 0 0 1 NA NA 0.0000 

1 0 1 0   0.0624 

1 0 1 1   0.0312 
1 1 0 0   0.0468 

1 1 0 1 NA NA 0.0000 

1 1 1 0 NA NA 0.0000 
1 1 1 1   0.0156 

 

According to (2) and the laws of Boolean algebra, when 𝑃2,0 

and 𝐺2,0 are used as the 𝑥1 and 𝑥2 inputs to the compressor, the 

𝑠𝑢𝑚 and 𝑐𝑎𝑟𝑟𝑦 signals in the compressor for Stage 2 can be 

simplified as  
 

𝑠𝑢𝑚 = 𝑥1 + 𝑥3, 
(3) 

𝑐𝑎𝑟𝑟𝑦 = 𝑥2 + 𝑥4. 
 

To compute 𝛾3 in Stage 3, the four 𝑝𝑝𝑖,𝑗  terms and the carry 

𝑐2 from Stage 2 should be added and therefore a 5:2 compressor 

is required. Since the proposed compressor is a 4:2 design, we 

can merge two of these five signals to reduce them to four, as 

specified by  
 

𝑥1 = 𝑐2, 𝑥2 = 𝐺3,0 + 𝐺2,1, 𝑥3 = 𝑃2,1, 𝑥4 = 𝑃3,0. (4) 

where 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are the inputs to the compressor that 

generates 𝛾3 and a carry out (𝑐3) for the next stage. Table 5 

shows how altering the partial products affects the 

compressor’s truth table in Stage 3. As in Stage 2, the design 

can be simplified by using Boolean algebra. The resulting 

simplified compressor design for Stage 3 is then given by   
 

𝑠𝑢𝑚 = 𝑥1 + 𝑥3 + 𝑥4, 
(5)  

𝑐𝑎𝑟𝑟𝑦 = 𝑥1. 𝑥2 + 𝑥3. 𝑥4. 
 

The calculation of  𝛾4 in Stage 4 is exactly like the calculation 

of 𝛾2 in Stage 2. It uses a 4:2 compressor to add 𝑝𝑝3,1, 𝑝𝑝2,2, 

𝑝𝑝1,3 and 𝑐3 to generate 𝛾4 and a carry out for the next stage 

(𝑐4). Table 6 shows the effect of the change on the partial 

products. As shown in Table 6, the number of faulty cases has 

been reduced and those that remain are less likely to happen. 

Note that the only output that differs in Table 6 and Table 4 

is the carry signal. In fact, the carry signals in these two stages 

are generated from different terms. Using the same argument as 

in Table 4, when 𝐺3,1 = 1, 𝑃3,1 must be “1”. Hence, the entries 

that do not follow this are 𝑁𝐴 entries. Also, note that according 

to the laws of Boolean algebra, the 𝑐𝑎𝑟𝑟𝑦 and 𝑠𝑢𝑚 signals in 

the compressor for Stage 4 can be simplified as: 
 

𝑠𝑢𝑚 = 𝑥1 + 𝑥2 + 𝑥3, 
(6) 

𝑐𝑎𝑟𝑟𝑦 = 𝑥2 + 𝑥3. 𝑥4. 
 

Table 5. Truth table for the Stage 3 compressor. 
 

𝒄𝟐 𝑮𝟑,𝟎 + 𝑮𝟐,𝟏 𝑷𝟐,𝟏 𝑷𝟑,𝟎 Carry Sum Probability 

0 0 0 0   0.3087 

0 0 0 1   0.1953 

0 0 1 0   0.1952 

0 0 1 1   0.1092 

0 1 0 0 NA NA 0.0000 

0 1 0 1   0.0273 

0 1 1 0   0.0315 

0 1 1 1   0.0233 

1 0 0 0   0.0079 

1 0 0 1   0.0156 

1 0 1 0   0.0158 

1 0 1 1   0.0314 

1 1 0 0 NA NA 0.0000 

1 1 0 1   0.0079 

1 1 1 0   0.0038 

1 1 1 1   0.0273 
 

Table 6. Truth table for the Stage 4 compressor. 
 

𝑷𝟑,𝟏 𝑮𝟑,𝟏 𝒑𝒑𝟐,𝟐 𝒄𝟑 Carry Sum Probability 

0 0 0 0   0.4057 
0 0 0 1   0.0156 

0 0 1 0   0.1173 

0 0 1 1   0.0233 
0 1 0 0 NA NA 0.0000 

0 1 0 1 NA NA 0.0000 

0 1 1 0 NA NA 0.0000 
0 1 1 1 NA NA 0.0000 

1 0 0 0   0.2106 

1 0 0 1   0.0700 
1 0 1 0   0.0390 

1 0 1 1   0.0547 

1 1 0 0   0.0193 
1 1 0 1   0.0272 

1 1 1 0   0.0039 

1 1 1 1   0.0116 
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B. Two approximate 4 × 4 multipliers 
 

The two proposed 4×4 approximate multipliers are referred 

to as: (1) M1, that considers the carry from the previous stage 

(𝑐4) and uses an exact full-adder to add 𝑝𝑝 terms 𝑝𝑝3,2, 𝑝𝑝2,3, 

and 𝑐4; and (2) M2, that ignores 𝑐4 and uses an exact half adder 

to add 𝑝𝑝3,2 and 𝑝𝑝2,3. They differ in how the product bit 𝛾5 is 

produced. Hence, M1 and the larger multipliers that are 

constructed using it are more accurate than M2 and its scaled-

up variants. However, since 𝑐4 is generated from the four LSBs, 

it does not introduce a large error in an 8×8 multiplier. Note 

that ignoring 𝑐4 breaks the longest path (that is, the carry 

propagation) and it is a common technique to reduce the 

circuit’s latency [14], [19]. 

