
1

An Energy-Efficient Approximate Divider Based on
Logarithmic Conversion and Piecewise Constant

Approximation
Yong Wu, Honglan Jiang, Member, IEEE, Zining Ma, Pengfei Gou, Yong Lu, Jie Han, Senior Member, IEEE,

Shouyi Yin, Member, IEEE, Shaojun Wei, Fellow, IEEE, and Leibo Liu, Senior Member, IEEE

Abstract—Approximate computing (AC) has been considered
as a promising paradigm to improve the energy-efficiency of
computing hardware for error-tolerant applications, with neg-
ligible quality degradation to the output. Dividers frequently
limit the performance of a computing system; however, they
have not received as much attention as multipliers and adders
in AC. In this paper, an energy-efficient and high-performance
approximate divider is proposed based on logarithmic conversion
and piecewise constant approximation. In this design, the range
for the conversion between binary and logarithmic numbers
is first expanded from [0,1] to [−0.5,1]. A heuristic search
algorithm is then devised to find the most accurate constant
set to approximate the reciprocal of the divisor, by minimizing
a statistical error. The hardware implementation is presented
for both floating-point (FP) and integer dividers. With a high
configurability, the proposed divider results in a mean relative
error distance (MRED) from 2.78% to 0.046%, indicating a high
accuracy among state-of-the-art approximate dividers. Compared
to the half-precision FP divider, the proposed divider with a
MRED of 0.74% can achieve nearly 90× improvement in PDP.
Moreover, compared to state-of-the-art approximate dividers, the
proposed design is in the Pareto Frontier in terms of power
delay product (PDP) and MRED. The three image processing
application results demonstrate that the proposed divider can
result in the highest peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) even with truncation.

Index Terms—Approximate computing, divider, logarithmic
conversion, heuristic constant-set searching.

I. INTRODUCTION

With the unprecedented development of big data and arti-
ficial intelligence (AI) technologies, Giga or even Tera bits

This work is supported by the National Natural Science Foundation of
China under Grant 62104127, the National Natural Science Foundation of
China under Grant 61834002, the National Key R&D Program of China under
Grant 2018YFB2202101 and the National Science and Technology Major
Project of the Ministry of Science and Technology of China under Grant
2018ZX01027101-002). (Corresponding authors: Honglan Jiang; Leibo Liu.)

Y. Wu, Z. Ma, S. Yin, S. Wei and L. Liu are with the School of Integrated
Circuits, Tsinghua University, Beijing, 100084, China.
E-mail: {wuyong20, maz20}@mails.tsinghua.edu.cn, {yinsy, wsj,
liulb}@tsinghua.edu.cn

H. Jiang is with the Department of Micro-Nano Electronic, Shanghai Jiao
Tong University, Shanghai, 200240, China.
E-mail: honglan@sjtu.edu.cn

P. Gou and Y. Lu are with the HeXin Technology Co., Ltd., Beijing-
Guangzhou Collaborative Innovation Center, Guangzhou, Guangdong, China.
E-mail: goupengfei@shingroup.cn, luyong@shingroup.cn

J. Han is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 1H9, Canada.
E-mail: jhan8@ualberta.ca

of data needs to be processed within a second. However,
the improvement in hardware-efficiency due to the scaling of
CMOS transistors is becoming very difficult and costly as
the feature dimension reaches to nanometer level [1]. Other
traditional approaches to improving performance including
parallelization and pipelining take extra area and frequently
consume more power. Power dissipation has become the major
obstacle to improve computing performance across most tech-
nology platforms. Thus, exploring new computing paradigms
with high performance and energy efficiency is imperative.

Many contemporary computing-intensive applications, such
as face detection [2] and speech recognition [3], can inher-
ently tolerant some errors without introducing severe quality
degradation to the output [4], [5]. Due to the limitation of
sampling, transmission and quantization techniques, the inputs
to be processed in the digital system are not exactly the same
as the natural signals. Some applications are sensitive only
to statistical results; thus, the positive and negative errors
can eliminate each other in accumulation operations [6], [7].
In addition, human perception can hardly distinguish minor
differences between the accurate and approximate results with
controlled errors [8], [9]. Therefore, pursuing completely ac-
curate results at the cost of sacrificing the hardware capability
is not always necessary.

Consequently, approximate computing (AC) has emerged to
obtain high-performance and energy-efficient hardware with a
slight quality degradation in the final results [2], [10]–[12].
A large number of work has been focused on the approxima-
tion of arithmetic circuits, including adders, multipliers and
dividers [2]. Moreover, [13] has demonstrated approximate
computing for keyword-spotting as a pioneer silicon prototype.

Approximate adders and multipliers have been extensively
studied during the last decade [14]–[17]. In contrast, approx-
imate dividers have not received much attention until recent
years. Some effort has been made on the approximation of
the exact integer dividers via circuit simplification [18]–[20].
Chen et al., designed three types of approximate subtraction
modules at the transistor level to substitute the exact ones
in unsigned non-restoring and restoring dividers [18], [19].
To pursue a higher processing speed, an approximate adder
is designed for a high-radix array divider with more energy
dissipation than the radix-2 design [21]. In [22], several most
significant bits (MSB) are selected and processed by using
a reduced-width divider. A 12/6 exact divider is required to
limit the mean relative error distance (MRED) within 1%

2

for the 16/8 division, which gains little when considering
peripheral modules. To avoid the overflow due to the above
simple truncation, two pruning schemes have been introduced
in the adaptively approximate divider (AAXD) [23], resulting
in a higher accuracy but with more hardware resources.

Also, some new techniques at the algorithmic or architec-
tural level are explored to obtain energy-efficient and high-
performance approximate dividers. For instance, a quality-
configurable approximate divider approximates the reciprocal
of the divisor using Taylor series expansion [24]. More than
three iterations are required to restrict the MRED within 1%,
which introduces a large latency and energy consumption. A
truncation-based approximate divider (TrunApp) is designed
by directly approximating the reciprocal of the divisor as sev-
eral binary constants [25]. Thus, the division is implemented
by using multiplication. To further simplify the circuit, trunca-
tion is applied to the inputs. Due to the direct approximation
and the absence of constant selection, the TrunApp is less
accurate. Different from the above introduced integer designs,
in [26], an energy-efficient FP approximate divider (FPAD) is
proposed by using a multistage approximation methodology. It
separates the dividend and divisor into several intervals. Each
interval is approximated by using a linear function. The total
number of intervals increases exponentially with the increase
of approximation level. Deep level is needed to obtain a
reasonable error, which leads to a large circuit area and power
consumption.

A promising type of dividers approximated at algorithmic
level are based on the logarithmic number system (LNS). In
these designs, an approximate logarithmic algorithm proposed
by Mitchell [27] is used to transfer division into subtrac-
tion, which can achieve significant hardware improvements
especially for FP numbers. However, the basic logarithmic
approximate divider (ALD) produces relatively large errors
due to a simple conversion between the binary and logarithmic
numbers, e.g., over 4% in MRED. In addition, the approximate
quotient always overestimates the exact result, resulting in
positive errors for all inputs that may be accumulated in
subsequent stages. To cope with this issue, an approximate
FP divider with near-zero error bias (FaNZeD) has been
proposed [28]. Specifically, the error bias in ALD is estimated
and compensated by using an 8-bit subtractor. As a result, the
error bias and MRED of FaNZeD can be significantly reduced.
However, some extra circuits are required to normalize the
obtained result into the FP representation, which increases the
critical path and decreases the speed of the divider.

As per the above observations, most approximate dividers
are designed for processing integer numbers. However, FP
divisions can be necessary for some applications requiring
a wider dynamic range or higher accuracy. The exact IEEE
754 single-precision FP divider results in more than 15 times
the area-delay-product (ADP) of the corresponding FP mul-
tiplier [28]. Thus, a high-performance and resource-efficient
approximate FP divider is urgently demanded for the error-
resilient applications involving division. Taking advantages of
the LNS-based architecture, a hardware-efficient approximate
divider with high accuracy, mainly for FP inputs, is designed
in this paper. In the divider, Mitchell’s algorithm is modified to

decrease the conversion error between binary and logarithmic
numbers. A piecewise constant approximation is then applied
to transfer the division into a simple multiplication. Compared
to previous work, the contributions of this paper are as follows.
• An extension of logarithmic conversion is proposed for

designing a hardware-efficient approximate divider with
configurable accuracy.

• A heuristic search algorithm is proposed for the piece-
wise constant approximation to find the most accurate
constants for the reciprocal of the divisor resulting in the
minimal statistical error.

• The hardware implementation of the proposed divider is
explicitly presented with low complexity and short critical
path. The architectures for both FP and integer inputs are
presented.

