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A Deflection-Based Deadlock Recovery Framework
to Achieve High Throughput for Faulty NoCs

Yibo Wu, Liang Wang, Xiaohang Wang, Jie Han, Shouyi Yin, Shaojun Wei, Leibo Liu

Abstract—Deadlock is a critical issue in faulty NoCs. Exist-
ing deadlock-free approaches on faulty NoCs suffer from low
throughput and poor fairness when the network becomes over-
saturated. This problem hinders their practical use as over-
saturation scenarios are more frequent on faulty NoCs. To ad-
dress this issue, a deflection-based deadlock recovery framework
is proposed for higher over-saturation performance on faulty
NoCs. First, we observe the low over-saturation performance of
existing deadlock recovery approaches, and analyze the positive
feedback loop that can amplify the negative impact of deadlocks
and congestions, which necessitate handling both deadlocks and
congestions in a deadlock recovery framework. Second, we
propose a novel deadlock recovery framework, which includes
an accurate, timely deadlock detection and a highly-efficient
deadlock recovery. Both the deadlock detection and recovery
reduce the average packet traversal latency, thereby improving
the average over-saturation throughput. Third, we propose a
distributed implementation to make the entire network enter
and exit the deflection mode, which is conducted by broadcasting
special messages via a bufferless subnetwork. An average over-
saturation throughput improvement of 1.1∼8.1× over state-of-
the-art approaches is achieved. In terms of fairness, the minimal
over-saturation throughput is improved from near zero to half
of the peak throughput.

Index Terms—faulty NoCs, deadlock recovery, deflection mode,
over-saturation performance

I. INTRODUCTION
As chips are designed with a growing number of cores

for better parallelism, Networks-on-Chip (NoCs) have been
considered to be promising on-chip interconnections due to

This research program was supported in part by the National Natural
Science Foundation of China (Grant No.61834002), and in part by the
National Key R&D Program of China (Grant No. 2018YFB2202101), and in
part by the National Science and Technology Major Project of the Ministry
of Science and Technology of China(Grant No. 2018ZX01027101-002), and
in part by the Natural Science Foundation of Guangdong Province un-
der Grant 2018A030313166, and in part by Pearl River S&T Nova Pro-
gram of Guangzhou under Grant 201 806010038, and in part by Funda-
mental Research Funds for the Central Universities under Grant 2019MS087,
and in part by Open Research Grant of State Key Laboratory of C omputer Ar-
chitecture Institute of Computing Technology Chinese Academy of Sci-
ences under Grant CARCH201916, and in part by National Natural Sci-
ence Foundation of China under Grant 61971200. (Corresponding author:
Leibo Liu.)

Yibo Wu, Shouyi Yin, Shaojun Wei and Leibo Liu are with the Institute
of Microelectronics, Tsinghua University, Beijing, China. Leibo Liu and
Shaojun Wei are also with Beijing National Research Center for Information
Science and Technology, Beijing, China. Email:wyb18@mails.tsinghua.edu.cn
, {yinsy, wsj, liulb}@tsinghua.edu.cn

Liang Wang is with the School of Computer Science and Engineering,
Beihang University, Beijing, China. Email: lwang20@buaa.edu.cn

Xiaohang Wang is with the School of Software Engineering, South
China University of Technology, Guangzhou, China. Email: xiaohang-
wang@scut.edu.cn

Jie Han is with the Department of Electrical and Computer Engineering,
University of Alberta, Canada. Email: jhan8@ualberta.ca

their better bandwidth and scalability characteristics [11].
Aggressive transistor scaling makes it easier for chips to
suffer from failures [2], [5], [44]. Therefore, future NoCs are
likely to be irregular [47], which makes the deadlock a severe
problem because conventional solutions for deadlock freedom
(e.g. deterministic routing) applicable on regular NoCs are no
longer effective. To achieve deadlock freedom in faulty NoCs,
deadlock avoidance based [2], [40], [44], deadlock recovery
based [46], [47] and subactive [36]–[39] approaches have been
proposed [12]. But they all suffer from performance penalties
especially when the network becomes over-saturated, resulting
in a waste of on-chip resources.

Deadlock avoidance based approaches such as Immunet
[44], uDIREC [40] and ARIADNE [2], proactively avoid dead-
lock dependence by placing some turn or virtual channel (VC)
usage restrictions in the network. But these restrictions reduce
the saturation point and limit the over-saturation throughput.
In contrast, deadlock recovery based approaches such as Static
Bubble [47], SPIN [46], allow deadlocks to form but develop
mechanisms to detect and recover from deadlocks. There is
a third type of approaches such as BBR [37], BINDU [39],
DRAIN [36] and SWAP [38]. They claim themselves to be
subactive [36] because they do not detect deadlocks but relies
on the periodic packet movement to resolve deadlocks. Despite
achieving a higher saturation point, both recovery-based and
subactive approaches cannot maintain a high throughput as
well as a good fairness when the network is over-saturated.
The main reason is that they fail to detect deadlocks timely
or recover from deadlocks with a high efficiency. These two
weaknesses incur a long average flit traversal latency and
degrade the over-saturation throughput.