The sixth 𝑆𝑢𝑚 output of the full adder in design M1 and the 

half adder in design M2 are both denoted by 𝛾5 and the 

corresponding carry signal, 𝑐5, goes to the next stage to be 

added to 𝑝𝑝3,3 using an exact half adder. The 𝑆𝑢𝑚 and 𝐶𝑎𝑟𝑟𝑦 

outputs of this final half adder produce 𝛾6 and 𝛾7, respectively, 

see Fig. 2. Fig. 2 summarizes the two mentioned designs by 

showing the employed blocks for reducing the partial products. 

These blocks include: (1) half adders, (2) full adders, and (3) 

4:2 compressors. The structure of compressors for Stage 2, 3 

and 4 are specified in Tables 4, 5, and 6, respectively. 
 

 

Fig. 2. Partial product reduction in multipliers M1 and M2. 
 

C. Scaling up to larger multipliers 
 

In order to construct larger, e.g. 16×16 and 32×32, 

approximate multipliers, the two proposed 4×4 multipliers are 

combined in an array structure. For instance, to construct an 

8×8 multiplier using a 4× 4 design, the two 8-bit operands 𝐴 

and 𝐵 are partitioned into two 4-bit nibbles, namely 𝛼𝐻 and 𝛼𝐿 

for 𝐴 and 𝛽𝐻 and 𝛽𝐿 for 𝐵. Note that 𝛼𝐻 and 𝛽𝐻 are the 4 MSBs 

and 𝛼𝐿 and 𝛽𝐿 indicate the 4 LSBs of 𝐴 and 𝐵, respectively. 

Each two of these four nibbles (in total 4 possible 

combinations) are multiplied using 4×4 multipliers and the 

partial products are then shifted (based on the nibble’s 

importance) and added together (using a Wallace tree 

architecture) to produce the final multiplication result. Building 

2n×2n multipliers using n×n multipliers is specified in Fig. 3 

and is described by: 
 

𝛾 = 𝛼 × 𝛽 = (2𝑛 × 𝛼𝐻 + 𝛼𝐿) × (2𝑛 × 𝛽𝐻 + 𝛽𝐿)
= 22𝑛 × (𝛼𝐻 × 𝛽𝐻) + 2𝑛

× ((𝛼𝐻 × 𝛽𝐿) + (𝛼𝐿 × 𝛽𝐻)) + (𝛼𝐿 × 𝛽𝐿)

= 22𝑛 × 𝑃1 + 2𝑛 × (𝑃2 + 𝑃3) + 𝑃4. 

(7) 

 

Note that each partial product 𝑃𝑖  where 𝑖 ∈ {1, 2, 3, 4} in (7) 

is generated using an n×n multiplier and multiplications by 22𝑛 

and 2𝑛 are simply done by 2𝑛-bit and 𝑛-bit left shifts, 

respectively. Given that 𝑃4 is the least and 𝑃1 is the most 

significant partial products, whereas 𝑃2 and 𝑃3 are equivalently 

significant, multipliers with different accuracies can be 

designed with different configurations. We propose six 8×8 

approximate multipliers, three of which, i.e. M8-1, M8-3, and 

M8-5, use M1 and the other three use M2 as their main building 

block. Table 7 shows how each of these six 8×8 multipliers is 

constructed. 
 

αH αL

βH βL

P4 = αL  x  βL

P3 = αH  x  βL

P2 = αL  x  βH

P1 = αH  x  βH

 
Fig. 3. Building 2n×2n multipliers using n×n multipliers. 

 

 

Table 7. Using M1 and M2 to construct 8×8, 16×16, and 32×32 designs. 
 

Size Design P1 P2 P3 P4 

8×8 

M8-1 M1 M1 M1 M1 

M8-2 M2 M2 M2 M2 

M8-3 Exact M1 M1 M1 

M8-4 Exact M2 M2 M2 

M8-5 Exact Exact Exact M1 

M8-6 Exact Exact Exact M2 

16×16 

M16-1 M8-1 M8-1 M8-1 M8-1 

M16-2 M8-2 M8-2 M8-2 M8-2 

M16-3 M8-3 M8-3 M8-3 M8-3 

M16-4 M8-4 M8-4 M8-4 M8-4 

M16-5 M8-5 M8-5 M8-5 M8-5 

M16-6 M8-6 M8-6 M8-6 M8-6 

𝟑𝟐 × 𝟑𝟐 
M32-5 M16-5 M16-5 M16-5 M16-5 

M32-6 M16-6 M16-6 M16-6 M16-6 
 

According to Table 7, M8-1 and M8-2 use 4×4 approximate 

multipliers M1 and M2, respectively, to generate all four partial 

products from 𝑃1 to 𝑃4. M8-3 and M8-4 are more accurate 

designs in which the most significant partial product, 𝑃1, is 

generated using an exact 4×4 multiplier and M1 and M2 are 

respectively used to generate 𝑃2, 𝑃3, and 𝑃4. M8-5 and M8-6 are 

the most accurate designs in which only the least significant 

partial product, 𝑃4, uses approximate multipliers M1 and M2, 

respectively, and the other three partial products are generated 

using exact multipliers. 
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Note that 16×16 and 32×32 approximate multipliers can be 

constructed by considering (6). We scaled up the six 8×8 

designs in Table 7 to form six 16×16 and 32×32 multipliers. 

Using the six 8×8 multipliers in Table 7 to construct 16×16 

ones, as specified in Fig. 3 and (6), we obtain 64 possible 16×16 

multiplier designs. Since this is a large number, we only 

consider six designs using the simple scheme shown in Table 7. 