• The proposed divider is compared with state-of-the-art
approximate dividers in terms of errors and circuit mea-
surements. The proposed divider has the smallest MRED
and is in the Pareto Frontier when considering both the
MRED and PDP together.

• The approximate dividers are further assessed in three
image processing applications. With a lower hardware
consumption, the proposed divider produces the higher
output quality than the other approximate designs.

The remainder of this paper is organized as follows. The
next section introduces the preliminaries including FP and
logarithmic number systems. Section III presents the basic
theory of the proposed divider. The hardware architectures
for both FP and integer inputs are depicted in Section IV.
Section V analyzes the relative error distance theoretically and
presents the simulation results in terms of statistical errors. The
circuit measurements including power, area and delay are also
presented in this section. In Section VI, three image processing
applications are used to examine the quality of the proposed
and existing dividers. The paper is concluded in Section VII.

II. PRELIMINARIES

A floating-point (FP) number system can process a large
range of data with a high precision; thus, it has been used in
many areas, such as scientific computing and machine learn-
ing. However, FP arithmetic circuits are generally very time-
and resource-consuming, which significantly limit the process-
ing speed and increases the power consumption. Logarithmic
number system (LNS) can transfer FP multiplication/division
operations into addition/subtraction operations, which greatly
improves the energy efficiency and operating performance.

A. Floating-point number system

In the FP number system, a number � consists of three parts,
the sign (, the exponent � and the mantissa " , as shown in
Fig. 1. The (has one bit, where 0 and 1 are used to represent
positive and negative numbers, respectively. The lengths of
the exponent and mantissa depend on specific applications
and can be changed flexibly. For the single-precision (32-bit)
representation specified in IEEE 754 standard, they are 8 and
23 bits, respectively, denoted as FP (1, 8, 23). Correspondingly,
FP (1, 5, 10) and FP (1, 3, 4) represents standard half-precision

3

S ME

1 bit 8 bits 23 bits

32 bits

Fig. 1: The standard 32-bit floating-point number representa-
tion.

(16-bit) and 8-bit FP numbers. An FP number based on binary
is expressed as

� = (−1)(·2�−180B · (1+"), (1)

where the 180B represents the skewing of the exponent that
ensures it is non-negative. For IEEE 754 standard single-
precision representation, the bias is 127 and the actual expo-
nent range is [-126, 127]. The mantissa includes a fractional
part denoted as " and a hidden one. The " is within [0,1)
and the actual value for the mantissa is in [1,2).

Considering the division operation of two FP numbers,
dividend � and divisor �, the quotient & can be denoted as

&(= �(⊕ �((2)

&"1 =

{
(1+ �")/(1+�") if�" ≥ �"
2(1+ �")/(1+�") otherwise

(3)

&� =

{
�� −�� + 180B if�" ≥ �"
�� −�� + 180B−1 otherwise

, (4)

where �((�(, &(), �� (�� , &�) and �" (�" , &") repre-
sent the sign, exponent and mantissa of � (�, &), respectively.
The &"1 combines the quotient mantissa &" with its hidden
one, and this representation are used in the rest of paper, the
symbol ⊕ denotes the XOR operation.

In the conventional FP division, a divider, a subtractor,
several multiplexers and a normalization module are needed
for implementing the hardware architecture. However, over-
whelming latency and hardware resource are inevitable due
to the exact divider for the mantissa computation. Thus, to
improve the hardware efficiency of the FP divider, many
methodologies have been attempted by focusing on the simpli-
fication of the mantissa divider, such as truncation and linear
approximation [22], [25].

B. Logarithmic number system

Logarithmic conversion has been used to simplify the cal-
culation of multiplication and division [27]. In the binary
logarithm, the input number must be positive and the sign
can be processed separately. A magnitude of a FP number
can be transformed to a logarithm number using the following
equation

lg� = log2� = � − 180B+ lg(1+"). (5)

For simplification, we use lg to replace log2 in this paper.
Equation (5) shows that the integer part of a logarithm number
is equal to the exponent of the FP number. The key then
becomes transforming the mantissa of the FP number to

the logarithmic form. Mitchell [27] proposed an approximate
method for " ∈ [0,1) as follows

lg(1+") ≈ ", (6)

in this case, the magnitude of an FP number can be simply
transformed to the logarithm form by adding its exponent and
mantissa, i.e.,

lg� ≈ � − 180B+", (7)

By adopting this approximation, (3) can be converted to

&;"1 =

{
�" −�" if �" ≥ �"
�" −�" +1 otherwise

, (8)

where &;
"1 is the logarithm form of the mantissa division.

The processing of the sign and exponent parts are the same
as (2) and (4). Similarly, the anti-logarithm result can be
approximately obtained by

2" ≈ 1+", (9)

Thus, the final outcome of (3) can be approximated as

&"1 =

{
�" −�" +1 if �" ≥ �"
�" −�" +2 otherwise

, (10)

According to (2), (4) and (10), an approximate divider
based on logarithmic conversion can be implemented by using
only two subtractors, a normalization module and several
necessary components, which greatly decreases the latency and
improves the hardware efficiency. However, the error for this
approximate divider is relatively large that limits its use in
many error-tolerant applications demanding a high accuracy.

III. PROPOSED APPROXIMATE DIVIDER

In this section, a novel approximate divider based on
logarithmic conversion and piecewise constant approximation
(LPCAD) is proposed. To alleviate the large errors introduced
by the Mitchell’s approximation, we extend the approximation
scope of (6) from [0,1] to [-0.5,1] and approximate the
logarithm function by using two linear functions. A piecewise
constant approximation towards the divisor is then employed
to transform the division into several additions that can sig-
nificantly decrease the latency and power consumption.

A. Extension of the logarithmic conversion for division

Considering two FP operands, dividend � and divisor �,
the logarithm of the quotient can be expressed as

&; = �� −�� + lg
1+ �"
1+�"

= �� −�� + lg(1+ �" −�"
1+�"

)

= �� −�� + lg(1+ G),

(11)

where, G = (�" − �")/(1 + �"), �" , �" ∈ [0,1). When
�" ≥ �" , G is non-negative; otherwise, G is negative. It can be
proven that G ∈ (−0.5,1) and cannot be directly approximated

4

-0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y=x

y=2x

y=lg(1+x)

Fig. 2: Approximate conversion from log2 (1 + G) to linear
functions for G ∈ [−0.5,1]

.

by using (6). Thus, we extend the scope of " in (6) from
[0,1] to [-0.5,1] as

lg(1+ G) =
{

2G if G ∈ [−0.5,0)
G if G ∈ [0,1]

. (12)

To see the difference between the accurate and approximate
results intuitively, their curves are plotted. As shown in Fig. 2,
the approximation using (12) always underestimates the exact
outcome, leading to error bias that is similar to the Mitchell’s
approximation. However, this problem can be partially solved
by the following approximation.

By using (12), an FP division can be calculated as

&;"1 =

{
(�" −�")/(1+�") if �" ≥ �"
2(�" −�")/(1+�") +1 otherwise

. (13)

The sign and exponent are processed as (2) and (4). It should
be noted that &;

"1 ∈ [0,1). Thus, (13) can be transformed
through (9) as

&"1 =

{
(�" −�")/(1+�") +1 if �" ≥ �"
2(�" −�")/(1+�") +2 otherwise

. (14)

The calculation still requires division operation. Next, a simple
but effective method is introduced to approximate the recipro-
cal of (1+ �"), converting the division into several addition
operations.

B. Piecewise constant approximation

To further simplify the calculation, piecewise constant ap-
proximation (PCA) methodology is applied to substitute the
reciprocal of (1 + �") with some constants according to
the value of �" . For ease of implementation, the number
of binary bits to present the constants should be as few
as possible. However, for a high accuracy, a large width is
required for the constants. As 1/(1+�") ∈ (0.5,1], if taking
the most : significant bits of �" into account, (: + 1)-bit
constants is used here for a comprehensive consideration of
the accuracy and hardware cost. For example, if the most
significant two bits of the �" is considered, the binary set

{0.100,0.101,0.110,0.111} can be used to approximate the
reciprocal of (1+ �"). By using PCA, (14) is approximated
as

&"1 =

{
(�" −�") ×�0??A> +1 if �" ≥ �"
2(�" −�") ×�0??A> +2 otherwise

, (15)

where �0??A> is the constant set for approximating 1/(1 +
�"). In each range of �" , there exists a most appropriate
constant to approximate 1/(1+�").

To automatically select the most appropriate constant for a
specific range of �" , a heuristic search algorithm is developed
aiming at minimizing the statistical error. Here, we use the
mean relative error distance (MRED) as the goal, which is
defined as

MRED =
1
#

#∑
8=1
|
$80?? −$84GC

$84GC
|, (16)

where # is the sample number, $80?? and $84GC are the
approximate and exact outputs, respectively.