On the other hand, faulty NoCs are more easily saturated
because of fewer available bandwidths and reduced path diver-
sity. Therefore, although realistic benchmarks exhibit relatively
low injection rates, over-saturation scenarios in faulty NoCs
appear more frequently than in a regular mesh NoC. According
to our experiments conducted on an 8×8 mesh network and
under bit complement traffic, 20 faulty links can reduce the
saturation point of ARIADNE by nearly 60%. As a result, it
is necessary to develop a deadlock-free approach to achieve
higher throughput and better fairness in an over-saturated
faulty NoC.

In this paper, DeDR, a Deflection-Based Deadlock Recovery
framework is proposed to achieve high over-saturation
throughput and fairness for faulty NoCs. DeDR is based on
an observation of a positive feedback loop between deadlocks
and congestions. After timely detection of a potential dead-
lock, DeDR makes the network enter a deflection mode in a
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Fig. 1. Average and minimal throughput comparisons under bit complement
traffic

distributed manner and handle both deadlocks and congestions
with a high efficiency. By improving the deadlock detection
timeliness and deadlock recovery efficiency, the average flit
traversal latency is reduced, thereby improving the over-
saturation throughput.

The contributions of this paper are:
• We observe significant over-saturation throughput degra-

dation for existing deadlock recovery approaches. We also
observe a positive feedback loop between deadlocks and con-
gestions that can amplify the negative impact of these reasons
for deadlock recovery based approaches. These analyses form
the basis of DeDR design.

• We propose a deadlock recovery framework that handles
both deadlocks and congestions in the same framework. DeDR
judiciously combines the probe detection and timeout counters
to achieve an accurate and timely deadlock detection. When
detecting a potential deadlock, DeDR drives the network
into a deflection mode, routes and ejects all packets in a
backpressureless manner with a high efficiency. DeDR is
topology agnostic, and achieves fully adaptive routing and
deadlock freedom with minimally one VC for every message
class.

• We present a distributed implementation to make the entire
network enter and exit the deflection mode. The implemen-
tation is done by broadcasting a triggering message and an
empty signal via a bufferless subnetwork, and using a one-
bit wire grid to finish the deflection mode. The experimental
results demonstrate that under real workloads, DeDR can
reduce the average latency by up to 50%.

The rest of the paper is organized as follows. Section II
details our motivation to improve over-saturation performance
and the positive feedback loop between deadlocks and con-
gestions. Section III describes how DeDR works. Section IV
describes the required hardware overhead. Section V presents
the experimental results. Section VI presents some related
work. Section VII concludes the paper.

II. MOTIVATION

We observe that existing deadlock avoidance based, dead-
lock recovery based and subactive approaches fail to maintain
a high throughput as well as a good fairness when the network
is over-saturated. To demonstrate the performance degradation,
Figure 1 shows a case study to compare the over-saturation
throughput of four approaches: one representative avoidance-
based approach, ARIADNE [2]; two representatives recovery-
based approaches, SPIN [46] and Static Bubble [47]; one

representative subactive approach, DRAIN [36]. We choose
these four approaches and compare with them in Section V,
because they are topology agnostic and achieve deadlock free-
dom with minimally 1 VC per message class. As the injection
rate increases and the network becomes over-saturated, the
average throughputs of these approaches significantly degrade
and the minimal throughputs approach zero. In Figure 1, the
average throughput is defined as the average rate for flits
to be accepted at destinations. The minimal throughput is
defined as the lowest flit accept rate among all traffic flows
[12]. A minimal throughput close to zero indicates a poor
fairness in network bandwidth allocation. The reasons for
the performance degradation are analyzed below from aspects
of saturation point, over-saturation throughput and fairness.
Particularly, for deadlock recovery based approaches such
as Static Bubble, SPIN and DRAIN, there exists a positive
feedback loop between deadlocks and congestions that can
further worsen the problem.

A. Saturation Point

The limited average over-saturation throughput of ARI-
ADNE is restricted by its low saturation point. ARIADNE is
based on spanning tree construction and uses up*/down* [48]
turn restrictions to avoid deadlocks. The routing restrictions
lead to non-minimal routing and reduced path diversity [47],
and consequently reduce the saturation point. This problem is
prevalent in other deadlock avoidance based approaches [2],
[19], [29], [32], [40]. Deadlock recovery based approaches
typically do not suffer this problem because they remove the
routing restrictions. Their fully adaptive routing can make
better use of the network bandwidth.

