
Design and Implementation of a Highly Accurate
Stochastic Spiking Neural Network

Chengcheng Tang
Dept. of Electrical and Computer Engineering

University of Alberta
Edmonton, Canada
ctang8@ualberta.ca

Jie Han
Dept. of Electrical and Computer Engineering

University of Alberta
Edmonton, Canada
jhan8@ualberta.ca

Abstract—The emergence of spiking neural networks (SNNs)
provide a promising approach to the energy efficient design of
artificial neural networks (ANNs). The rate encoded computation
in SNNs utilizes the number of spikes in a time window to
encode the intensity of a signal, in a similar way to the
information encoding in stochastic computing. Inspired by this
similarity, this paper presents a hardware design of stochastic
SNNs that attains a high accuracy. A design framework is
elaborated for the input, hidden and output layers. This design
takes advantage of a priority encoder to convert the spikes
between layers of neurons into index-based signals and uses the
cumulative distribution function of the signals for spike train
generation. Thus, it mitigates the problem of a relatively low
information density and reduces the usage of hardware resources
in SNNs. This design is implemented in field programmable
gate arrays (FPGAs) and its performance is evaluated on the
MNIST image recognition dataset. Hardware costs are evaluated
for different sizes of hidden layers in the stochastic SNNs and
the recognition accuracy is obtained using different lengths of
stochastic sequences. The results show that this stochastic SNN
framework achieves a higher accuracy compared to other SNN
designs and a comparable accuracy as their ANN counterparts.
Hence, the proposed SNN design can be an effective alternative
to achieving high accuracy in hardware constrained applications.

Index Terms—Field programmable gate arrays (FPGAs), pri-
ority encoder, stochastic computing, spiking neural networks.

I. INTRODUCTION

Spiking neural networks (SNNs) are a type of artificial
neural networks (ANNs) that mimic the functions of the brain.
[1]. An SNN encodes information in spike trains (that is, a
series of logic “0” and “1” signals) that propagate through
inter-connecting synapses between layers of neurons. A spike
is generated only when the neuron’s membrane potential
exceeds a certain threshold. Other than that moment, the
synapses remain inactive and consume little energy.

There have been various attempts to implement SNNs
on different types of hardware platforms [2], including
application-specific integrated circuits (ASICs) and general
processors, that led to some successful SNN-based designs
such as the TrueNorth [3], Loihi [4], and SpiNNaker [5].
Because of the inherent massively-parallel structure, field
programmable gate arrays (FPGAs) have also been considered

This work was supported by the Natural Sciences and Engineering Research
Council (NSERC) of Canada (Project Number: RES0048688).

for SNN implementations as a configurable and relatively cost-
effective device. However, due to the high demand of hardware
resources, special schemes such as an event-driven architecture
have to be used to accommodate reasonably-sized SNNs into
the FPGAs. Such schemes inevitably compromise the perfor-
mance that an SNN can potentially achieve. For example, the
FPGA-based design of SNNs in [6] achieves an accuracy of
92% on the MNIST handwritten digit classification and an
accuracy of 97.06% at a rate of 161 frames per second is
obtained in [7], which lag behind the performance of ANNs
in accuracy.

When looking into ways to reduce the hardware cost of
neural networks, stochastic computing (SC) becomes appeal-
ing due to the simple logic used for complex computation.
Unlike the conventional binary encoding, SC operates on
randomly generated binary sequences, in which the probability
of “1” is used to encode a number [8]. In SC, some complex
arithmetic operations can be realized by a series of simple
bitwise operations. The behaviour of SNNs exhibits many
interesting analogues to SC [9]. Both methods convert complex
tasks into simple operations over a certain period of time. As
such, the outcome of one bit operation has no significance,
but only the statistical outcome within a time interval matters.
Because of the similar working mechanism of SC and rate-
encoded SNNs, designs for SC, such as those for stochastic
sequence generation, can also be applicable to SNNs and
thus provide opportunities for improving the performance of
stochastic SNNs [10]. In SNNs, the information carrier, spike
trains, can be interpreted as stochastic sequences in SC.