Algorithm 1 shows the searching process of the heuristic
algorithm for the most appropriate set of constants for each
range of �" . The input arguments are the FP dividends �,
divisors �, the total number of inputs = and the number of
the MSBs in the mantissa of the divisor to be taken into
account for the approximation, : . The aim is to obtain a set
of constants $2 that closely approximates 1/(1 + �"). The
ranges to be studied for the input divisor mantissas are ob-
tained first according to : . Choosing the most suitable constant
for every range of divisor mantissa from the candidates is
implemented from line 6 to 27. For fairness, in the process of
searching the constant for the current range, each other range
is approximated by the same constant as shown in line 14 to
17, the current range is approximated by the four candidates
as shown in line 19 to 21. Four candidates for each range are
generated (line 7); it ensures one candidate larger, and one
less than the range boundaries, and two within the range in
the worst case according the following constant established
condition

1
1+</2:

− 1
1+ (< +1)/2:

≤ 2−: , (17)

where 0 ≤ < ≤ 2: −1,< ∈ N+, the left denotes the interval of
the reciprocals of two continuous :-bit input divisor mantissas.
Then, for each candidate, the MRED of the approximate
division is computed as shown in line 23 to 25. The candidate
that leads to the minimal MRED is selected as the approximate
constant for the current range, as shown in line 26 to 27.
When the whole loop is finished, the best set of constants is
obtained. Also, the optimization goal of this algorithm can be
other statistic error metrics such as the normalized mean error
distance.

By utilizing Algorithm 1, the sets of constants to approxi-
mate 1/(1+�") for : = 2 and : = 3 are listed in Table I. For
the majority of ranges, the approximate constants are within
the ranges. For some ranges, the constants can be the same,
such as [0.625,0.750) and [0,750,0.875) for : = 3, both of
the approximate constants are 0.5625, that is 0.1001 in the

5

Algorithm 1 The heuristic algorithm for searching the most
appropriate constants to approximate the reciprocal.

Input: � 9 , � 9 ; // the random/uniform inputs, 9 = {1, . . . , #}.
:; // the number of the most significant bits in the mantissa
for the divisor to be considered for the approximation.

Output: $82; // constants for each range of the divisor man-
tissa, 8 = {1, . . . ,2: }.
// Initialization

1: $2 = 1; // initialize the constants to 1s.
2: $B46 = I4A>B;
3: for 8 = 2 to 2: +1 do
4: $8B46 =$

8−1
B46+1/2: ; // calculate each interval of inputs.

5: end for
6: for 8 = 2 to 2: +1 do
7: C4<? = [$8−1

2>=BC , · · · ,$8−1
2>=BC − 3/2:+1]; // four candi-

dates for the approximate constant in each interval.
8: for A = 1 to 4 do
9: if temp(A)×$8B46 > 0.5 then

10: temp(A)=0; //To avoid the complex normaliza-
tion module in the mantissa part.

11: end if
12: end for
13: for 9 = 1 to = do
14: for ; = 1 to 2: do
15: if $;−1

B46 ≤ �8" < $;B46 then // determine which
range the 9 th divisor mantissa belongs to..

16: �
9
0??A> (1 : 4) = $;+12 ; //allocate four same

approximate constants for each divisor.
17: end if
18: end for
19: if $8−1

B46 ≤ �
9

"
<$8B46 then //determine whether the

divisor mantissa is in the current search range.
20: �

9
0??A> (1 : 4) = C4<?; //allocate four different

candidates for the divisor mantissa in the current search
range.

21: end if
22: end for
23: &4 = �8E834A �GC (�, �); //calculate the exact quo-

tients.
24: &0 = �8E834A �??A>(�, �, �0??A>); //calculate four

approximate quotients.
25: +"'�� = "'�� (&4,&0); //calculate four MREDs.
26: [+,8=34G] = <8=(+"'��); //search the minimal

MRED and obtain the corresponding index for temp.
27: $82 = C4<?(8=34G); //determine the most appropriate

constant for the current mantissa range.
28: end for
29: $2; // output the most appropriate set of constants that

minimize the MRED.

binary format. For : = 2, (15) can be transformed to (18) when
�" ≥ �" and (19) when �" < �" .

&"1 =

0.875(�" −�") +1 if 0 ≤ �" < 0.25
0.75(�" −�") +1 if 0.25 ≤ �" < 0.5
0.625(�" −�") +1 if 0.5 ≤ �" < 0.75
0.5(�" −�") +1 if 0.75 ≤ �" < 1

, (18)

TABLE I: The set of constants to approximate the reciprocal
of 1+�< for : = 2 and : = 3.

: = 2 : = 3
�< 1/(1+�<) �0??A> �< 1/(1+�<) �0??A>

[0.00, 0.25) (0.80, 1.00] 0.875 [0.000, 0.125) (0.89, 1.00] 0.9375
[0.25, 0.50) (0.67, 0.80] 0.75 [0.125, 0, 250) (0.80, 0.89] 0.875
[0.50, 0.75) (0.57, 0.67] 0.625 [0.250, 0.375) (0.73, 0.80] 0.75
[0.75, 1.00) (0.50, 0.57] 0.5 [0.375, 0.500) (0.67, 0.73] 0.6875

[0.500, 0.625) (0.62, 0.67] 0.625
[0.625, 0.750) (0.57, 0.62] 0.5625
[0.750, 0.875) (0.53, 0.57] 0.5625
[0.875, 1.000) (0.50, 0.53] 0.5

&"1 =

2×0.875(�" −�") +2 if 0 ≤ �" < 0.25
2×0.75(�" −�") +2 if 0.25 ≤ �" < 0.5
2×0.625(�" −�") +2 if 0.5 ≤ �" < 0.75
2×0.5(�" −�") +2 if 0.75 ≤ �" < 1

.

(19)

C. Truncation

Truncation is a common technique to reduce the hardware
complexity and shorten the critical path [29]. For FP numbers,
truncation is more efficient due to the hidden one, especially
for multiplication and division. Assuming there is an = bit
FP number, we truncate its =− C LSBs and leave its C MSBs
to do computation. The largest relative truncation error can
be expressed as (20), which decreases exponentially with the
increase of C.

REDC<0G = 2−C −2−=, (20)

where REDC<0G represents the largest relative error distance
(RED) introduced by truncation. The worst case occurs when
the C MSBs are zeros and the truncated bits are ones.

There are two commonly used truncation methods for
designing an approximate multiplier. As shown in Fig. 3(a), the
inputs are directly truncated. The advantage for this method is
easy to design. However, the error of this method is relatively
large. To reduce the error, the other method truncates some
least significant partial products with minimal weights, as
shown in Fig. 3(b).

(a) truncating inputs (b) truncating partial products

Fig. 3: Two truncation methods. (a) truncating some LSBs of
the inputs. (b) truncating some LSBs of partial products.

IV. HARDWARE IMPLEMENTATION

This section introduces the hardware architecture for the
proposed approximate divider. The FP design is first intro-
duced, including the architectural and multiplication imple-
mentations. To extent the application scope of the proposed
division scheme, an architecture for integer inputs is also
presented.

6

Fig. 4: The LPCAD hardware architecture for FP numbers
obtained by directly implementing the (2), (4) and (15).

A. LPCAD for FP numbers

As discussed in Sections II and III, the architecture of
LPCAD for FP numbers can be derived from (2), (4) and (15).
Straightforwardly, the LPCAD can be implemented as Fig. 4,
where =� and =" are the widths of the exponent �� (��)
and mantissa �" (�"), respectively. Specifically, the sign of
the quotient &(is obtained by performing an XOR operation
on the signs of the two inputs, �(and �(. The exponent &�
is computed as the subtraction of the dividend and divisor
exponents, when �" is greater than �" . Otherwise, it needs
to be subtracted by one to simplify the normalization process,
i.e., ensuring the quotient mantissa &" within the range of
[0,1). Finally, the bias is added. To calculate the mantissa,
�" is subtracted first by �" ; the subtraction result is then
multiplied by the approximate constant �0??A> generated by
using a decoder. If the difference is negative, shift the product
left for one bit; otherwise not. A constant 1 is finally added
to ensure the output mantissa is in [0,1). Fig. 4 shows the
hardware architecture as per the (2), (4) and (15). However,
to lower the implementation complexity, Fig. 5 is obtained by
considering the calculations from a global perspective.

1) Architectural design: For the exponent calculation,
whether subtracting the extra one or not depends on the differ-
ence between the dividend and divisor mantissas. We convert
the subtraction into the addition of the negative subtrahend
obtained by a two’s complementary operation. If the MSB of
(= (�" −�") is 1, i.e., �" < �" , the subtraction of 1 can
be neutralized by the added 1 due to 2’s complementing. Thus,
&� = �� +�� . Otherwise, &� = �� +�� +1. It can be directly
implemented by an adder with a carry-in, where the carry-in
is the inverted MSB in (.