These designs are (1) the most accurate scaled-up variants using 

M1 and M2, referred to as M16-5 and M16-6, respectively; (2) 

the most hardware efficient scaled-up variants using M1 and 

M2, referred to as M16-1 and M16-2, respectively; and (3) two 

designs (one using M1, i.e.M16-3 and the other one using M2, 

i.e. M16-4) that have a good trade-off between accuracy and 

hardware. Only one type of 8×8 multipliers is used to construct 

the 16×16 designs. The most accurate variants of the 16×16 

multipliers, i.e. M16-5 and M16-6, are selected to construct 

32×32 multipliers M32-5 and M32-6, respectively, as 

described in Table 7. 

The same design approach can be applied to any n×n 

multiplier where n is a power of 2. Since we have six 8×8 

multipliers and four n×n multipliers are required to build a 

2n×2n multiplier, the number of possible designs is given by: 
 

(64)log2(
𝑛
8
)
= (64)log2(𝑛)−3 = 6

(
𝑛2

64)
. (8) 

 

According to (8), the number of possible designs 

exponentially increases with n2. These designs have a wide 

range of accuracy-hardware trade-offs and could be utilized in 

different applications, based on application requirements. 
 

D. Extension to signed Booth multipliers 
 

The proposed approximate compressor can also be utilized in 

signed Booth multipliers. In a Booth multiplier, the partial 

products are generated using a Booth encoder, and the major 

difference between the unsigned and signed Booth 

multiplication is in the generation of the partial products. 

Therefore, the partial products in Booth multipliers can be 

accumulated using approximate compressors, but not the sign 

extension bits [18]. Table 8 shows the radix-4 encoding 

algorithm in which the multiplier 𝑋 is divided into overlapping 

groups of three bits (𝑋𝑖−1, 𝑋𝑖, and 𝑋𝑖+1), starting from the LSB. 

𝑍 is the encoded value to be multiplied with the multiplicand 𝑌. 

Following [20], an 8×8 Booth multiplier was designed and 

implemented using the proposed approximate compressors for 

the 8 LSBs while the 8 MSBs use exact compressors, see Fig. 

4. Note that the sign extension of the partial product array is 

usually simplified by using the Baugh-Wooley algorithm as 

shown in Fig. 4 [20]. The hot one (HO) in Fig. 4 indicates the 

negative encoded values, i.e. HO = 1 for the -2Y and -1Y entries 

in Table 8 and HO = 0 for the +2Y and +1Y entries. ∆̅ denotes 

a negated sign bit. 
 

Table 8. Radix-4 Booth encoding. 
 

Xi+1 Xi Xi-1 Z Operation on Y 

0 0 0 0 0Y 

0 0 1 +1 +1Y 
0 1 0 +1 +1Y 

0 1 1 +2 +2Y 

1 0 0 -2 -2Y 
1 0 1 -1 -1Y 

1 1 0 -1 -1Y 

1 1 1 0 0Y 
 

 

Partial productsSign extension bit

15 14 13 12 0123611 910 458 7

Half Adder

Approximate Compressor, Table 4

Approximate Compressor, Table 5

OR gate

1

1

1

Hot one

 
Fig. 4. Using approximate compressors in Booth multipliers. 

 

Approximate encoders for constructing approximate radix-4 

Booth multipliers are proposed in [19]. To evaluate the 

proposed compressor, however, we use exact encoders and 

apply approximate compressors to the exact partial products. 
 

 

IV. PERFORMANCE EVALUATION 
 

A. Accuracy analysis 
 

An important metric for an approximate design is the output 

accuracy with respect to the exact result. We used the mean 

relative error distance (MRED) [21] as the metric to quantify 

the accuracy of the approximate designs. In order to compute 

the MRED, we first define the relative error distance (RED) by 
 

𝐸𝐷 = |𝑀′ − 𝑀|, 

𝑅𝐸𝐷 =
𝐸𝐷

𝑀
. 

(9) 

 

In (9), 𝑀’ denotes the generated approximate result while 𝑀 

denotes the exact result. The average value of all the REDs over 

the entire input space gives the MRED for each design. 

Table 9 shows the MRED, the error rate (ER), and the 

normalized mean error distance (NMED, the mean error 

distance normalized by the maximum output of the accurate 

design) for several 16×16 unsigned multipliers recently 

reported in the literature. Note that the ER is the percentage of 

the multiplications for which the approximate design produces 

a different result than the exact one. Better designs will tend to 

have a low ER in addition to a small MRED. 

Since an exhaustive simulation of all possible input 

combinations is very time-consuming, we simulated the 

accuracy of the approximate multipliers using Matlab with 10 

million uniformly distributed input combinations [8], [10]. 

Altogether, MRED, ER, and NMED were simulated for 8×8 

multipliers over their entire input space (65536 cases) and the 

results are also provided in Table 9. 

The results in Table 9 show that the most accurate of the 

proposed 16×16 designs, M16-5 and M16-6, are more accurate 

than their competitors except AM2-16, which has the same 

MRED as M16-5. However, with respect to the ER and NMED, 

M16-5 is clearly more accurate than AM2-16. It is worth 

mentioning that the parameter k for AM2 and TAM2 is the 

number of MSBs used for error reduction [9], [5] and for ETM 

k indicates the number of LSBs in the non-multiplication part 
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[14]. k is also the mode number for AWTM and ACM [13], [11] 

and the vertical broken length in BAM [12]. Note that according 

to Table 9, the same trend as in 16×16 multipliers can be seen 

in 8×8 multipliers. In fact, the more significant MRED metric 

have similar values in both 16×16 and 8×8 multipliers. 
 

Table 9. Accuracy comparison for 16×16 approximate multipliers. 
 