B. Over-saturation Throughput

Although SPIN, Static Bubble and DRAIN achieve a higher
saturation point than ARIADNE, they have a dramatic average
throughput degradation when the network is over-saturated.
Both Static Bubble and SPIN use a probe detection mechanism
which has a low false positive rate for deadlock detection.
For deadlock recovery, Static Bubble augments a subset of
routers with additional bubble buffers, so that Bubble Flow
Control [43] can be enabled for recovery. SPIN recovers
from deadlocks by orchestrating all routers in the deadlock
dependence chain to synchronously transmit their stalled flits.
DRAIN does not attempt to detect deadlocks but relies on
periodically draining packets along an escape ring cycle to
recover from deadlocks. The main reasons for the over-
saturation throughput degradation of these three approaches
lie in the deadlock detection timeliness and deadlock recovery
efficiency. They are detailed as follows.

Deadlock detection timeliness: Both Static Bubble and
SPIN adopt the probe detection mechanism [46], [47], [55]
which often seriously delays deadlock detection. The mech-
anism works as follows. When a router detects a packet
being stalled over a threshold time, the router sends a probe
from this stalled packet. The probe follows routers along the
buffer dependence chain and will return to the sender router
if there is a deadlock. Then, the sender router confirms a
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Fig. 2. Motivational examples

deadlock. However, we observe that the probe mechanism
fails to guarantee timely deadlock detection, which can impact
over-saturation throughput. Figure 2(a) shows the existing time
of deadlocks in SPIN until they are detected. In the case study,
the total number of detected deadlocks is over 900, but only
27.7% of them are detected within 100 cycles. Some deadlocks
are even detected after they have formed for more than 1000
cycles. This phenomenon happens due to the probe priority and
dropping. It is possible that one probe sent out due to a real
deadlock has a lower priority, whereas another probe sent out
due to congestion has a higher priority. The less prioritized
probe would be dropped. Therefore, the effective deadlock
detection that can detect a real deadlock is interrupted, and
the deadlock is not timely detected. Because DRAIN does not
attempt to detect deadlocks, its periodic packet movement is
often late in resolving deadlocks and renders itself suffer from
the problem of deadlock detection timeliness.

Deadlock recovery efficiency: The second reason is the
low deadlock recovery efficiency. It is observed that with the
same network configurations of Figure 2(a), SPIN requires
47 cycles1 on average to address one deadlock after deadlock
detection. Considering the total number of deadlocks, which
is more than 900 during the 100K-cycle runtime, for more
than 40% of the runtime, a deadlock exists and the network
is trying to recover from it. The deadlock forms a hotspot
in the network and causes serious tree saturation [12], [42].
Packets enroute are very likely to encounter deadlocks and
congestions. Furthermore, the recovery procedures only handle
the deadlocks, leaving the network still highly congested after
recovery. These two factors lead to high flit traversal latency.
DRAIN periodically routes packets one hop forward along
the draining cycle and claims that deadlocks are handled
subactively with little effort. If the frequency of draining
is high, many packets are forced to be detoured and the
traversal latency would increase. If the frequency of draining
is low, the network would be obtuse in reacting to deadlocks.
Many packets would be stalled in the network waiting for the
deadlock to be resolved, which also significantly increases the
traversal latency.

We note that the average over-saturation throughput is
generally reciprocal to the average flit traversal latency, as
shown in Figure 2(b). This figure is obtained from experiments
on several deadlock freedom approaches for faulty NoCs
with various per-hop latency and synthetic traffic patterns.

1We assume that special messages used in SPIN and Static Bubble take
one cycle for each hop.

0

0.04

0.08

0.12

0.16

1 6 11 16 21 26 31 36 41 46 51 56 61

Th
ro

ug
hp

ut
 

(fl
its

/n
od

e/
cy

cl
e)

Source router of each traffic flow

Fig. 3. Throughput of every traffic flow in SPIN under bit complement traffic

9

23 23

27

0

5

10

15

20

25

30

N
um

be
r o

f d
ea

dl
oc

ks

Time epoch (cycles)

Fig. 4. Number of observed deadlocks in Static Bubble

Therefore, the over-saturation throughput degrades due to the
high traversal latency which is induced by the low deadlock
recovery efficiency.

C. Fairness

State-of-the-art deadlock-free approaches in faulty NoCs
also incur serious fairness issues. In Figure 1, the minimal
throughput among all traffic flows approaches zero when the
network becomes over-saturated. The minimal throughput is
defined as the lowest flit accept rate among all traffic flows
[12]. It corresponds to the traffic flow that has the lowest accept
to generate rate2 and stands for network fairness [12]. The
results of Figure 1 indicate that these four approaches fail
to provide satisfying fairness. Figure 3 plots the throughput
(accept rate) of every traffic flow in SPIN. The assigned
synthetic traffic pattern is bit complement so that there are
in total 64 traffic flows between different pairs of source
routers and destination routers. Although all traffic flows are
generated with the same rate, Figure 3 demonstrates that in
SPIN, some traffic flows sustain a high throughput while some
are seriously starved, with a minimal throughput close to zero.
Other approaches also generate similar trends to SPIN. A
fair network should serve different traffic flows equally and
generate higher minimal throughput. In real applications, once
the network using SPIN saturates, some processors will hardly
have a chance to maintain the operation due to the starvation
of their traffic flows [12], [25].