Similarly, the implementation for the mantissa computation

Fig. 5: The proposed LPCAD hardware architecture for FP
numbers.

can be simplified. The subtraction of �" and �" is con-
verted to addition by using a two’s complementary operation.
The product result % = (× �0??A> is within (-0.5,1) due to
the range limitation constrained by Algorithm 1. Let % be
(?0.?−1?−2?−3 . . . ?−")2 in two’s complement representation,
the two MSBs of the % must both be 1, i.e., 1.1, when
�" < �" . Under this condition, we can implement ×2 by
just taking all the right bits of the dot according to (21).
Then, an extra 1 is added to the result to generate the final
&" , as shown in (22). Thus, &" is obtained by taking
?−2?−3 . . . ?−" , appended with a 0. If �" ≥ �" , all bits to
the right of the dot (?−1?−2 . . . ?−") are taken as &" . Based
on these observations, a multiplexer is needed to select the
corresponding bits of the multiplication result for &" .

2×1.1?−2?−3?−4 · · · = 1.?−2?−3?−4 . . . (21)

1.?−2?−3?−4 · · · +1 = 0.?−2?−3?−4 . . . (22)

Consequently, two adders for the exponent generation, an
adder, a decoder (for generating �" related approximate
constant), a multiplier and a multiplexer for the mantissa com-
putation, are used for the proposed approximate FP divider.
The hardware implementation of the proposed FP approximate
divider is depicted in Fig. 5, where the multiplier can be further
simplified as follows.

2) Multiplication implementation: In the mantissa com-
putation, instead of using a typical signed multiplier, the
multiplication can be specifically implemented. After � =

�0??A> is produced by the decoder, a dedicated designed
multiplier is applied to complete % = (×�. The multiplica-

7

Fig. 6: The dedicated multiplier with truncation.

tion of two signed binary numbers (= (B0.B−1 · · · B−=<)2 and
� = (20.2−1 · · ·2−(:+1))2 can be expressed as

% = (×�

= (−B0 +
="∑
8=1
B−82−8) × (−20 +

:+1∑
9=1
2− 92− 9)

= B020− 20

="∑
8=1
B−82−8 − B0

:+1∑
9=1
2− 92− 9

+
="∑
8=1

:+1∑
9=1
B−82− 92−(8+ 9) .

(23)

In the design, the MSB of � is zero. Equation (23) can be
simplified as

% = −B0
:+1∑
9=1
2− 92− 9 +

:+1∑
9=1

="∑
8=1
B−82− 92−(8+ 9) . (24)

The subtraction in (24) can be implemented by adding the
two‘s complement of −B0

∑:+1
9=1 2− 92

− 9 that is given by

− B0
:+1∑
9=1
2− 92− 9 = 1+

:+1∑
9=1
B02− 92− 9 +2−(:+1)

= 1+
:∑
9=1
B02− 92− 9 + B02−(:+1)2−: + B02−(:+1)2−(:+1) .

(25)

Thus, for : = 3, the partial product array for the signed
multiplication in (23) is neat, as shown in Fig. 6. Finally,
a simple Wallace tree or adder tree with truncation can be
adapted to accumulate the partial products.

B. LPCAD for integer numbers

The proposed approximate division scheme can be adapted
to implement an integer divider; the unsigned integer divider is
introduced here as an example. An unsigned integer includes
the exponent and mantissa information in a binary number.
Thus, extra components should be added to obtain the expo-
nent and mantissa before inputting to the FP LPCAD. Also,
another conversion module is connected to the output of the
FP LPCAD to transfer the result in FP format to an integer.
Apparently, these additional modules violate the advantages
of the proposed approximation scheme compared to the FP
design.

Specifically, a leading one position detector (LOPD) and
barrel shifter are utilized to transfer the inputs from the integer
representation to the FP format [28]. The LOPD generates the

Fig. 7: The LPCAD-based architecture for unsigned integer
divider.

exponent � by finding the position of the most significant 1
in the integer input. The barrel shifter is utilized to shift the
integer left by � bits and generate the mantissas. For instance,
in an 8-bit integer 00101100, the LOPD outputs 101 as the
exponent � , and the barrel shifter generates 1.011 as the actual
mantissa "1. The exponent and mantissa are then sent to the
LPCAD for FP numbers to calculate the division in FP format.
Finally, a barrel shifter is utilized to transfer the FP number
into the integer. The LPCAD architecture for integer inputs is
depicted in Fig 7.

V. ERROR ANALYSIS AND HARDWARE EVALUATION

In this section, an error analysis for relative error distance
(RED) and simulation results for statistical error metrics, as
well as synthesis results for circuit measurements are presented
and discussed. In addition, the comparisons with the exact
divider and several state-of-the-art approximate dividers are
explored.

A. Error analysis

Compared to the exact design, the proposed approximate
division scheme generates errors only in the mantissa com-
putation. Thus, the RED without truncation can be expressed
as

'�� =
(�" −�") [�0??A> (1+�") −1]

1+ �"
, (26)

According to (26), both (�" −�") and [�0??A> (1+�") −1]
can be positive and negative. Thus, the errors of the approxi-
mate division are double-sided and can eliminate each other in

8

an accumulation operation. Assume the input mantissas �"
and �" are mutually independent, it can be derived that the
maximal absolute RED happens when �" equals to 0 or
approaches to 1 according to (26). The absolute RED satisfies

|'�� | ≤<0G{|�" [(1+�")�0??A> −1] |,
|0.5(1−�") [(1+�")�0??A> −1] |}.

(27)

It can be noted that the more accurate �0??A> approximates
the reciprocal of (1 + �"), the closer (1 + �")�0??A> − 1
is to 0. Thus, : determines the accuracy of the proposed
approximate divider.

As truncation introduces relatively small errors for FP
inputs, truncation is also utilized to further reduce the hardware
cost especially for a large : . We use C to represent the residual
number of bits in input mantissas �" and �" . Similarly, the
RED with truncation is calculated by (28).

'��C =
�0??A> (1+�") (b�" cC − b�" cC) − (�" −�")

1+ �"
.

(28)

B. Simulation results for error assessment

1) The statistical error metrics of FP LPCAD: One million
random input combinations are used to calculate the MRED
and error bias of the FP LPCAD on MATLAB tool. The error
bias denoted by Bias is calculated as

Bias =
1
#

#∑
8=1

$80?? −$84GC
$84GC

(29)

Fig. 8 shows the obtained MRED and Bias results for the
16-bit FP LPCAD with an ascending : . With the increase of
: , the approximation for 1/(1+ �<) is closer to its accurate
value and thus, the MRED of the FP LPCAD is decreased.
When increasing : from 1 to 7, the MRED of the FP LPCAD
decreases from 2.78% to 0.046%. The MRED is below 1%
as long as : is larger than 2. The Bias of the FP LPCAD
is always less than 0.2% regardless of the value of : . When
: = 3, the Bias reaches the maximal value of 0.20%. As the
hardware cost for the decoding and multiplication parts in
LPCAD increases with : , to trade-off between the hardware
overhead and accuracy, the designs with : = 2 and : = 3
are preferred and mainly discussed in this paper. For some
applications requiring a higher accuracy, LPCAD with larger
: can be adopted. Fig 9 shows the MRED and Bias with
respect to the truncation parameter C for the FP LPCADs with
: = 2 and : = 3, where C is the number of remained columns
in the partial product array for compression. As per Fig 9,
the MRED and Bias generally decrease with the increase of C,
except for the Bias when : = 3. The MRED is approaching to a
minimal constant as C is larger than 8 for both : = 2 and : = 3.
For the Bias, it is less than 0.1% when C > 7 for : = 2 and less
than 0.2% when C > 6 for : = 3. To trade off the accuracy and
hardware cost, LPCAD (2, 8) and LPCAD (3, 8) are mainly
considered, where LPCAD (:, C) denotes the LPCAD selecting
: bits of �" for the approximate constant generation and
compressing C most significant columns of partial product in
the multiplication.

1 2 3 4 5 6 7

k

-0.5

0

0.5

1

1.5

2

2.5

3

S
ta

ti
st

ic
a
l

E
rr

o
r

o
f

L
P

C
A

D
 (

%
)

MRED

Bias

Fig. 8: The MRED and Bias of 16-bit FP LPCAD with
different : values.

3 4 5 6 7 8 9 10

t

0

1

2

3

4

5

S
ta

ti
st

ic
a
l

E
rr

o
r

o
f

L
P

C
A

D
 (

%
)

MRED (k=2)

MRED (k=3)

Bias (k=2)

Bias (k=3)

Fig. 9: The MRED and Bias of 16-bit FP LPCAD with
different C values when : = 2 and : = 3.