Multiplier 

Size 

Multiplier 

Type 
MRED ER (%) NMED 

16×16 

M16-1 0.0644 96.71 5.7×10-2 

M16-2 0.0839 96.67 7.2×10-2 

M16-3 0.0168 94.74 1.2×10-3 

M16-4 0.0224 94.65 1.9×10-3 

M16-5 0.0013 72.49 5. 1×10-6 

M16-6 0.0017 72.33 5.7×10-6 

UDM [15] 0.0333 80.99 1.4×10-2 

AM2-16 [9] 0.0013 97.96 5.3×10-6 

ETM-7 [14] 0.0156 99.99 2.2×10-3 

ACM4 [11] 0.0026 99.97 6.4×10-6 

MUL2 [18] 0.0020 84.67 7.1×10-6 

DSM-8 [22] 0.0026 99.88 1.0×10-5 

BAM-16 [12] 0.0021 99.97 3.5×10-5 

TAM2-16 [5] 0.0020 99.98 3.1×10-5 

AWTM-4 [13] 0.0033 99.94 8.3×10-6 

8×8 

M16-1 0.0649 73.17 1.9×10-2 

M16-2 0.0846 73.17 2.8×10-2 

M16-3 0.0170 66.36 2.1×10-3 

M16-4 0.0227 66.43 3.2×10-3 

M16-5 0.0013 36.22 6.8×10-5 

M16-6 0.0018 36.22 9.6×10-5 

UDM [15] 0.0328 47.09 1.4×10-2 

AM2-16 [9] 0.0014 95.23 5.3×10-4 

ETM-3 [14] 0.0846 93.10 1.3×10-2 

ACM4 [11] 0.0028 99.03 1.2×10-4 

MUL2 [18] 0.0022 79.23 3.1×10-4 

DSM-8 [22] 0.0031 99.47 5.6×10-3 

BAM-16 [12] 0.0176 99.23 1.8×10-2 

TAM2-16 [5] 0.0024 99.11 7.2×10-4 

AWTM-4 [13] 0.1532 99.92 5.4×10-3 

 

We also measured the MRED, ER, and NMED for the radix-

4 Booth multiplier. This proposed design is referred to as the 

compressor-based approximate Booth multiplier (CABM) and 

is compared to two state-of-the-art approximate Radix-4 Booth 

multipliers and the results are given in Table 10. 
 

Table 10. Accuracy comparison of 8×8 Radix-4 Booth multipliers. 
 

Multiplier Type MRED ER (%) NED 

AWBM1 [20] 0.051 98.26 0.30 

AWBM2 [20] 0.029 91.49 0.18 

CABM 0.014 84.72 0.18 
 

Table 10 shows that the proposed design has the same NED 

as the AWBM2 while it has a smaller error rate. NED refers to 

the normalized error distance, which is the average error 

distance normalized by the maximum possible error. Moreover, 

CABM is the most accurate design with respect to the 𝑀𝑅𝐸𝐷. 
 

B. Hardware analysis 
 

All the designs were implemented in VHDL and then 

synthesized by using the Synopsys Design Compiler (DC) for 

ST’s CMOS 28-𝑛𝑚 process. The supply voltage and the 

temperature in all simulations were set to 1𝑉 and 25∘𝐶, 

respectively. All designs were synthesized with the high effort 

on boundary optimization with a cell library that includes AND-

OR-Inverter (AOI) logic gates. Note that the same timing 

constraints were used when synthesizing all multiplier 

designs.  No attempt was made to find the optimal PDP since 

that search would impose different delays on the multipliers. 

Moreover, we used the default input-drive strength, output load, 

and switching activities for power analysis. It is also worth 

mentioning that we used Wallace-16 as the baseline exact 

multiplier for the comparison. 

Table 11 shows the synthesized results for the circuit area, 

critical path delay, power consumption and the power-delay 

product for several designs. Note that the logic to produce 

generate and propagate signals is included in the 

implementation of the proposed designs. 

As shown in Table 11, for the 16×16 unsigned designs, the 

fastest and the smallest design is ETM-7, which is 3.08% faster 

and 40.74% smaller and than our fastest and smallest design, 

M16-2; however, ETM-7 consumes 15.22% more power than 

M16-2. With respect to power consumption, the proposed 

designs M16-2 and M16-1 are the most power-efficient 

multipliers. Even our most accurate designs, M16-5 and M16-

6, are among the most power-efficient and energy-efficient ones 

with relatively small PDP values. The only design that 

consumes less energy than M16-5 and M16-6, is ETM-7; 

however, ETM-7 is almost 10x less accurate than M16-5 and 

M16-6. Table 11 also shows that the proposed M16-2 has the 

lowest PDP value among all the designs. 
 

Table 11. Hardware comparison of unsigned multipliers. 
 

Multiplier 

size 

Multiplier 

type 

Delay 

(𝒏𝑺) 

Power 

(µ𝑾) 

Area 

(µ𝒎𝟐) 

PDP 

(𝒇𝑱) 

16×16 

M16-1  1.65 302.4 627.5 498.9 

M16-2  1.62 268.4 588.6 434.8 

M16-3  1.66 338.8 702.3 562.4 

M16-4  1.64 315.2 673.5 516.9 

M16-5  1.82 408.7 852.8 743.8 

M16-6  1.82 402.2 843.5 732.0 

UDM [15] 2.01 707.2 829.2 1421.47 

AM2-16 [9] 1.73 767.1 1045.1 1327.08 

ACM4 [11] 2.00 492.7 723.5 985.40 

MUL2 [18] 2.11 508.7 1011.5 1073.35 

ETM-7 [14] 1.57 316.6 348.8 497.06 

DSM-8 [22] 2.11 400.6 560.2 845.26 

BAM-16 [12] 2.34 442.6 441.0 1348.87 

TAM2-16 [5] 1.71 458.8 648.9 788.66 

AWTM-4 [13] 1.74 554.2 714.5 964.30 

Wallace-16 2.18 837.3 1034 1825.31 

32×32 

M32-5  3.35 841.1 1723.4 2817.68 

M32-6  3.35 839.7 1718.9 2812.99 

AM2-32 [9] 3.19 1601.4 2088.4 5108.46 

ACM4 [11] 3.54 1013.8 1501.6 3588.85 

MUL2 [18] 3.61 1203.7 2004.9 4345.35 

AWTM4 [13] 3.16 1344.9 1431.1 4249.88 

 