However, stochastic SNNs suffer from two main problems:
a relatively low information density and a high demand for
hardware resources. The former is due to the fact that a
long sequence length has to be used for encoding numbers
to achieve adequate accuracy. The latter is due to the large
number of neurons and the interconnections to be instantiated
on hardware. This is especially the case for fully-connected
neural networks (FCNNs), for which the number of connec-
tions grows quadratically with the number of neurons, i.e.,
O(N2), as there are N2 connections between two layers with
N neurons in each layer.

This work attempts to mitigate these two problems by
introducing a design using priority encoders (PEs). PEs are



widely used to convert the input bit with the highest priority
into its corresponding index in the binary format. Such a
mechanism reduces the connections between neurons and uses
the index to retrieve the right data in memories, which leads
to substantial hardware savings. Considering the fact that a PE
only transmits the highest priority bit to the output, a first-in,
first-out (FIFO) block and priority resolving circuit (PRI) [11]
are introduced to cope with the potential priority conflict.

The main contributions of this work include: (1) A design
framework is outlined for stochastic SNNs that utilizes one
random number generator (RNG) in the input layer and re-
duces the connections between layers from O(N) to O(logN)
by using a PE. (2) To resolve the problem that several spikes
can possibly arrive at the same clock cycle in a hidden layer, a
FIFO and PRI are introduced so that no spike will be discarded
in the computation. (3) This framework is implemented on
FPGAs; the hardware cost and accuracy are evaluated to show
its efficacy in various aspects.

II. PRELIMINARIES
Stochastic SNNs simulate the brain’s function. A typical

neuron in the brain takes information from the preceding
neurons through its dendrites, processes it and then exports
the processed information to the succeeding neurons through
its axon. The message carriers are actually a series of electrical
impulses that travel between different neurons. SNNs mimic
this mechanism by operating on these impulses, called spike
trains. A neuron in SNNs uses several inputs to receive spike
trains from other neurons. Each of these connections is asso-
ciated with a weight. The neuron updates its internal state and
generates its own spike trains based on a predefined function
of these input spikes and weights. During this process, the
membrane voltage in a neuron will be reset to an initial value
(usually zero) once the integration exceeds a predetermined
threshold. In the meantime, a spike is generated to trigger the
integration process in succeeding neurons.

A. Neuron Models in SNNs

There are various types of neurons in SNNs, such as the
Izhikevich’s model [12], the FitzHugh-Nagumo model [13],
the leaky integrate & fire (LIF) model. Most of them are
developed by understanding the biochemical activities of the
Na+ and K+ ions in the brain, which are generally expressed
as differential equations, thus making them computationally
intensive [14]. For hardware design, a simple model is benefi-
cial if it preserves the same functionality. Thus, the commonly
used integrate & fire (IF) model is considered in this work.
It can be shown that this model in SNNs is statistically
equivalent to the ReLU model in conventional ANNs [15].
It was also shown in [16] that through proper weight and
threshold balancing, a ReLU based ANN can be converted
into an SNN with nearly no accuracy loss.

The IF model for a given neuron i in SNNs can be expressed
as [2]

dxi(t)

dt
=

∑
j

Wi,jSj(t), (1)

where xi(t) is the membrane voltage of this neuron, Wi,j is
the weight of the jth input connection and Sj(t) is a function
of t for the spike train on this connection. When there is a
spike at any given time t = tk, then Sj(tk) = 1; otherwise
Sj(tk) = 0. The output spike train of this neuron is created
based on the value of xi(t). When xi(t) reaches a threshold
Xth, a spike is generated and xi(t) is reset to Vrst; otherwise,
it continues evolving based on (1) and no spike is generated.