Table II shows the MRED and Bias results for the 8-, 16-
and 32-bit FP LPCADs with : = 2 and : = 3. For 32-bit FP
LPCAD, the MRED has a similar characteristic to the 16-bit
design, i.e., when the C is equal to or larger than 8, the MRED
is approaching to a constant, 1.3% for : = 2 and 0.74% for
: = 3. Thus, LPCAD (2, 8) and LPCAD (3, 8) are superior
for 32-bit FP LPCAD when considering the accuracy and
hardware cost. For the 8-bit FP LPCAD, the MRED is always
decreasing when C increases from 1 to 5 for both : = 2 and
: = 3. Thus, truncation is not efficient for an 8-bit FP LPCAD.
However, the final choice of LPCAD with different : and C

depends on the accuracy requirement of specific error-tolerant
applications.

2) Comparison with state-of-the-art approximate dividers:
The proposed FP LPCAD is compared with four state-of-the-
art approximate divider designs, including two FP dividers,
FaNZeD [28] and FPAD [26], two designs that using approxi-
mate integer dividers for the mantissa division, TrunApp [25]
and AAXD [23]. In addition, the original logarithmic design,
ALD [27], is considered as a baseline. Using the same method-
ology as the FP LPCAD, the MRED and Bias for each divider

9

TABLE II: Comparison of the MRED and Bias for the FP
dividers with three bit-widths.

8-bit FP dividers
Designs MRED (%) Bias (%) Designs MRED (%) Bias (%)
LPCAD (2, 4) 2.83 0.00 ALD (5) 5.63 5.63
LPCAD (2, 5) 1.98 0.79 TrunApp4 (4) 4.74 3.04
LPCAD (3, 4) 2.17 -0.29 FaNZeD (5) 2.80 0.06
LPCAD (3 ,5) 1.39 0.72 FPAD33 (5) 3.47 2.54

FPAD43 (5) 2.37 -0.08
AAXD (4) 14.07 8.26

16-bit FP dividers
Designs MRED (%) Bias (%) Designs MRED (%) Bias (%)
LPCAD (2, 4) 2.87 -1.45 ALD (10) 4.07 4.07
LPCAD (2, 8) 1.32 -0.04 TrunApp4 (4) 4.03 1.44
LPCAD (2, 10) 1.30 0.02 FaNZeD (10) 2.71 0.06
LPCAD (3, 4) 2.53 -1.58 FPAD33 (10) 3.52 2.74
LPCAD (3, 8) 0.77 0.14 FPAD43 (10) 2.16 0.39
LPCAD (3, 10) 0.75 0.23 AAXD (10) 1.59 0.71

32-bit FP dividers
Designs MRED (%) Bias (%) Designs MRED (%) Bias (%)
LPCAD (2, 4) 2.88 -1.49 ALD (23) 4.07 4.07
LPCAD (2, 8) 1.31 -0.09 TrunApp4 (4) 4.02 1.40
LPCAD (2, 23) 1.28 0.00 FaNZeD (23) 2.71 0.00
LPCAD (3, 4) 2.54 -1.63 FPAD33 (23) 3.52 2.74
LPCAD (3, 8) 0.77 0.09 FPAD43 (23) 2.17 0.41
LPCAD (3, 23) 0.74 0.20 AAXD (12) 0.79 0.32

are obtained. For TrunApp, the TrunApp4 is considered as it
shows the smallest MRED among all series. For FPAD, the
FPAD33 and FPAD43 denote the designs with accuracy levels
of three and four using two adders, selected by considering
their high accuracy and reasonable hardware overhead. The
MRED and Bias for the compared dividers are shown on the
right side of Table II. Here, ALD (C), TrunApp4 (C), FaNZeD
(C), FPAD33 (C) and FPAD43 (C) represent the corresponding
divider with a truncation parameter C. AAXD (2C) means an
exact 2C/C divider is utilized in this design. Considering the
hardware efficiency, the largest exact divider is limited to 12/6.

As per Table II, when C > 4, the MREDs of LPCAD are
smaller than any other dividers for both : = 2 and : = 3 except
for the AAXD (12). The MRED of AAXD (12) is close to
LPCAD (3,8); however, the required exact 12/6 leads to a
higher hardware overhead, as shown in Section V-C. Among
the other designs, FPAD43 has the smallest MREDs that are
still larger than 2%. The MRED of LPCAD for : = 2 and
: = 3 can be as low as 1.28% and 0.74%, respectively, whereas
the minimal MREDs of TrunApp4 and ALD are larger than
4%, and they are beyond 3.4% for FPAD33 and 2.7% for
FaNZeD. As for Bias, the results for the LPCAD are lower
than 1% for both : = 2 and : = 3 when C > 4 and below 0.1%
in some cases. The Bias of LPCAD is slightly larger than
that of the FaNZeD because FaNZeD is dedicated designed to
limit its Bias to near-zero. As the errors in ALD are single-
sided, ALD results in a relatively large Bias. To sum up, the
MRED of the proposed LPCAD is remarkably smaller than
most approximate dividers and similar to AAXD. Moreover,
the Bias of LPCAD with some fixed parameters can be close
to zero. This indicates that the LPCAD can be applied to some
complex applications with recursive additions where the errors
can cancel each other.

C. Hardware evaluation

The considered dividers in Section V-B are implemented in
Verilog HDL and synthesized by using the Synopsys Design

Compiler based on the TSMC 65-nm standard cell library. The
clock periods are set to 30 ns for all evaluated approximate
dividers and 50 ns for the exact half-precision FP divider
(referred to as HPD), which can ensure no timing violations
occur. The critical path delay, area, power dissipation, power-
delay-product (PDP) for each design are then obtained. To
consider both the hardware efficiency and statistical error, a
comprehensive metric APD(E2) is further calculated, which is
defined as

APD(E2) = Area×Power×Delay×Error2. (30)

In the work, the MRED is selected as the statistical error
because it is a more general metric than the Bias. Besides, the
Bias can be zero for some designs, which makes the APDE2

meaningless.
The synthesis results for 16-bit FP dividers are listed in

Table III. The LPCAD (2, 10) and LPCAD (3, 10) can
achieve nearly 110× and 90× improvements in terms of
PDP when compared to HPD. The HPD is implemented by
using a division sign; thus, the HPD is chosen from the
DesignWare library as per the synthesis conditions. For the
LPCAD, increasing : and C leads to the increase in area, power
and delay, but decrease in MRED. Among these approximate
dividers, ALD occupies the smallest area because it directly
transfers the division into the subtraction operation; for the
same reason, it has the largest error especially for Bias.
Considering the designs with MREDs between 2% and 3%,
LPCAD (2, 4) and LPCAD (3, 4) shows smaller area, power
and delay than FaNZeD (10) and FPAD43 (10). Also, LPCAD
(2, 8) and LPCAD (2, 10) outperforms AAXD (10) in all
circuit measurements, with a smaller MRED. For a same
C, the PDP of LPCAD with : = 2 is smaller than those of
TrunApp4, FPAD33 and FPAD43, whereas the MRED of
former is apparently smaller. As for APD(E2), the LPCAD (3,
4) and LPCAD (3, 8) outperform all state-of-the-art designs.
The proposed design is superior to most approximate designs
in terms of APD(E2). To give a clear view over the relationship
between the statistical errors and circuit measurements, Fig 10
shows the MRED and PDP of 16-bit approximate dividers
together. It can be found that LPCADs forms the Pareto
Frontier, which means that the proposed divider outperforms
the other approximate dividers in terms of PDP when the same
MRED is required.

Also, the synthesis results for 8-bit and 32-bit FP dividers
are listed in Table IV. For 32-bit dividers, LPCAD takes more
area compared to ALD and FaNZeD at most cases. However,
the parameter C affects the MRED little when it decreases from
23 to 8; thus, the LPCAD (2, 8) or LPCAD (3, 8) can be
selected for the 32-bit divider. LPCAD (2, 8) and LPCAD
(3, 8) show similar area results to ALD (23) and FaNZeD
(23) respectively, whereas the former has a smaller MRED,
especially for LPCAD (3, 8). The power consumption has a
similar tendency as the area. The delay of LPCAD with : = 3 is
smaller than most designs, except for ALD. For 8-bit dividers,
there is no need to truncate due to its significant influence on
accuracy and little benefit on hardware performance. As for
APD(E2), the proposed approximate divider also outperforms
the other dividers in most cases. Fig 11 reveals the relationship

10

TABLE III: The circuit and error measurements for 16-bit FP
dividers.