D. Positive Feedback Loop between Deadlocks and Conges-
tions

We observe that for deadlock recovery based approaches,
there exists a phenomenon that can further amplify the neg-
ative impact of aforementioned weaknesses. Once a deadlock

2All traffic flows are generated with the same rate in synthetic experiments
in this paper.
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accidentally occurs, the network becomes over-saturated and
deadlock recurrences are expected to be frequent. Figure 4
plots the number of observed deadlocks in Static Bubble under
uniform random traffic. The simulation runtime is 50K cycles
and the first deadlock is detected at the 32406th cycle. Before
the detection of the first deadlock, the network is slightly
congested but not saturated yet. However, after the handling of
the first deadlock, deadlocks occur with an average frequency
of 4.6 times/thousand cycles.

This phenomenon can be explained by a positive feedback
loop between deadlocks and congestions. After a deadlock
is detected and the network is recovering from it, routers in
both the deadlock chain and adjacent congested area become
hotspots of the network, with every VC taken up and prevent-
ing further injection from their source queues. Hence, packets
to be injected are accumulated in the source queues. After the
deadlock recovery, injection resumes and packets are injected
at the highest rate that the number of available credits and
free VCs allows. Besides, most of previous approaches only
address the deadlock without paying attention to adjacent con-
gested regions. These two facts render the network seriously
congested again. According to the formation of deadlocks [12],
[23] and previous observation [46], [47], when the network
is congested with a high VC utilization rate and a high
injection rate, the network is prone to deadlock. Consequently,
deadlock recurrences are expected to be frequent after the first
deadlock occurs accidentally, and the network also becomes
over-saturated.

DeDR is not proposed to mitigate the positive feedback
loop. Instead, DeDR makes use of the characteristics of
the feedback loop to improve the over-saturation throughput.
DeDR detects the first deadlock accurately so as not to
unnecessarily fall into the feedback loop. Once a deadlock
occurs, DeDR manages to detect the subsequent deadlocks in
a timely manner and recover from them with a high efficiency.

III. PROPOSED APPROACH

Rather than proactively avoiding deadlocks, DeDR detects
deadlocks and then manages to recover from them. During the
deadlock recovery procedure, the network enters a deflection
mode, in which packets are routed in a backpressureless
manner [34]. The implementation of the deflection mode
is carried out with some special messages in a distributed
manner.

In this paper, we focus on link failures that render the
network irregular [2], [45], [47]. Other faulty network com-
ponents can be treated as link failures. For example, a faulty
output port is the same as disabling the link connected with
this port. Besides, like previous work [2], we assume that link
failures are permanent and use an ideal fault detection method.

A. Deadlock Freedom Framework

1) Deadlock detection:
Based on the deadlock detection timeliness analysis in Section
II-B and the positive feedback loop in Section II-D, we claim
that a deadlock detection mechanism should be both accurate
and timely. In DeDR, the probe detection [46], [47] and

timeout counters [3], [10] are combined to achieve this goal.
The probe detection detects deadlocks accurately and has a
low false positive rate. However, it fails to detect deadlocks in
a timely manner. In contrast, timeout counter never misses any
deadlocks and guarantees that all deadlocks can be detected
timely once they have existed over a predefined threshold time.
However, timeout counter sometimes treats false positives as
deadlocks.

According to the positive feedback loop, the first deadlock
should be detected accurately with a low false positive rate,
otherwise the network might unnecessarily fall into the loop
and the saturation point would be reduced. Therefore, in
DeDR, when an application starts operating, the first deadlock
is detected with probe messages.

The recurrent deadlocks should be detected timely, so that
the over-saturation throughput would not be degraded. But ac-
curacy is not very important for them, because deadlock recur-
rences are expected to be frequent. Therefore, after recovering
from the first deadlock, DeDR turns to timeout counters for
future deadlock detection. The timeout counters mechanism
confirms a potential deadlock once a packet is found to have
been stalled in the current router over a threshold time. If
deadlocks have not been detected by timeout counters for a
long period, e.g. 10K cycles, which implies that deadlocks are
unlikely to occur in a short period and the positive feedback
loop is broken, the probe detection mechanism is again enabled
for the next deadlock detection. By judiciously combining the
probe detection mechanism and timeout counters, the deadlock
detection of DeDR is both accurate and timely.

We note that Static Bubble and SPIN [46], [47] require
the probe to accurately locate the deadlock for subsequent
recovery procedures, which prevents using timeout counters
and hurts their scalability. It is estimated in Static Bubble that
a 128-bit wide probe can record up to 59 turns in an 8×8
mesh network. First, theoretically a deadlock chain can cover
up to 64 nodes and be 63 hops long [2], in which case the
probe message would fail. Second, the probe mechanism has
a limited scalability. On a 16×16 mesh network, the scale of
deadlock chains can be larger and wider links are needed to
record longer probe paths. But different from Static Bubble
and SPIN, DeDR only needs to confirm the existence of a
deadlock rather than accurately locating where it is. Therefore,
timeout counters can also be used for timely detection of
deadlocks. And the probe message here does not need to
record the paths so that there is a better scalability.