Obviously, a spike itself has no significant meaning, but the
interval between spikes conveys useful information. For the
rate coding mechanism in SNNs, a more densely distributed
spike train means that the membrane voltage of a neuron
reaches the threshold value more often and thus stands for
a “strong” signal intensity. Relatively, a sparsely distributed
spike train indicates a “weak” signal intensity. Therefore, the
number of spikes transmitted during a given period of time
(denoted as X) quantitatively indicates how strong a signal
is. In statistics, X is proportional to the expectation of the
total variation of signal x for a given period of time. This
relationship is given by

E(∆xi) = E

∫ ∑
j

Wi,jSj(t)

 =
∑
j

Wi,j ·Xj , (2)

where ∆xi is the total variation of signal xi for a given period
of time. Considering that Xi is always non-negative and Xth

is a constant, it can be found from (2) that

Xi = E(∆xi)/Xth ∝ max

0,
∑
j

Wi,jXj

 , (3)

which is actually the ReLU function [16].
This analysis shows that the computation in SNNs realizes

the same function as a ReLU based ANN. Hence, the weight
parameters of SNNs can be inherited from a well trained
ReLU based ANN. In the SNNs, a weighted sum is actually
decomposed into an integration over a certain period of time,
which is much easier to implement because multiplication is
no longer needed.

Usually in an SNN application, only few neurons have
relatively high activation values, whereas most of them are
slightly invoked or even remain inactive. In other words, the
average information density of these spike trains is very low.
To mitigate this issue, we propose to employ priority encoders
as the inter-connecting units between neurons in stochastic
SNNs, as discussed in Section III.

B. Priority Encoder
A priority encoder is a module that converts inputs into

binary signals that indicate the position or index of the input
bit with the highest priority that is “1”. Fig. 1 illustrates a
4 to 2 priority encoder, by which the four input signals are
encoded into 2-bit binary signals. Note that D0 has no impact
on the output and it is reserved for the no-spike scenario in the
inputs. A zero is also inserted at the beginning of the weights
vector for each neuron so that when no spike is present, the
PE outputs all “0“s and the neural potential does not change.



Fig. 1. A 4 to 2 priority encoder: (a) a truth table, (b) a logic structure, and
(c) a symbol.

The output of a priority encoder is a number in the binary
format indicating the position of the highest bit in input that
is set to “1”. A PE with a large width can be constructed by
using smaller units with a scaling method [11]. For example,
a 64 to 6 PE can be constructed by four 16 to 4 PEs and one
4 to 2 PE. When connecting the spike trains to the inputs of
a PE, the output signals can be used to find the index of the
neuron from which a spike arrives. Meanwhile, it helps reduce
the number of connections between the neurons in different
layers from O(N) to O(logN).

III. A DESIGN FRAMEWORK FOR STOCHASTIC SNNS

Fully-connected neural networks are widely used in many
applications because of their versatility. However, it is often
computationally expensive due to the huge number of con-
nections between layers of neurons. Thus, it will serve as a
reference structure in this paper for design validation.

A. Design of the Input Layer

The input layer takes digital information obtained from the
outside world (for example, the intensities of image pixels)
and converts it into spike trains. As shown in Fig. 2(a),
each spike train is generated by comparing the data from
one RNG and one input channel, in a similar way to how a
stochastic sequence is generated in SC. The resulting sequence
follows a Poisson distribution as the simplest stochastic model
of neuronal firing [17]. However, this model is not optimal
for hardware implementation, because each input has to be
equipped with one RNG. In addition, when the input datasets
are sparse, the most part of the spike trains will remain zero.
Therefore, no spike is generated for the most of time and thus
no state transition is triggered.

One way to address this problem is to use the incremental
accumulation of the input signal to map uniformly distributed
random numbers to a cumulative distributed function (CDF)
[18]. As shown in Fig. 2(b), the input data x on an axis
with the interval lengths corresponding to the data values are
accumulated into F . For example, if x1 = 2, x2 = 3 and
x3 = 5, then F1 = 2, F2 = 5 and F3 = 10. Then a random
number would always fall into one of these intervals, namely
0 < F ≤ 2, 2 < F ≤ 5, 5 < F ≤ 10. The probability that
the random number falls into an interval is proportional to the
value in input data with the same index.