Designs
Area

(`<2)
Power
(`W)

Delay
(ns)

PDP
(pJ)

MRED
(%) APD(E2)

LPCAD (2, 4) 136.8 114.8 2.92 0.335 2.87 377.7
LPCAD (2, 8) 289.2 302.7 3.35 1.014 1.32 511.0
LPCAD (2, 10) 363.2 391.8 3.60 1.410 1.30 865.8
LPCAD (3, 4) 151.2 116.9 2.12 0.248 2.53 239.9
LPCAD (3, 8) 355.2 352.2 3.55 1.250 0.77 263.3
LPCAD (3, 10) 442.4 461.2 3.82 1.761 0.75 438.4
ALD (4) 110.4 75.0 1.69 0.127 4.44 275.9
ALD (10) 175.2 121.0 2.37 0.287 4.07 832.3
TrunApp4 (4) 189.6 130.6 3.43 0.448 4.03 1,379.4
TrunApp4 (10) 413.6 328.5 4.32 1.419 4.95 14,381.7
FaNZeD (4) 123.6 99.2 2.40 0.238 3.88 443.0
FaNZeD (10) 220.4 191.2 4.77 0.912 2.71 1,476.2
FPAD33 (4) 202.0 159.3 2.23 0.355 3.29 776.7
FPAD33 (10) 399.2 351.0 5.03 1.766 3.52 8,732.7
FPAD43 (4) 194.4 156.3 2.77 0.433 3.76 1,189.9
FPAD43 (10) 574.8 486.8 4.01 1.952 2.16 5,235.0
AAXD (8) 262.4 271.5 9.82 2.666 3.21 7,208.7
AAXD (10) 387.6 457.2 15.43 7.054 1.59 6,912.7
HPD (16) 1,807.2 3,792.3 41.10 155.8 0 0

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

PDP(pJ)

1

2

3

4

5

M
R

E
D

(%
)

LPCAD with k=2

LPCAD with k=3

ALD

FaZNeD

TrunApp4

FPAD33

FPAD43

Fig. 10: Comparison of the PDP and MRED for the approxi-
mate 16-bit FP dividers. The parameter C is 4, 6, 8 and 10 for
all designs, from left to right.

between MRED and PDP of the 32-bit approximate dividers.
Likewise, the proposed dividers form the Pareto Frontier.

To sum up, the proposed divider outperforms the other
approximate dividers considered in this work in terms of
hardware cost when the same MRED is needed. For 16-bit
or 32-bit dividers, the LPCAD (2, 8) and LPCAD (3, 8) are
selected when considering both the hardware efficiency and
accuracy. For 8-bit dividers, the LPCAD (2, 5) and LPCAD
(3, 5) with no truncation are advisable choices.

VI. IMAGE PROCESSING APPLICATIONS

To assess the accuracy of the proposed divider and compare
it with the existing approximate dividers in error-tolerant
applications, three image processing applications are consid-
ered, change detection and foreground extraction using 16-
bit FP dividers, K-Means for color quantization using 32-bit
FP dividers. To show the differences between the exact and
approximate divisions and evaluate the accuracy of the dividers
in these applications, the peak signal-to-noise ratio (PSNR)

TABLE IV: Comparison of the circuit and error measurements
for 8-bit and 32-bit FP dividers.

8-bit FP dividers

Designs
Area

(`<2)
Power
(`W)

Delay
(ns)

PDP
(pJ)

MRED
(%) APD(E2)

LPCAD (2, 4) 124.4 110.9 3.02 0.335 2.83 333.7
LPCAD (2, 5) 167.6 160.9 2.40 0.386 1.98 253.7
LPCAD (3, 4) 138.8 112.2 2.12 0.237 2.17 155.5
LPCAD (3, 5) 204.4 184.5 3.10 0.572 1.39 225.9
ALD (5) 96.8 72.2 2.52 0.182 5.62 556.3
TrunApp4 (4) 162.4 112.2 3.22 0.361 4.73 1,312.7
FaNZeD (5) 112.4 94.5 2.74 0.259 2.80 228.2
FPAD33 (5) 259.2 185.8 4.02 0.747 3.47 2,331.1
FPAD43 (5) 295.2 218.1 3.55 0.774 2.37 1,283.8
AAXD (8) 120.4 104.9 4.26 0.447 3.25 568.3

32-bit FP dividers

Designs
Area

(`<2)
Power
(`W)

Delay
(ns)

PDP
(pJ)

MRED
(%) APD(E2)

LPCAD (2, 4) 169.2 138.1 2.92 0.403 2.88 565.9
LPCAD (2, 8) 321.6 326.2 3.35 1.092 1.31 603.1
LPCAD (2, 12) 468.4 505.4 3.81 1.925 1.28 1,477.7
LPCAD (3, 4) 183.6 139.8 2.12 0.296 2.54 351.1
LPCAD (3, 8) 387.6 378.5 3.55 1.343 0.77 308.8
LPCAD (3, 12) 564.8 593.3 4.18 2.480 0.74 767.0
ALD (4) 154.8 107.9 2.03 0.219 4.40 656.4
ALD (23) 360.0 254.1 4.20 1.067 4.07 6,364.2
TrunApp4 (4) 230.4 154.5 3.76 0.581 4.01 2,152.2
FaNZeD (4) 168.0 132.3 2.75 0.364 3.91 934.4
FaNZeD(23) 477.6 348.8 8.41 2.933 2.71 10,289.0
FPAD33 (4) 242.8 185.6 2.49 0.462 3.52 1,390.3
FPAD33 (23) 933.6 860.6 6.16 5.301 3.31 54,224.9
FPAD43 (4) 195.6 159.4 2.77 0.441 3.79 1,240.6
FPAD43 (23) 1014.4 933.6 6.58 6.143 2.17 29,343.7
AAXD (10) 426.0 471.9 15.47 7.300 1.58 7,763.6
AAXD (12) 563.6 715.5 24.88 17.801 0.79 6,261.6

0 1 2 3 4 5 6 7 8

PDP(pJ)

1

2

3

4

5

M
R

E
D

(%
)

LPCAD with k=2

LPCAD with k=3

ALD

FaZNeD

TrunApp4

FPAD33

FPPAD43

AAXD

Fig. 11: Comparison of the PDP and MRED for the approx-
imate 32-bit FP dividers. From left to right, the parameter C
is 4, 6, 8, 10, 12, 16, 20 and 23 for LPCAD, 8 and 10 for
AAXD, and 4, 8, 16 and 23 for the other designs.

(based on the mean squared error) and structural similarity
(SSIM) of the resultant images are calculated.

A. Change detection

Change detection has been applied to many applications,
such as urban planning and disaster assessment, especially
when implemented with AI technologies [30]. Change detec-
tion is used to distinguish the difference between two input
images using the ratios of two image pixels. The outputs

11

TABLE V: The comparison of the integer and the proposed
FP dividers in hardware efficiency and accuracy assessment in
change detection.

Dividers
Area

(`<2)
Power
(`W)

Delay
(ns)

PDP
(pJ)

MRED
(%) APD(E2) PSNR /

SSIM
LPCAD (3, 3) 103.6 71.0 2.00 0.141 4.94 359.0 37 / 0.95
LPCAD (3, 4) 151.2 116.9 2.12 0.248 2.53 239.9 42 / 0.98
LPCAD (3, 6) 267.6 247.3 3.64 0.900 1.00 240.9 46 / 0.98
LPCAD (3, 8) 355.2 352.2 3.55 1.250 0.77 263.3 53 / 0.99
INT (6/3) 112.8 100.9 5.26 0.531 6.52 2,545.0 25 / 0.78
INT (8/4) 232.0 244.5 11.45 2.800 3.21 6,692.4 36 / 0.92
INT (10/5) 396.0 472.3 18.89 8.922 1.59 8,931.8 40 / 0.96
INT (12/6) 608.4 812.0 26.39 21.429 0.79 8,136.5 44 / 0.98

show significant differences in the intensity-change region;
otherwise, the outputs tend to be the same to indicate a slight
even no change. The division is required for calculating the
ratio of pixel values of the original and the target images.
If the ratio of two pixels at the same position is far away
from 1 (exceeding a certain threshold), the image is considered
as changed at this position. In general, 16/8 integer divider
is utilized for this application [22]. Thus, when using 16-
bit FP dividers, the width of the exponent and mantissa
is set to 5 and 10, respectively. Due to its relatively low
accuracy requirement, the ALD (4), FaNZeD (4), TrunApp4
(4), FPAD33 (4), FPAD43 (4), AAXD (4), LPCAD (2, 4) and
LPCAD (3, 4) are selected to perform the divisions.

Fig 12 presents the output images produced by the consid-
ered dividers and the corresponding PSNRs and SSIMs, where
the accurate result is obtained by using a double-precision FP
divider. Considering PSNR, the LPCAD (3, 4) and LPCAD
(2, 4) perform the best, followed by ALD (4), FPAD43 (4),
FPAD33 (3), FaNZeD (4), TrunApp4 (4) and AAXD (4). The
SSIM results also show that the proposed divider results in
a higher image quality in change detection than the other
approximate dividers.