2) Deadlock recovery:
To improve the deadlock recovery efficiency, we design a
deflection mode to handle both deadlocks and congestions in
the deadlock recovery framework. The deflection mode mainly
has two differences compared with the normal state. First,
packet injection is forbidden unless the head flit of a packet
has already been injected before the start of the deflection
mode. Second, in the deflection mode, flits in the network are
routed in a backpressureless manner, which is similar to that
of bufferless deflection [15], [16], [34]. The backpressureless
flow control is intrinsically deadlock free and is used to drain
all packets remaining in the network.

During the deflection mode, flits en route are not buffered
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anywhere. When there is no flit on one incoming link, one
randomly chosen flit buffered in VCs connected with this link
is allowed to attend output port allocation and starts its routing
in the backpressureless manner. Other flits remain in VCs
until the link is empty again in the following cycles. Flit-
by-flit routing is used so that probabilistic livelock freedom
is guaranteed [12], [22], [27]. When a flit attends output port
allocation but fails in the contention for the productive output
port, instead of being dropped or waiting in buffers, the flit
is deflected to another available output port, regardless of
whether this output port brings the flit closer to its destination.
The deflection mode finishes when all the packets in the
network are ejected. Then, the credit count of every port is
set to the maximum and the network returns to the normal
states.

To provide routing deadlock freedom and guarantee that no
packet is stalled or dropped anywhere, for every router, the
number of input ports must be equal to that of output ports
[34], so that there is always a maximal matching between
input requests and output ports when deflection is allowed.
This condition is satisfied if links of the topology and link
faults are bidirectional. Many commonly used topologies such
as Mesh and Torus satisfy the first requirement [34]. Moreover,
if a fault disables an input or an output port and renders the
link unidirectional, the corresponding output or input port is
also disabled to make this link fault bidirectional [17].

The above descriptions detail how DeDR works. Similar
to SPIN and Static Bubble, DeDR is a deadlock recovery
framework for faulty NoCs rather than a complete NoC fault
tolerance mechanism. It is plug-and-play with existing fault-
tolerant routing algorithms [2], [17] to support deadlock-free
fault tolerance. In the evaluations, we combine DeDR with
routing tables of ARIADNE [2] (but the up*/down* routing
restrictions used for deadlock freedom are removed).

B. Distributed Implementation of Deadlock Recovery

DeDR uses a triggering message for triggering of the
deflection mode, an empty signal for confirming whether the
network has become empty and a one-bit wire grid to finish
the deflection mode. We claim that the implementation is
fully distributed. We define ’fully distributed’ as: (1) routers
involved in the implementation only need local knowledge [2],
(2) any failed implementation component will not incur global
failure of the deadlock recovery process [17]. To satisfy the
first definition, DeDR requires every router to be involved in
the implementation, but every router only needs the mode and
direction information of itself for the execution. To satisfy
the second definition, if any implementation component of a
router fails, the router can be treated as a totally failed router,
and other routers can still initiate the implementation. In this
section, the implementation of deadlock recovery is described
from aspects of how to trigger and finish the deflection mode.
We also illustrate the advantages of the deflection mode.

1) Triggering of the deflection mode:
The triggering of the deflection mode is carried out by
broadcasting a triggering message. Starting from the router that
detects a deadlock (we will denote it as DR, i.e. detector router,

hereafter), this router enters the deflection mode and sends
the triggering message to adjacent routers. After receiving the
triggering message, a router enters the deflection mode, stall
the allocation for the current cycle and forwards the triggering
message to its adjacent routers. In an N×N mesh network, the
triggering procedure takes at most (N2-1) cycles to complete.
When the network is free of faults, it takes at most 2(N -
1) cycles. The transmission of triggering messages uses a
separate subnetwork and takes one cycle for each hop. The
subnetwork helps avoid link usage conflicts with normal flits
during the triggering process and then is also used for header
information transmission because the deflection mode uses flit-
by-flit routing to avoid livelocks.

One possible concern is the buffer overflow problem due
to the coexistence of routers in the deflection mode and
routers in the normal state when transmitting the triggering
messages. However, this can be avoided because if router A,
which is already in the deflection mode is sending a flit to
neighboring router B, which is not in the deflection mode,
then router A must have sent a triggering message to router
B simultaneously. The triggering message can reach router B
earlier than the flit and ensure that when the flit reaches router
B, router B has entered the deflection mode and is routing flits
in a backpressureless manner.