Fig. 2. The input layer of the stochastic SNNs. (a) Conventional design, (b)
Illustration of the CDF (Fi =

∑i
j=1 xj ), (c) The proposed design.

Therefore, the input layer of the proposed SNN is imple-
mented by comparing the CDF of input signals with a common
RNG, as shown in Fig. 2(c). The resulting spike trains are
forwarded to a PE and then the output is sent to the subsequent
layer of neurons. In this way, the output binary signal Q from
the PE represents the index of the section in the CDF a random
number falls into. Since the random number is uniformly
distributed between one and its maximum value, Q follows
the same distribution with the input intensity, i.e.,

P (Q = index(xi)) =
xi∑
k xk

. (4)

This structure has three unique features. First, the RNG is
shared by every input channel. Inevitably, the required bit-
width of the shared RNG is larger than that of the single RNGs
in traditional spike train generation. For example, if there are
q-channels of inputs and each of them is p-bit wide, then we
need a p+ log(q) bit wide signal to avoid potential overflow.
Nevertheless, hardware savings can still be achieved compared
with the use of multiple smaller RNGs because the size only
increases logarithmically with the number of input channels.
Second, by properly assigning the range of the random number
(i.e., by setting it to be less than Fmax), it will always be
located within one section of the CDF, which means that spikes
are generated in every clock cycle of the digital system. As
shown in Fig. 3(c), the sequence generated by the comparator
for F4 (leading to the input of the PE with the least priority)
is a sequence of all “1”s. Hence, at least one spike is passed
through the PE in every clock cycle. Lastly, by utilizing a PE,
the number of connections to the neurons in the subsequent



layer is reduced from O(N) to O(logN) by converting the
number of connections into the binary representation, resulting
in significant hardware savings. Since the outputs of the PE can
be used as address signals by the succeeding neurons to find
the corresponding weight during computation, it is convenient
to utilize distributed memory on FPGA to store weights along
with the neuron.

B. Design of the Hidden Layers

A hidden layer receives spike trains from the previous layer
and propagates these spikes to the next layer according to
some predefined propagation rules. Unlike the input layer, only
one spike needs to be processed in every clock cycle. Once
the spike train departs the input layer, the spikes on different
channels might arrive at the same time. Therefore, a structure
is designed for the hidden layers of stochastic SNNs to ensure
that no spike is discarded, as shown in Fig. 3.

Fig. 3. A hidden layer of the stochastic SNNs.

The spike trains from the previous layer are first concate-
nated into a data bus and then sent to a FIFO. Whenever a
spike appears on the data bus, the FIFO intakes the data on
the bus and stores it in its queue. The output of the FIFO is
connected to a PRI followed by a PE. Then the encoded results
from the PE are sent back to the FIFO and PRI to release the
next available data or clear the bit that has been encoded.
Note that although two or more spikes can arrive at the same
time, the spike trains are still sparse. The FIFO only accepts
a signal that does not contain all zeros; when all the spikes
in the data bus have been processed, a new read enable (re)
is generated to release the next data. The PRI circuit is used

to avoid repeated encoding of the same bit by collaborating
with the PE. When the PE finishes encoding the bit with the
highest priority, the PRI then clears this bit so that the PE can
move on to encode the second highest priority bit. By using
this process, all spikes in the train are completely processed
and propagated to the neurons in the next layer.

C. Design of the Output Layer
The function of the output layer is to produce computation

results to an external system. Since stochastic SNNs operate
on spike trains, which have no standard form of data rep-
resentation, that is, multiple combinations of sequences can
be used to encode the data. As a result, the output layer
needs to convert the data back into the binary format. Usually,
when the stochastic SNNs are used for some classification or
identification applications, it is the comparison result of the
output values that has a practical meaning and the neuron
with the largest membrane voltage value needs to be identified.
Hence, the output layer utilizes the structure shown in Fig. 5
for the data conversion.

Fig. 4. The Output layer of the stochastic SNNs.