The hardware measurements for 32×32 multipliers are also 

reported in Table 11. Note that the results for 16×16 designs 

showed that AM2, ACM4, MUL2 and AWTM4 are the four 

designs that have a comparable accuracy with M16-5 and M16-



2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2832204, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

6 (in terms of MRED and NMED). Hence, we only report the 

power consumption, circuit area, and critical path delay for 

these six multipliers. 

The same trend as in 16×16 designs can be seen in 32×32 

multipliers. Clearly, M32-5 and M32-6 are the most hardware-

efficient designs with at least 21.51% (for M32-5) and 21.61% 

(for M32-6) smaller PDP compared to ACM4, which has the 

smallest PDP among the other designs. 

A similar comparison was done for the radix-4 Booth 

multipliers. As the results in Table 12 show, AWBM2 is 

slightly more efficient than the proposed CABM in terms of 

delay, power, and area; according to Table 10, however, it is 

more than 2x less accurate than the CABM. We further 

considered both MRED and PDP to evaluate different designs 

as in [8]. Fig. 5(a) compares the products of MRED and PDP 

values and Fig. 5(b) shows the -log10(MRED) vs. PDP for the 

considered unsigned 16×16 multipliers. 

Since the MRED values are so close, they are plotted on a 

logarithmic scale for better clarity. Note that designs at the 

top-left corner are the best designs, which have small PDPs 

with high accuracies. As the results in Fig. 5(a) show, M16-5 

and M16-6 have the smallest PDP-MRED products. 

 

 
(a) PDP-MRED product. 

 

 
(b) MRED vs. PDP. 

Fig. 5. MRED and PDP of the approximate multipliers. 
 

The MRED-PDP products are also obtained for Radix-4 

Booth multipliers and the results are given in Table 13. It is 

shown that the proposed CABM has the lowest MRED-PDP 

product. 
 

Table 12. Hardware comparison of Radix-4 Booth multipliers. 
 

Multiplier 
Delay 

(𝒏𝑺) 

Power 

(µ𝑾) 

Area 

(µ𝒎𝟐) 

PDP 

(𝒇𝑱) 

AWBM1 [20] 1.80 99.375 393.12 178.875 

AWBM2 [20] 1.66 68.750 285.62 114.125 
CABM  1.63 69.678 284.32 113.575 

Exact Booth  2.01 125.42 436.87 252.094 
 

 

Table 13. MRED-PDP product for three Radix-4 Booth multipliers. 
 

Multiplier PDP (𝒇𝑱) MRED PDP × MRED 

AWBM1 [20] 178.875 0.051 9.122 

AWBM2 [20] 114.125 0.029 3.309 
CABM  127.699 0.014 1.788 

 

 

V.  APPLICATIONS 
 

To evaluate the effectiveness of the proposed designs, we 

consider image sharpening and JPEG applications. In addition, 

an interference nulling calculation for the receiver in a MIMO 

wireless communication system is also considered as a new 

benchmark to evaluate approximate multipliers. 

Note that 8×8 and 16×16 multipliers have been widely used 

in image processing applications in related articles [8]. Also, we 

scaled up the floating-point numbers in both JPEG and MIMO 

applications (numbers between 0 and 1) to 16-bit to have a good 

precision. 
 

A. Image Sharpening 
 

Image sharpening algorithms are widely used in image 

processing applications to enhance the sharpness of an image 

without producing halo artifacts [23], [24]. One image 

sharpening algorithm that uses approximate arithmetic is 

proposed in [25] and given by the following special filter: 
 

𝑆(𝑥, 𝑦) =
1

4368
∑ ∑ 𝐺(𝑖 + 3, 𝑗 + 3)2

𝑗=−2
2
𝑖=−2 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗), 

𝐺 =

(

 
 

16 64   112   64 16
64
112
64

256 416 256
416 656 416
256 416 256

64
112
64

16  64   112   64 16 )

 
 

. 
(10) 

 

In (10), I(x, y) denotes a pixel in the original image, S is the 

resulting processed image (using exact multipliers) and G 

defines the 5×5 impulse response of the spatial filter that 

operates on 5×5 blocks of pixels in the image [23]. 

The peak signal-to-noise ratio (PSNR) is an objective quality 

measure that is based on the mean squared error (MSE). (11) 

and (12) show how the MSE and PSNR are computed, 

respectively. Note that 𝑆̂ denotes the processed image using 

approximate multipliers.  
 

𝑀𝑆𝐸 =
1

𝑚𝑛
× ∑ ∑ [𝑆̂(𝑖, 𝑗) − 𝑆(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0 . (11) 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
). (12) 

 

Fig. 6 shows the original Lena test image and the seven 

sharpened images that used an exact multiplier and the six 

proposed approximate designs. 
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Fig. 6. Image sharpening. (a) Original image, and those sharpened using (b) 
Exact design, (c) M16-1, (d) M16-2, (e) M16-3, (f) M16-4, (g), M16-5, (h) 

M16-6. 
 