Because a deadlock can influence several routers, it is likely
that several routers detect deadlocks simultaneously and all
become DRs. However, it is guaranteed that in the deflection
mode, there is only one DR or the finish of the deflection mode
might not be carried out correctly. To cope with the situations
of multiple DRs, when a router receives several triggering
messages simultaneously, there is a priority comparison among
these messages to drop the less prioritized ones. A triggering
message carries the DR id and the deflection mode start time
of the DR. A message with an earlier DR deflection mode
start time is prioritized over one with a later start time. If both
messages have the same DR deflection mode start time, then
the one with a smaller DR id is prioritized. If a message has
a lower priority, the message is dropped. The router records
the DR id and DR start time of the message with the highest
priority in a small buffer and forwards this message to its
adjacent routers. If a router already in the deflection mode
receives a message with a higher priority, the router should
update its recorded information and forward this message to
adjacent routers.

A tree structure is constructed during the triggering proce-
dure. This serves the purpose of the network empty confir-
mation, and its usage is detailed in the next section. Similar
to ARIADNE [2], when the triggering message is forwarded,
each router marks the directions as either up or down. An
up direction brings the router closer to the DR, while a
down direction brings the router away from the DR. However,
instead of using this for turn restrictions such as in ARIADNE,
the classification of directions is used to record how the
triggering message is broadcasted from the DR to the entire
network. The DR only has down directions. The routers that
only have up directions are denoted as the farthest router (FR)
hereafter.

2) Finish of the deflection mode:
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Before finishing the deflection mode, the DR needs to confirm
that all packets in the network are ejected and the network
is empty. The up/down tree structure constructed during the
triggering procedure is used for the DR to gather empty
information from other routers. Every router has a one-bit
register, whose value is set to true when there is no flit in
the router. The register values of all the routers are logical
ANDed and backpropagated to the DR via the tree structure.
The empty information backpropagation starts from FRs when
their register values are true. If a router receives empty signals
from all its down directions, and its register value is also
true, then it continuously sends an empty signal out of its up
directions every cycle. The empty signal is also transmitted
via the bufferless subnetwork and takes one cycle for each
hop.

Because the one-bit register value is used only when the
empty signal reaches the router, it is possible that a flit is on
the connected link and the empty signal observes a register
value of false. Then the flit might not be detected and the
empty confirmation process is not accurate. To avoid such
cases, for a router with one-stage pipeline [41], we regulate
that the register value is set true if the router has been free
of flits for three consecutive cycles. In this way, flits that are
in three places, i.e. the input links, the routers and the output
links, can all be detected.

When the DR receives empty signals from all its down
directions and its register value is also true, the network is
determined to be empty. Then the DR places a voltage pulse on
a one-bit wire grid to inform all routers to finish the deflection
mode. For a moderate network size (e.g. 8×8 Mesh), we
assume that the voltage pulse can reach all routers along the
same dimension [28]. The finish process is assumed to take 5
cycles to complete, which is short compared with the timeout
counter threshold time (50 cycles in Section V). Therefore,
the voltage pulse has a negligible impact on the next deadlock
detection.

The deflection mode implementation shows a good scala-
bility, even though the entire network needs to be driven into
the deflection mode and the deflection mode needs to drain
all packets remaining in the network. It is observed that under
uniform random traffic, the deflection mode lasts 120 cycles on
average in a regular 8×8 mesh network and 320 cycles in a
regular 16×16 mesh network. Considering the quadratically
increasing number of routers, a good scalability on larger
networks can be expected.

3) Advantages of the deflection mode:
The first advantage is high recovery efficiency in the deflection
mode. Although the injection is forbidden, the throughput
remains high and the deflection mode does not influence
the overall performance. In one case study under uniform
random traffic, the average throughput of DeDR in the normal
state is 0.303 flits/node/cycle and the average throughput in
the deflection mode is 0.237 flits/node/cycle. This provides a
higher average over-saturation throughput compared with other
deadlock recovery based approaches, where the injection is al-
lowed but the throughput during the recovery process is fairly
low. In DeDR, the average duration of the deflection mode
is 120 cycles, and all packets can be ejected within this time

span. In contrast, after deadlock detection, SPIN on average
requires 47 cycles to address just one deadlock. During this
period, only the deadlock dependence circle is broken while
few stalled packets are ejected. As for DRAIN, although it
can also handle false positives in the recovery process (by
draining packets), it only guarantees the proceeding of some
packets that are likely to be involved in deadlocks. After one
recovery, deadlocks may still exist and more recoveries are still
required. Most packets are stalled in the network and few can
be ejected during the recovery process. Therefore, its recovery
efficiency is evidently lower than that of DeDR.

The second advantage is that every packet in the network
is guaranteed to be ejected after the deflection mode. DeDR
benefits from it in terms of fairness. In ARIADNE, SPIN,
Static Bubble and DRAIN, the network is never free of packets
in over-saturation scenarios. Depending on the assigned traffic
pattern, some routers in the network are constantly involved in
congestion. Packets in source queues of these routers have to
undergo many allocations before they are injected. Therefore,
many traffic flows from these routers are starved and the
fairness problem worsens. In contrast, after the deflection
mode, DeDR leaves a network free of packets, and all routers
have the same chance to inject packets stalled in source
queues. This significantly improves fairness.