Unlike the neurons in previous layers, the neurons in the
output layer integrate the incoming spike trains but no longer
need to propagate them. The membrane voltage values of these
neurons are sent to a comparison matrix, by which the neuron
i is compared to all the other neurons in column i. The N −1
comparison results are connected to an AND gate to indicate
if neuron i has the largest membrane voltage value. The results
of N AND gates are then connected to a PE to convert them
into the binary format, which is the identification result and
can directly be used for verification.



IV. HARDWARE IMPLEMENTATION AND PERFORMANCE
EVALUATION

Hardware implementation of the stochastic SNNs is con-
ducted on an FPGA to verify the efficacy of this design.
The widely used MNIST dataset is selected for evaluation.
The training of the dataset is performed using a ReLU based
ANN in Matlab. The trained weight values are then exported
to the distributed block RAM on the FPGA. However, the
ANNs in Matlab use floating-point representation while the
accumulators in stochastic SNNs work on a fixed-point format.
To reduce accuracy loss, the weight values after training are
scaled up by a fixed number and only the integer parts are
stored in memory. To accurately simulate the computation
in ANNs, the threshold Xth in (3) is selected to be 1.0 for
the neuron membrane voltage reset in stochastic SNNs. The
number of spikes generated by a neuron during an inference
period is the same as the integer part of the computation result
by ANNs.

Fig. 5. Simulation process for the recognition of an image of digit 7. (a) The
neuron/pixel intensity as shown in the grey stripes. (b) The membrane voltage
value for a neuron in a hidden layer. (c) The corresponding spike train for
the same neuron.

Three fully-connected stochastic SNNs with different sizes
of hidden layers, i.e. 784-63-63-10, 784-127-127-10 and 784-
255-255-10, are implemented on FPGAs. Fig. 5 illustrates
the simulation results of the 784-63-63-10 network for the
recognition of an image for the number 7. The grey value
represents the intensity of a neuron/pixel (with a brighter
pixel/neuron standing for a stronger signal intensity). Fig. 5
(b) and (c) showcase the membrane voltage variations and how
the corresponding spike train is generated for a neuron in the
hidden layer.

It can be seen that the number in this image has been
correctly identified, i.e., the 7th neuron in the output layer
has the largest brightness.

To comprehensively assess the performance of hardware
cost and recognition accuracy, these three SNNs are evaluated
on the 10,000 images in the test set of the MNIST. The FPGA
for hardware implementation and experimentation is the Xilinx
Virtex7 xc7vx485t. The system works at a clock frequency of
100 MHz and 10,000 random numbers are used for each image
recognition. In other words, each image recognition takes only
100 µs and a total of one second is needed for completing the
whole MNIST test set. Hardware utilization and recognition
results are summarized in Table I, in which the target accuracy
is obtained from the ANNs and the percentage under each
hardware cost is the ratio of used and available resources in
the FPGA.

TABLE I
HARDWARE UTILIZATION AND RECOGNITION ACCURACY OF THREE

STOCHASTIC SNNS

Structure
Size LUT FF BRAMs Recognition

Accuracy
Target

Accuracy

784-63-
63-10

16555
(5.45%)

20347
(3.36%)

101.5
(9.85%)

97.37% 97.39%

784-127-
127-10

24089
(7.93%)

24982
(4.11%)

199.5
(19.37%)

97.88% 97.89%

784-255-
255-10

39015
(12.85%)

34217
(5.64%)

395.5
(38.4%)

98.24% 98.23%

LUT: look-up-table; FF: flip-flop;
BRAMs: block-random-access-memories (18k bits each)

It can be seen that in all these three cases the recognition
accuracy of stochastic SNNs is very close to that obtained
from the ANNs. It can even be slightly higher than the
reference accuracy, which indicates that the stochastic SNNs
almost reproduce the computation results in ANNs, as shown
analytically in Section II. On the other hand, it is not surprising
to see that the hardware cost of stochastic SNNs increases
with the number of neurons in the hidden layers, especially in
the number of block-random-access-memories (BRAMs), as
shown in Table I. The reason is that BRAMs grow quadrat-
ically in O(N2) while the number of connections between
layers increases in O(N logN) with the number of neurons,
N , in this design.