Structural similarity SSIM [29] is another metric that 

measures the similarity between two images and is widely used 

as an image quality metric. We used the predefined Matlab 

function ssim to measure the SSIM between the sharpened 

image using the exact multiplier and those using an 

approximate multiplier. The PSNR and SSIM values for several 

approximate multipliers are depicted in Fig. 7, which shows that 

M16-5 is more accurate than the other designs. Note that with 

respect to the SSIM, our proposed designs, M16-5 and M16-6, 

are the best designs with the highest SSIM values. In general, 

the rankings of the weaker designs are slightly different in some 

cases but the trend is roughly the same as the PSNR values. 

Comparing the designs that provide a PSNR of more than 30 

dB (often a PSNR of 30 dB can be considered as good enough) 

reveals that M16-4 and M16-3 have a better trade-off with 

almost 72% and 70% smaller PDPs compared to the exact 

design (Table 11), respectively. Even the most accurate design, 

M16-5, achieves 59.25% saving on PDP, whereas the second-

best design in terms of PSNR, AM2-16, has only 43.95% 

smaller PDP compared to the exact design (Table 11). 
 

B. JPEG Compression 
 

The JPEG compression standard is widely-used for saving 

storage space or transmission bandwidth for digital images [26]. 

This compression causes image quality degradation depending 

on the compression quality factor (QF). QF is a scaling factor 

ranging from 1 (high recovered image quality) to 100 (high 

compression ratio). 

A basic strategy in JPEG image compression is to reduce the 

data correlation by transforming it from the time domain into 

the frequency domain. The human visual system is less 

sensitive to higher frequencies, therefore images can be 

compressed by suppressing their high-frequency components. 

The spatial-to-frequency domain transformation is done by 

applying the discrete cosine transform (DCT) [27]. 

 

 
Fig. 7. PSNR and SSIM values for the image sharpening application. 

 

In standard JPEG compression, the input image is divided 

into 8×8 pixel blocks. Then the DCT of each 8×8 pixel block 

is computed and unimportant DCT elements (that encode high 

frequencies) are discarded by multiplying the DCT coefficient 

matrix with a quantization matrix. The resulting matrix is then 

dequantized and its inverse DCT is computed. Finally, all the 

blocks are reassembled to form an image of the same size as the 

original one [28].  

The matrix multiplication in the JPEG algorithm makes it a 

good application for evaluating approximate multipliers. 

Matlab code was written to compress the standard “camera 

man” image using the JPEG algorithm with the standard 

quantization matrix (Q) as given in 
 

𝑄 =

[
 
 
 
 
 
 
 
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99 ]

 
 
 
 
 
 
 

. (13) 

 

The original image and seven decompressed images, one 

using an exact multiplier and six using the proposed 

approximate multipliers, are shown in Fig. 8. The QF is set to 

70 in all seven images. The quality of the decompressed images 

obtained by using exact and approximate multipliers are 

compared by using the PSNR and SSIM measures.  

Table 14 reports the PSNR and SSIM values for several 

approximate multipliers for four increasing QFs. As the results 

in Table 14 show, M16-5 has the highest PSNR and SSIM 

values for the four considered QFs, followed by M16-6. 

Note that the reference image for computing the SSIM and 

PSNR values in image sharpening application is the 

reconstructed image using exact multipliers. However, it would 

be more reasonable to use the original image, i.e. the image 

before compression, as the reference image in the JPEG 

compression application. 

The results in Table 14 show that the exact multipliers in a 

JPEG compressor can be replaced by approximate multipliers 

for power and area saving purposes at the cost of negligible 

image quality degradation. 
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(d) (e) (f) 

 

  

 

 (g) (h)  

Fig. 8. JPEG compression for QF=70. (a) Original image, (b) Exact 
reconstruction, and those reconstructed using (c) M16-1, (d) M16-2, (e) M16-

3, (f) M16-4, (g), M16-5, (h) M16-6. 
 

Table 14. Decompressed image quality comparison. 
 

Metric Multiplier QF=60 QF=70 QF=80 QF=90 

PSNR 

Exact 27.81 27.34 27.01 26.91 

M16-1 23.54 17.21 22.22 18.26 

M16-2 22.93 13.27 19.11 13.96 

M16-3 25.21 25.72 23.17 18.65 

M16-4 24.51 23.80 19.63 14.11 

M16-5 26.43 26.65 25.72 25.54 

M16-6 26.41 26.63 25.62 25.28 

AM2-16 [9] 26.17 26.07 25.51 24.48 

ACM4 [11] 26.02 25.95 25.13 24.21 

MUL2 [18] 26.21 26.44 25.64 25.37 

AWTM4 [13] 25.88 25.67 24.82 24.03 

SSIM 

Exact 0.98 0.98 0.97 0.97 

M16-1 0.83 0.79 0.79 0.79 

M16-2 0.83 0.79 0.79 0.73 

M16-3 0.95 0.93 0.90 0.87 

M16-4 0.95 0.93 0.90 0.83 

M16-5 0.97 0.97 0.96 0.95 

M16-6 0.97 0.96 0.96 0.95 

AM2-16 [9] 0.96 0.93 0.92 0.90 

ACM4 [11] 0.95 0.92 0.92 0.89 

MUL2 [18] 0.96 0.96 0.95 0.95 

AWTM4 [13] 0.93 0.92 0.91 0.88 

 
 

C. Multiple-Input Multiple-Output (MIMO) Systems 
 

Today, MIMO technology is being employed in wireless 

communications instead of the conventional single-input 

single-output (SISO) technology due to its higher data 

bandwidth and power efficiency over multipath fading channels 

[30], [31].  

In digital communication, a transmitted '1/0' could be 

changed to a '0/1' due to various factors, such as noise and 

fading. The ratio of erroneous bits to the total number of 

transmitted bits over a channel is called the bit error rate (BER). 