To compare the proposed FP divider with the integer divider,
several integer divider designs with different sizes (referred
to as INT (2t/t)) are also utilized to implement the change
detection algorithm. Table V shows the circuit measurements
of the dividers, and the PSNRs and SSIMs of the resultant
images. It can be seen that, to achieve a similar PSNR or
SSIM, the proposed FP divider can be much more hardware-
efficient than the integer divider, such as LPCAD (3, 3) and
INT (8/4). Note that the synthesized integer dividers are from
DesignWare library.

B. Foreground extraction

Foreground extraction plays a key role in computer vision.
It is used to remove the background from an image to obtain
the foreground object clearly. However, it is not efficient to use
the exact divider in foreground extraction as the computation
time increases tremendously when processing high-resolution
images. The approximate divider becomes an alternative to
solve this problem, which can acquire a decent result with
very limit time. Similar to change detection, a division between
two pixels of the same position in two images is performed,
however a higher accuracy is required. Thus, in this experi-
ment, the half-precision (16-bit) dividers are used. The ALD
(10), FaNZeD (10), TrunApp4 (4), FPAD33 (10), FPAD43

(a) Input image1 (b) Input image2 (c) Accurate

(d) LPCAD3, 42 / 0.98 (e) LPCAD2, 41 / 0.97 (f) ALD, 37 / 0.94

(g) FaNZeD, 32 / 0.94 (h) TrunApp4, 31 / 0.90 (i) FPAD33, 34 / 0.90

(j) FPAD43, 34 / 0.92 (k) AAXD, 29 / 0.85 (l) INT8/4, 36 / 0.92

Fig. 12: Change detection results using different dividers.

(10), AAXD (10), LPCAD (2, 10) and LPCAD (3, 10) are
considered in this application.

Three images are evaluated to acquire the average PSNRs
and SSIMs for all approximate designs. The results are listed
in Table VI. It shows that LPCAD (3, 10) and LPCAD (2, 10)
outperform the other approximate dividers in terms of PSNR.
The SSIMs also show the superiority of the proposed dividers
over state-of-the-art designs. We further explore the impact of
the parameters : and C for the LPCAD; the PSNR and SSIM
are shown in Table VII. It can be seen that the output image
is more explicit with a higher C for the LPCAD. The quality
of the output images reaches to the highest with C = 6 and then
remains stable. Thus, the LPCAD (3, 6) is the best trade-off
for foreground extraction.

C. K-Means color quantization

Color quantization is performed to reduce the number of
distinct colors used in an image and obtain a compressed
image as similar as to the original one. Color quantization
enables the transmission of the images in devices supporting
only a limited number of color types, such as a storage with

12

TABLE VI: The PSNRs (dB) / SSIMs of the foreground
extraction results using different approximate dividers.

Designs son canoe office average

LPCAD (3, 10) 38 / 0.96 50 / 0.99 48 / 0.99 45 / 0.98
LPCAD (2, 10) 35 / 0.95 46 / 0.99 43 / 0.98 41 / 0.97
ALD (10) 32 / 0.95 38 / 0.98 36 / 0.97 35 / 0.96
FaNZeD (10) 29 / 0.94 41 / 0.98 41 / 0.97 37 / 0.96
TrunApp4 (4) 23 / 0.78 37 / 0.96 37 / 0.92 32 / 0.88
FPAD33 (10) 21 / 0.84 39 / 0.98 39 / 0.95 33 / 0.92
FPAD43 (10) 26 / 0.86 42 / 0.98 42 / 0.96 36 / 0.93
AAXD (10) 31 / 0.88 45 / 0.99 45 / 0.98 40 / 0.95

TABLE VII: The PSNRs/SSIMs of the foreground extraction
results using LPCAD for : = 3 with different C values.

C 2 4 6 8 10

son 16 / 0.57 30 / 0.86 38 / 0.96 38 / 0.96 38 / 0.96
canoe 29 / 0.88 41 / 0.96 49 / 0.99 50 / 0.99 50 / 0.99
office 29 / 0.86 40 / 0.98 47 / 0.99 48 / 0.99 48 / 0.99
average 25 / 0.77 37 / 0.93 45 / 0.98 45 / 0.98 45 / 0.98

limited capacity. The key problem for quantization is to find
the proper color palette that summarizes the original image
best. A common approach for color quantization is based on
the K-Means algorithm. This algorithm divides the given pixel
values of the image into K clusters according to their distances
from the cluster center that is computed recurrently. In each
iteration, the center of each cluster is updated by dividing the
number of pixel values of this cluster by their summation. Due
to the iterations, a relatively high accuracy is required in K-
Means compared to the former two applications. Thus, single-
precision (32-bit) FP dividers are utilized to complete this task.
The ALD (23), FaNZeD (23), TrunApp4 (4), FPAD33 (23),
FPAD43 (23), AAXD (10), LPCAD (2, 8) and LPCAD (3, 8)
are considered.

The simulation results are shown in Table VIII, where three
images are examined. The LPCAD (3, 8) and LPCAD (2, 8)
perform significantly better than the other dividers in terms of
PSNR, followed by FPAD43 (23), AAXD (10), FaNZeD (23),
TrunApp4 (4), FPAD33 (23) and ALD (23). As per SSIMs, the
LPCAD (3, 8) significantly outperforms the other dividers. It
should be noted that the image ‘kodim’ is quantized with ten
different colors and needs more accurate approximate dividers.
The LPCAD (3, 8) produces the highest PSNR and SSIM for
image ‘kodim’.

VII. CONCLUSION

In this paper, an energy-efficient and high-performance
approximate division scheme based on logarithmic conver-
sion and piecewise constant approximation is proposed for
error-resilient applications. To minimize the statistical error,
a heuristic search algorithm is designed to obtain the most
appropriate constant set to approximate the reciprocal of the
divisor. The hardware implementations for both FP and integer
divisions are presented. The simulation and synthesis results
show that the proposed FP divider outperforms state-of-the-art
approximate dividers when considering both the accuracy and
hardware. The obtained configurations of the proposed divider
are in the Pareto Frontier in terms of PDP and MRED. Also,
the proposed divider results in the highest processing quality

TABLE VIII: The PSNRs and SSIMs of the color quantization
results using different approximate dividers.

Designs mandm peppers kodim average

LPCAD (3, 8) 37 / 0.99 33 / 0.99 34 / 0.93 34 / 0.97
LPCAD (2, 8) 37 / 0.99 32 / 0.99 27 / 0.77 32 / 0.92
ALD (23) 24 / 0.96 26 / 0.97 26 / 0.77 25 / 0.90
FaNZeD (23) 28 / 0.98 27 / 0.97 27 / 0.80 27 / 0.92
TrunApp4 (4) 25 / 0.97 28 / 0.98 27 / 0.80 26 / 0.91
FPAD33(23) 21 / 0.91 29 / 0.98 24 / 0.71 25 / 0.87
FPAD43(23) 23 / 0.96 33 / 0.99 27 / 0.84 28 / 0.93
AAXD(10) 24 / 0.97 31 / 0.99 26 / 0.78 27 / 0.91

in three image processing applications. Finally, it is worth to
note that the quality of the proposed divider is configurable and
a trade-off can be made between the accuracy and hardware
overhead according to the requirement of specific applications.

REFERENCES

[1] V. Leon, K. Asimakopoulos, S. Xydis, D. Soudris, and K. Pekmestzi,
“Cooperative arithmetic-aware approximation techniques for energy-
efficient multipliers,” in 2019 56th ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–6.

[2] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate
arithmetic circuits: A survey, characterization, and recent applications,”
Proceedings of the IEEE, vol. 108, no. 12, pp. 2108–2135, 2020.

[3] B. Liu, X. Ding, H. Cai, W. Zhu, Z. Wang, W. Liu, and J. Yang,
“Precision adaptive mfcc based on r2sdf-fft and approximate computing
for low-power speech keywords recognition,” IEEE Circuits and Systems
Magazine, vol. 21, no. 4, pp. 24–39, 2021.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” SIGPLAN Not.,
vol. 47, no. 4, pp. 301–312, 2012.

[5] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in 2013 50th ACM/EDAC/IEEE Design Automation Con-
ference (DAC), 2013, pp. 1–9.

[6] S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda, “Under-
standing the impact of precision quantization on the accuracy and energy
of neural networks,” in 2017 54th Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, pp. 1474–1479.

[7] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing,”
in Proceedings of the 2016 International Symposium on Low Power
Electronics and Design(ISLPED), 2016, pp. 64–69.

[8] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Quality programmable vector processors for approx-
imate computing,” in Micro, 2013, pp. 1–12.