To better assess the performance in different aspects, the
comparison between this design and some others is illustrated
in Table II. The results show that this design achieves a higher
accuracy with a fast recognition rate in terms of processing
time per each processed image. Its hardware cost, however, is
not advantageous over the other designs. This is due to the
massively parallel architecture and the use of 32-bit long data
format for the weight values in the implementation. Thus, there
is room for improvement in future work.

The size of the hidden layer is not the only factor that
determines the recognition accuracy. The duration of time
for each image identification and the length of stochastic
sequences also have a significant impact on the accuracy. To
evaluate their effects, experiments using different stochastic



TABLE II
HARDWARE UTILIZATION AND RECOGNITION ACCURACY COMPARED TO

THREE OTHER SNN DESIGNS

Han et al.,
[7]

Gupta et al.,
[19]

Liang et al.,
[20] This Design

Platform Xilinx
ZC706

Xilinx
XC6VLX240T

Xilinx Virtex7
VC7VX485T

Xilinx Virtex7
XC7VX485T

Structure 784×1024
×1024×10

784 × 16 784 × 512
× 10

784×255
×255×10

Weight
Precision

16-bit
fixed-point

24-bit
fixed-point

8-bit
fixed-point

32-bit
fixed-point

LUT 5381 56230 16324 39015
FF 7309 23238 11612 34217

BRAMs 40.5+
external DDR

16 - 395.5

Accuracy 97.06% - 96% 98.24%
Time/Image 6210 µs 500 µs 2.8 µs 100 µs

sequence lengths for each image identification on the 784-
255-255-10 network are performed. The results are shown in
Table III.

Note that the duration of time along with the clock fre-
quency of FPGAs determines the length of stochastic se-
quences. For example, a duration of 10 µs means 1000 clock
cycles for a frequency of 100 MHz, which is also the sequence
length used in the experiment. A longer duration of the
identification time leads to a higher accuracy but the difference
is not very significant. In this example, a ten times longer
sequence length increases the accuracy by only 1.58% and
it tends to saturate at the accuracy obtained by the ANN
counterpart. In cases with a lesser accuracy requirement, a
shorter identification time for each image can be considered
for faster processing.

TABLE III
RECOGNITION ACCURACY USING DIFFERENT DURATIONS OF TIME FOR

IMAGE IDENTIFICATION

Duration of time
(Sequence length)

10 µs
(1k
bits)

20 µs
(2k
bits)

50 µs
(5k
bits)

100 µs
(10k
bits)

784-255-255-10 96.66% 97.57% 98.01% 98.24%

V. CONCLUSION

This paper presents a hardware design framework for
SNNs inspired by the notion of stochastic computing. This
framework utilizes the cumulative distribution function of
the input signal for spike train generation and a priority
encoder to convert these spike trains into index-based signals.
Such configuration reduces the connections between layers of
neurons from O(N2) to O(N logN) for efficient hardware
design. This stochastic SNN is implemented on FPGAs for
classifying the MNIST dataset. The experimental results show
that it achieves nearly the same accuracy as its ANN coun-
terparts at a high processing rate. Hardware utilization of the

stochastic SNNs with different sizes of hidden layers and the
impact of various stochastic sequence lengths on accuracy
are investigated, which raises challenges and opportunities for
further improving the design framework in future work.

REFERENCES

[1] S. R. Kulkarni, A. V. Babu and B. Rajendran, “Spiking neural networks -
algorithms, hardware implementations and applications,” in Proc. 2017
IEEE 60th Int. Midwest Symp. on Circuits Syst. (MWSCAS), Boston,
MA, USA, 2017, pp. 426-431.

[2] M. Bouvier et al, “Spiking neural networks hardware implementations
and challenges: a survey,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 15, no. 2, pp. 1-35, June 2019.

[3] P. A. Merolla et al, “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, vol. 345, no.
6197, pp. 668–673, Aug. 2014.

[4] M. Davies et al, “Loihi: a neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb. 2018.