Channel coding is a technique where functionally dependent 

bits are inserted so that most of the errors occur in data 

transmission over noisy communication channels can be 

detected and corrected. 

Given the error tolerance provided by error correcting 

codes, computation errors in an approximate design are mixed 

with the errors caused by noise so a system can recover some 

of the approximation errors using error detection and correction 

coding. We use four coding schemes to evaluate the 

performance produced by the proposed approximate 

multipliers. The evaluation is done by using BER vs. SNR 

(signal-to-noise ratio) curves in the standard way that is used to 

illustrate the error correcting performance of codes. Note that 

the BER is a function of the noise power, i.e. the higher the SNR 

the better (i.e. the lower) the BER.  
 

1. Methodology and experimental setup 
 

MIMO methods take advantage of multiple transceiver and 

receiver antennas to produce higher total data throughput, 

however they require sophisticated, and costly, signal 

processing in the receiver. We modeled an 8 × 8 MIMO system 

in which all multiplications in the receiver block use the 

proposed approximate multipliers. In addition, three different 

codes were considered: Hamming (7, 4), extended Golay (24, 

12) [32] and two variants of low density parity check (LDPC) 

codes: LDPC (1024, 512), and LDPC (2048, 1024) [33]. The 

input bit stream is coded using one of the above coding 

techniques and then it is transmitted over a noisy channel from 

8 antennas, as shown in Fig. 9. 
 

 X1
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.

.

.

.

.

.

 R1

 R2

 R8

Transmitter Receiver

Encoder Decoder

Input data Output data

 X7

 R7

 
Fig. 9. Block diagram of an 8×8 MIMO system.  

 

The system model for Fig. 9 is given by  
 

𝒚 = 𝑯𝒙 + 𝑵. (14) 

in which 𝒙 is the coded user bit stream, 𝑯 is the channel matrix 

that models the interference in the channel, 𝑵 models the 

additive white Gaussian channel noise, and 𝒚 is the received 

corrupted bit stream. In an 8 × 8 MIMO system, 𝒚, 𝒙 and 𝑵 are 

8 × 1 complex matrices while 𝑯 is a complex 8 × 8 matrix. 

In the receiver block, the minimum mean squared error 

(MMSE) interference nulling matrix 𝒘 is multiplied by the 

https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Data_transmission
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incoming signal vector 𝒚. The MMSE approach aims to find the 

matrix 𝑤 that minimizes the criterion, 𝐸{[𝒘𝒚 − 𝒙][𝒘𝒚 − 𝒙]𝑯}. 
𝒘 is specified in  

 

𝒘 = [𝑯∗𝑯 + 𝑵𝟎𝑰]
−1𝑯∗. (15) 

 

where 𝑵𝟎 is 2× the variance of the noise at the receiver 

antennas and (.)* is the conjugate transpose operator [34]. The 

final results at each receiver can be obtained by left-multiplying 

(using the approximate multipliers) the incoming signal vector 

𝑦 by the obtained 𝑤. 

For the Hamming (7, 4) code, we generated 1420 4-bit 

samples and encoded them into 7-bit codewords. The extended 

(24, 12) Golay code works similarly to the Hamming (7, 4) 

code. The only difference is that 416 12-bit samples are 

generated, and the receiver decodes them using the maximum 

likelihood decoding technique [35]. Given a received 

codeword 𝒙, the maximum likelihood decoding approach 

selects the codeword 𝒚 from the codeword set that maximizes 

the conditional probability of 𝑃(𝑥|𝑦 𝑠𝑒𝑛𝑡). For both LDPC 

codes, the min-sum algorithm is used for decoding [36] with a 

maximum of 64 iterations. Note that the termination criterion is 

set to 1000 errors. At each SNR level, the min-sum algorithm is 

performed for either 64 iterations or 1000 errors, whichever 

condition is satisfied first. Clearly, increasing the number of 

iterations or the maximum number of errors in a block reduces 

the BER; however, doing so significantly increases the runtime. 

In this article, we aim to determine the general trend and reveal 

the practicality of the proposed approximate designs in MIMO 

receiver applications. 
 

2. Results and discussion 
 

The BER vs. SNR characteristic was computed for seven 

different cases: one for the exact multiplier and six for the six 

variants of the proposed design. The results are shown in Figs. 

10 to 13 for the Hamming (7, 4), extended Golay (24, 12), 

LDPC (1024, 512), and LDPC (2048, 1024) codes, 

respectively. 

Since the six proposed 16×16 approximate multipliers 

cover a wide range of accuracy, such that M16-2 and M16-5 are 

the least and the most accurate designs (Table 9), we only 

consider these six designs in this sub-section. First we aim to 

show the practicality of approximate multipliers in MIMO 

receiver applications in general. Second, we hypothesize that 

the performance of the other designs in the described MIMO 

system (Fig. 9) would be similar to one of the six proposed 

multipliers with the closest accuracy. 

Figs. 10 to 13 show that for the lowest SNRs, and 

consequently, relatively high BERs, the exact and approximate 

designs are equally affected by noise. This implies that the 

computation errors caused by the use of approximate 

multipliers are insignificant compared to the errors caused by 

noise. Although the least accurate approximate multiplier 

designs should be quite acceptable at low SNR operation, there 

are few applications that will operate in that regime. When 

operating at higher, more typical SNR levels, Figs. 10 to 13 

show that the most accurate variants of the proposed design, 

namely M16-5 and M16-6, can match the BER vs. SNR 

performance of a design that uses exact multipliers down to 

lower BERs. 