[9] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS), 2013, pp. 1–6.

[10] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
2015, pp. 1–6.

[11] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, 2016.

[12] M. Gautschi, M. Schaffner, F. K. Gürkaynak, and L. Benini, “An ex-
tended shared logarithmic unit for nonlinear function kernel acceleration
in a 65-nm cmos multicore cluster,” IEEE Journal of Solid-State Circuits,
vol. 52, no. 1, pp. 98–112, 2017.

[13] B. Liu, H. Cai, Z. Wang, Y. Sun, Z. Shen, W. Zhu, Y. Li, Y. Gong,
W. Ge, J. Yang, and L. Shi, “A 22nm, 10.8 `w/15.1 `w dual computing
modes high power-performance-area efficiency domained background
noise aware keyword-spotting processor,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 67, no. 12, pp. 4733–4746, 2020.

[14] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: A new paradigm for arithmetic circuit design,” in 2008 Design,
Automation and Test in Europe, 2008, pp. 1250–1255.

[15] F. Ebrahimi-Azandaryani, O. Akbari, M. Kamal, A. Afzali-Kusha,
and M. Pedram, “Block-based carry speculative approximate adder
for energy-efficient applications,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 67, no. 1, pp. 137–141, 2020.

13

[16] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra,
“Approximate multipliers based on new approximate compressors,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 12, pp. 4169–4182, 2018.

[17] R. Pilipović, P. Bulić, and U. Lotrič, “A two-stage operand trimming
approximate logarithmic multiplier,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 6, pp. 2535–2545, 2021.

[18] L. Chen, J. Han, W. Liu, and F. Lombardi, “Design of approxi-
mate unsigned integer non-restoring divider for inexact computing,”
in Proceedings of the 25th Edition on Great Lakes Symposium on
VLSI(GLSVLSI), 2015, pp. 51–56.

[19] ——, “On the design of approximate restoring dividers for error-tolerant
applications,” IEEE Transactions on Computers, vol. 65, no. 8, pp.
2522–2533, 2016.

[20] W. Liu, T. Xu, J. Li, C. Wang, P. Montuschi, and F. Lombardi,
“Design of unsigned approximate hybrid dividers based on restoring
array and logarithmic dividers,” IEEE Transactions on Emerging Topics
in Computing, vol. 10, no. 1, pp. 339–350, 2022.

[21] L. Chen, J. Han, W. Liu, P. Montuschi, and F. Lombardi, “Design,
evaluation and application of approximate high-radix dividers,” IEEE
Transactions on Multi-Scale Computing Systems, vol. 4, no. 3, pp. 299–
312, 2018.

[22] S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider
for approximate applications,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), 2016, pp. 1–6.

[23] H. Jiang, L. liu, F. Lombardi, and J. Han, “Low-power unsigned divider
and square root circuit designs using adaptive approximation,” IEEE
Transactions on Computers, vol. 68, no. 11, pp. 1635–1646, 2019.

[24] J. Melchert, S. Behroozi, J. Li, and Y. Kim, “SAADI-EC: A quality-
configurable approximate divider for energy efficiency,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11,
pp. 2680–2692, 2019.

[25] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi,
“Truncapp: A truncation-based approximate divider for energy efficient
DSP applications,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, 2017, pp. 1635–1638.

[26] C. K. Jha, K. Prasad, V. K. Srivastava, and J. Mekie, “FPAD: A
multistage approximation methodology for designing floating point ap-
proximate dividers,” in 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), 2020, pp. 1–5.

[27] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, vol. EC-11,
no. 4, pp. 512–517, 1962.

[28] H. Saadat, H. Javaid, and S. Parameswaran, “Approximate integer
and floating-point dividers with near-zero error bias,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[29] M. Schulte and E. Swartzlander, “Truncated multiplication with cor-
rection constant [for dsp],” in Proceedings of IEEE Workshop on VLSI
Signal Processing, 1993, pp. 388–396.

[30] R. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change
detection algorithms: a systematic survey,” IEEE Transactions on Image
Processing, vol. 14, no. 3, pp. 294–307, 2005.

Yong Wu received the B.S. degree in electronical
information science and technology from the Uni-
versity of Electronic Science and Technology of
China, Chengdu, China in 2020. He is currently
pursuing the master’s degree at the School of Inte-
grated Circuits, Tsinghua University, Beijing, China.
His current research interests include approximate
computing and reconfigurable computing.

Honglan Jiang (S’14-M’18) received the B.Sc. and
master’s degrees in instrument science and tech-
nology from the Harbin Institute of Technology,
Harbin, China, in 2011 and 2013, respectively, and
the Ph.D. degree in integrated circuits and systems
from the University of Alberta, Edmonton, AB,
Canada, in 2018. From 2018 to 2021, she was a
Postdoctoral Fellow with the School of Integrated
Circuits, Tsinghua University, Beijing, China. She
is currently an associate professor with the De-
partment of Micro-Nano Electronic, Shanghai Jiao

Tong University, Shanghai, China. Her research interests include approximate
computing, reconfigurable computing, and stochastic computing.

Zining Ma received the B.S. degree in microelec-
tronics from the Harbin Institute of Technology,
Harbin, China in 2019. He is currently studying for-
ward the master’s degree at the School of Integrated
Circuits, Tsinghua University, Beijing, China. His
current research interests include stochastic comput-
ing and reconfigurable computing.

Pengfei Gou received the B.S., M.S. and Ph.D.
degrees in Microelectronics from Harbin Institute
of Technology, Harbin, China, in 2006, 2008 and
2012 respectively. He is currently the senior architect
of Hexin Technology. His research interests include
high performance processor architecture, heteroge-
neous computing architecture and VLSI SoC Design.

Yong Lu received the B.S. and M.S. degrees in
Electronics Engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2004 and 2007 re-
spectively. She is a senior architect of Hexin Tech-
nology and focusing on the chip architecture of high-
performance processors, especially for the reliability,
security, visibility, power and performance manage-
ment. Her research interests also include heteroge-
neous computing and VLSI verification methodol-
ogy.

14

Jie Han (S’02-M’05-SM’16) received the B.Sc.
degree in electronic engineering from Tsinghua Uni-
versity, Beijing, China, in 1999 and the Ph.D. de-
gree from the Delft University of Technology, The
Netherlands, in 2004. He is currently a Professor
in the Department of Electrical and Computer En-
gineering at the University of Alberta, Edmonton,
AB, Canada. His research interests include approx-
imate computing, stochastic computing, reliability
and fault tolerance, nanoelectronic circuits and sys-
tems, novel computational models for nanoscale and

biological applications. Dr. Han was a recipient of the Best Paper Award at
the International Symposium on Nanoscale Architectures (NanoArch) 2015
and Best Paper Nominations at the 25th Great Lakes Symposium on VLSI
(GLSVLSI) 2015, NanoArch 2016 and the 19th International Symposium
on Quality Electronic Design (ISQED) 2018. He was nominated for the
2006 Christiaan Huygens Prize of Science by the Royal Dutch Academy
of Science. His work was recognized by Science, for developing a theory
of fault-tolerant nanocircuits (2005). He is currently an Associate Editor for
the IEEE Transactions on Emerging Topics in Computing (TETC), the IEEE
Transactions on Nanotechnology, the IEEE Circuits and Systems Magazine,
the IEEE Open Journal of the Computer Society and Microelectronics
Reliability (Elsevier Journal). He served as a General Chair for GLSVLSI
2017 and the IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT) 2013, and a Technical Program
Committee Chair for GLSVLSI 2016, DFT 2012 and the Symposium on
Stochastic & Approximate Computing for Signal Processing and Machine
Learning, 2017.

Shouyi Yin (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electronic engineering
from Tsinghua University, China, in 2000, 2002, and
2005, respectively.,He worked at Imperial College
London, London, U.K., as a Research Associate. He
is currently a Processor with the School of Integrated
Circuits, Tsinghua University. His research interests
include reconfigurable computing, mobile comput-
ing, and system-on-chip (SoC) design.

Shaojun Wei was born in Beijing, China in 1958.
He received Ph.D. degree from Faculte Polytech-
nique de Mons, Belguim, in 1991. He became a
professor in Institute of Microelectronics of Ts-
inghua University in 1995. He is a senior member
of Chinese Institute of Electronics (CIE). His main
research interests include VLSI SoC design, EDA
methodology, and communication ASIC design.

Leibo Liu (M’10-SM’17) received the B.S. degree
in electronic engineering and the Ph.D. degree with
the Institute of Microelectronics, both from Tsinghua
University, Beijing, China, in 1999 and 2004, re-
spectively. He is currently a Full Professor with the
School of Integrated Circuits, Tsinghua University.
His current research interests include reconfigurable
computing, mobile computing, and very large-scale
integration digital signal processing.