[5] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and
S. B. Furber, “SpiNNaker: mapping neural networks onto a massively-
parallel chip multiprocessor,” in Proc. 2008 IEEE Int. Joint Conf. on
Neural Networks, Hong Kong, China, 2008, pp. 2849–2856.

[6] D. Neil, and S. Liu, “Minitaur, an event-driven FPGA-based spiking
network accelerator,” IEEE Trans. Very Large Scale Integr. Syst., vol.
22, no. 12, pp. 2621–2628, Dec. 2014.

[7] J. Han, Z. Li, W. Zheng, and Y. Zhang, “Hardware implementation of
spiking neural networks on FPGA,” Tsinghua Sci. Technol., vol. 25, no.
4, pp. 479–486, Aug. 2020.

[8] Y. Liu, S. Liu, Y. Wang, F. Lombardi and J. Han, ”A survey of stochastic
computing neural networks for machine learning applications,” in IEEE
Trans. on Neural Networks and Learning Systems, vol. 32, no. 7, pp.
2809-2824, July 2021.

[9] S. C. Smithson, K. Boga, A. Ardakani, B. H. Meyer, and W. J.
Gross, “Stochastic computing can improve upon digital spiking neural
networks,” in Proc. IEEE Workshop Signal Process. Syst. (SiPS), Dallas,
TX, USA, Oct. 2016, pp. 1–6.

[10] S. Liu, W. J. Gross and J. Han, “Introduction to dynamic stochastic
computing,” IEEE Circuits Syst. Mag., vol. 20, no. 3, pp. 19-33, 2020.

[11] X. Nguyen, H. Nguyen and C. Pham, “A scalable high-performance
priority encoder using 1D-array to 2D-array conversion,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 64, no. 9, pp. 1102–1106, Sep. 2017.

[12] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans.
Neural Netw., vol. 14, no. 6, pp. 1569–1572, Nov. 2003.

[13] R. FitzHugh, “Impulses and physiological states in models of nerve
membrane,” Biophysics Journal, vol. 1, pp. 445-466, 1961.

[14] R. Borwankar, A. Desai, M. R. Haider, R. Ludwig and Y. Massoud, “An
analog implementation of FitzHugh-Nagumo neuron model for spiking
neural networks,” in Proc. 2018 16th IEEE Int. New Circuits and Syst.
Conf. (NEWCAS), Montreal, QC, Canada, 2018, pp. 134-138.

[15] S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran and K. Roy,
“A comprehensive analysis on adversarial robustness of spiking neural
networks,” in Proc. 2019 Int. Joint Conf. on Neural Networks (IJCNN),
Budapest, Hungary, 2019, pp. 1-8.

[16] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing,” in Proc. 2015 Int. Joint Conf. on Neural Networks
(IJCNN), Killarney, Ireland, 2015, pp. 1-8.

[17] M. Fatahi, M. Shahsavari, M. Ahmadi, A. Ahmadi, and P. Devienne,
“evt MNIST: A spike based version of traditional MNIST an event-
based MNIST,” in Proc. Int. Conf. on New Research Achievements in
Electrical and Computer Engineering, Teheran, Iran, 2016.

[18] M. Alawad, H. Yoon and G. Tourassi, “Energy efficient stochastic-based
deep spiking neural networks for sparse datasets,” in Proc. 2017 IEEE
Int. Conf. on Big Data (Big Data), Boston, USA, 2017, pp. 311-318.

[19] S. Gupta, A. Vyas and G. Trivedi, “FPGA implementation of simplified
spiking neural network,” in Proc. 2020 27th IEEE Int. Conf. on Electron.,
Circuits and Sys. (ICECS), Glasgow, UK, 2020, pp. 1-4.

[20] M. Liang, J. Zhang and H. Chen, “A 1.13µJ/classification spiking
neural network accelerator with a single-spike neuron model and sparse
weights,” in Proc. 2021 IEEE Int. Symp. on Circuits and Sys. (ISCAS),
Daegu, South Korea, 2021, pp. 1-5.