As the SNR increases, the computation errors caused by the 

use of approximate multipliers will eventually dominate the 

random errors and produce a leveling off of the BER curve, a 

so-called error floor [37]. This is the operating region where the 

error correcting code cannot compensate for the multiplier’s 

inaccuracies. This error floor can be easily seen, especially in 

Figs. 10 and 11 where the weakest codes, i.e. the (7, 4) 

Hamming code and the extended (24, 12) Golay code, are 

employed. Note that depending on the accuracy of the 

approximate design, the error floor is encountered at different 

SNR levels. The more accurate multipliers, such as M16-5 and 

M16-6, produce BERs that follow those of the exact design for 

higher SNRs compared to the BERs of the less accurate 

multipliers. 
 

 
Fig. 10. BER vs. SNR for the (7, 4) Hamming code. 

 

 

 
Fig. 11. BER vs. SNR for the extended (24, 12) Golay code. 

 

According to the results in Figs. 10 and 11, the (7, 4) 

Hamming and the extended Golay codes are relatively weak, so 

they cannot compensate for the multipliers’ inaccuracies and 

the BER cannot get lower than 10−3 for the (7, 4) Hamming 

code and almost 8 × 10−5 for the extended Golay code, which 

are entirely unacceptable for modern applications. However, 

Figs. 12 and 13 show that the most accurate designs, M16-5 and 

M16-6, produce BER performance that matches that of the 

exact multiplier down to much lower BERs when stronger 

LDPC codes are used.  
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Fig. 12. BER vs. SNR for the (1024, 512) LDPC code. 

 

 
Fig. 13. BER vs. SNR for the (2048, 1024) LDPC code. 

 

Generally, when stronger codes, such as the (2048, 1024) 

LDPC code, are employed, the approximate multipliers can 

match the BER performance of the exact design for higher 

SNRs (and hence lower BERs) since a stronger code can correct 

both random channel errors and approximation errors. In Fig. 

13 the results of the strongest code that we considered, a (2048, 

1024) LDPC code, show that the error floor for M16-4 happens 

at a BER lower than 10−4. This means that for more accurate 

designs, such as M16-5 and M16-6, the error floor occurs at 

much lower BERs, probably somewhere closer to 10−7. 

Figs. 10 to 13 showed that approximate multipliers, 

especially M16-5 and M16-6, can safely replace exact 

multipliers in the MIMO system to reduce the power, delay, and 

area (M16-5 and M16-6 have 59.25% and 59.89% smaller PDP 

compared to the exact Wallace-tree multiplier, respectively) at 

a low cost in performance degradation. The advantages of the 

approximate multiplier implementation could be even more 

significant in larger MIMO systems, such as massive MIMO 

systems with 128 antennas, and also if many parallel multipliers 

are required to meet the required data throughput. 

We performed some simulations and realized that using 

approximate multipliers increases the number of required 

iterations to get to a desired BER at a given SNR; the results are 

given in Table 15. 

According to Table 15 the number of required iterations 

increases at higher SNR levels, where the errors caused by 

approximate multipliers dominate channel noise. Table 15 also 

shows that less accurate multipliers require more iterations to 

get to the desired BER at a given SNR level. 
 

Table 15. Required increase in the number of iterations to get to a desired 

BER at a given SNR level. 
 

Approximate 

Multiplier 

(BER, SNR) 

(10-5, 3 dB) (5×10-6, 4 dB) 

M16-5 3.5 % 9.3 % 

M16-3 6.1 % 15.6 % 
 

Analyzing the results at a reasonable operating point, e.g. an 

SNR of 4 dB for the (2048, 1024) LDPC code using the M16-5 

approximate multiplier, shows a 9.3% increase in the number 

of required iterations. More iterations means more execution 

time and, consequently, more energy consumption. In fact, the 

energy consumption increases by 9.3%. However, as previously 

mentioned, M16-5 consumes 59% less energy than the exact 

multiplier and saves 20% on the area. Hence, it would still be 

practical to use approximate multipliers in this application. 

Note that because LDPC simulation is intrinsically a 

probabilistic process because of the white Gaussian channel 

noise, we repeated the simulations 20 times and so the reported 

results in Table 15 are the average values. 

 

VI. CONCLUSIONS 
 

This article introduces an approximate 4:2 compressor that 

is employed to construct two 4×4 multipliers with different 

accuracies. The 4×4 designs are then scaled up to 16×16 and 

32×32 multipliers that provide a wide range of accuracy-

performance trade-offs. All six proposed multipliers are low-

power designs. The least accurate of the proposed designs, 

M16-2, has the smallest PDP among other approximate designs 

(Table 11) while the most accurate of the proposed designs, 

M16-5, has 44% smaller PDP compared to AM2-16 that has a 

similar accuracy in MRED. Moreover, M16-5 is more accurate 

than the other approximate designs in the literature (Table 9). 

The proposed compressor is also employed in a radix-4 Booth 

multiplier, resulting in a low-power signed multiplier (CABM) 

with a small MRED. The simulation results reveal the 

advantages of the CABM over other designs in terms of MRED 

and PDP-MRED product. 

The proposed multipliers are evaluated in image sharpening 

and JPEG applications. It is shown that M16-5 produces more 

accurate output than other approximate multipliers by achieving 

a higher quality (in terms of PSNR) while consuming less 

power. In addition, for the first time, approximate multipliers 

are evaluated in the interference nulling calculation of the 

MIMO baseband receiver. We measured how computation 

errors can be corrected along with errors caused by channel 

noise so that the transmitted data can be recovered without 

additional hardware cost using error detection and correction 

codes that are already present in the communication systems. It 

is shown that approximate multipliers can replace exact ones 

with low performance degradation.  In the presence of strong 

channel codes, such as the LDPC (2048, 1024), the proposed 

most accurate design produces results close to the exact design 

with almost no performance loss for BERs of up to 10-6. 
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