C. Additional Implementation Details

1) Protocol deadlock freedom:
In cache coherent systems [51], the network using DeDR is
required to separate different message classes and achieve pro-
tocol deadlock freedom. In the normal states, DeDR uses dif-
ferent virtual networks (VNets) for different message classes
to avoid protocol deadlock.

During the deflection mode, DeDR statically time-
multiplexes the links and crossbars between different time
domains [54] to avoid protocol deadlocks. Each message class
can only use its designated time domain so that different
message classes are separated. For example, assuming that
there are two message classes, request packets and reply
packets. Reply packets are the terminating message class [56].
DeDR uses two time domains to separate these two message
classes. During the first time domain, request packets can use
all routing resources while reply packets are forbidden. During
the second time domain, reply packets can use all routing
resources while request packets are forbidden. The injection
of reply packets is also permitted.

Proof of protocol deadlock freedom: During the deflection
mode, protocol deadlocks occur when both the two condi-
tions below are met and form a cyclic dependence. First,
the network is full of packets belonging to nonterminating
message classes (e.g. request packets) [56]. They prevent
packets of terminating message classes (e.g. reply packets)
from being injected into the network. Second, because packets
of terminating message classes cannot be injected, the injection
queues for terminating message classes are full and the packet
generation of terminating message classes is prevented. Hence,
packets of nonterminating message classes cannot be ejected
and processed and they might fill the network. In DeDR, by



7

A1 A2 A3 A4

Reassembly buffer

B1 B2 B3 B4
Packet C and D 

cannot be ejected 

since reassembly 

buffers are occupied 

by other packets

Network

C1

C2

C3
C4

D5

D1

D2

D3

D4

C5

A5 B5

Flit A5 and B5 

cannot be injected 

because the 

network is full

Fig. 5. Reassembly deadlock in bufferless deflection

statically time-multiplexing the links and crossbars between
different time domains, packets of terminating message classes
in the network are guaranteed to reach the destinations and be
consumed. Therefore, packets of terminating message classes
are guaranteed to be injected. In this way, the cyclic depen-
dence is broken and protocol deadlocks are avoided in the
deflection mode.

Although DeDR uses static time domains, the latency does
not increase. This is because time domains are only used when
routing deadlocks occurs and the network is usually deeply
saturated with a long latency, the additional latency due to time
domains is in fact minimal. By synchronizing the time domains
of all routers during the triggering message broadcasting,
DeDR can easily support protocol deadlock freedom during
the deflection mode.

2) Packet reassembly:
Flit-by-flit routing is used in the deflection mode for proba-
bilistic livelock freedom [12], [27]. Therefore, packets can be
truncated and reassembly is necessary. A reassembly mech-
anism borrowed from [15], [22] is incorporated to address
this problem. DeDR uses MSHRs that already exist in the
private caches as the reassembly buffers. But the Retransmit-
Once mechanism proposed in [15], which is used to avoid
reassembly deadlocks, is eliminated.

In bufferless deflection, reassembly deadlocks occur due
to the lack of buffer backpressure in reassembly buffers, as
depicted in Figure 5. The reassembly buffers are occupied by
some flits of packet A and packet B and cannot be released
unless flit A5 and B5 are injected and enter the reassembly
buffers. Flits constituting packet C and D cannot be ejected
because reassembly buffers are occupied by other packets.
However, flits A5 and B5 cannot be injected since the network
is full of flits constituting packet C and D. There exists a cyclic
resource dependence that needs to be broken.

According to the above descriptions, one way is to guarantee
that for any half-injected packet, the remaining flits of this
packet (e.g. flit A5 and B5 in Figure 5) outside the network
will be injected later on. In this way, the fully-injected packet
(e.g. packet A and B) can be successfully reassembled and
release the reassembly buffers for other packets.

Proof of reassembly deadlock freedom: To satisfy the
above goal, DeDR guarantees that: first, a fully-injected packet
is always able to enter the reassembly buffers; second, there
are always fully-injected packets in the network that can be
reassembled and release buffers for further injection.

To satisfy the first requirement, we regulate that only tail
flits can enter reassembly buffers and reserve space for the

whole packet. If a tail flit is in the network, then the packet
must have been fully-injected. In this way, it is impossible
that reassembly buffers are occupied by half-injected packets
as depicted in Figure 5.

The second requirement is naturally satisfied with typical
VC configurations. It is usually assumed by NoC works that
a VC has 4 or 5 flit-sized buffer entries and a data packet
consists of 5 or 8 flits. According to this VC configuration, a
data packet would require 1 or 2 VCs for buffering. Whenever
a data packet is half injected, it would occupy one VC in the
local input port. As can be derievd, if the network is able
to provide 1 or 2 VCs for every half-injected data packets,
namely, provide 1 or 2 VCs for every VC in the local input
port, there must be some half-injected packets that will be
fully injected later on. These fully-injected packets can thus
be reassembled and release buffers for further injection. For
a normal mesh network that has the same number of VCs in
every input port, the number of VCs in nonlocal input ports
is 3.5× more than that of the local input ports. Therefore, the
second requirement is satisfied.

A corner case is that even if a flit has been injected
into the network, it might be stored in buffers permanently.
However, because DeDR randomly picks a flit for allocation
and transmitting in every cycle, this case is unlikely to occur.

According to our experiments, reassembly deadlock is theo-
retically possible but never occurs. Therefore, our mechanisms
incur little influence on the overall performance.

D. Necessity to Develop DeDR

Although one may argue that over-saturation throughput
can be improved by adding VCs, applying congestion-aware
adaptive routing or throttling mechanisms, these methods have
difficulty completely erasing the negative impact from the
deadlock-free approaches themselves. More VCs and adaptive
routing [20], [31]3 only postpone the saturation point without
addressing the aforementioned weaknesses. As the injection
rate increases further, these methods still lose efficacy and
the over-saturation throughput would decline dramatically.
For example, we integrate DBAR [31] into SPIN’s routing
table, and still observe an average over-saturation throughput
degradation of nearly 26% and a near zero minimal throughput
under the network configurations of Figure 1. As for throttling
mechanisms [6], [8], [35], [53], while they enable NoCs to
achieve higher over-saturation throughput, the improvement is
never ideal due to restrictions in their congestion awareness
and throttling threshold adjustment.

First, throttling mechanisms require global congestion infor-
mation gathering mechanisms to determine if the network is
congested. However, there is usually a lag in the gathering
and throttling decision making, damaging the accuracy of
congestion estimation.

Second, to be applicable on different networks and under
different workloads, throttling mechanisms should adaptively
adjust the threshold of congestion estimation. A fixed throttling
threshold can cause under-throttling or over-throttling under

3We note that the routing tables used in this paper already include
congestion aware [2] adaptivity.
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other network configurations or workloads. The threshold
adjustment decision that is usually made according to the
relationship between the threshold and throughput is not very
accurate. Therefore, although throttling can reduce the prob-
ability of deadlocks and mitigate over-saturation degradation,
the occurrence of deadlocks cannot be completely removed.
Especially for deadlock recovery approaches with a low re-
covery efficiency, even occasional deadlocks and recovery can
greatly impact the over-saturation throughput.

IV. ROUTER ARCHITECTURE

We modify a baseline router with a one-cycle router latency
and a one-cycle link latency [41]. Figure 6 plots the router ar-
chitecture overview. The three main changes are the deflection
allocator, the subnetwork and one-bit wire grid. By extending
a normal switch allocator, the deflection allocator enables
deflections during the deflection mode. The subnetwork is used
to transmit the header information and special messages during
the deflection mode and stays synchronized with the main
network. The one-bit wire grid is used to finish the deflection
in a fast manner.

A. Deflection Allocator

Figure 7 shows how switch allocation in the normal state
and the output port allocation in the deflection mode are
addressed. We extend a separable input-first switch allocator
with a selection unit and a wavefront allocator. In the normal
state, switch requests are inputted into the input-side arbiters
and the switch grants are generated by output-side arbiters, as
the left yellow box shows.
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In the deflection mode, switch requests are inputted into
the output-side arbiters and the switch grants are generated by
both output-side arbiters and the wavefront allocator, as the
right blue box shows. The input side arbiters are eliminated,
as DeDR only allows one randonly chosen VC to attend
allocation during the deflection mode. However, to achieve
protocol deadlock freedom, before entering the output side
arbiters, each VC should be compared with the time domain
to decide whether it can attend allocation. If a flit wins the
contention for an output port, the switch grant is directly
generated by the output-side arbiters. To enable deflections
for flits that lose in contention, the selection unit is integrated
in the allocator after the output side arbitration to select
unoccupied output ports and requesting input ports without
grants. Then, it generates new requests for deflections. A
wavefront allocator is adopted after the selection unit to
give random grants between these remaining input ports and
output ports since the wavefront allocator ensures maximal
matching. The final grants are derived by ORing the grants
from the output-side arbiters and the grants from the wavefront
allocator. Because DeDR usually disallows flit injection in
the deflection mode and a packet cannot be deflected to a
local output port if it has not reached the destination, a 4×4
wavefront allocator is sufficient for deflection. If a flit needs
to be injected, it can be deflected to any output port that is
currently not in use.

During the transition between the normal state and the
deflection mode, the allocator always remains the same. The
difference of the two modes is to decide where the switch
requests should enter the allocator and where the allocator
generates switch grants. This is easily done by adding several
multiplexers and the router mode transition can occur within
one cycle after receiving the triggering message.

B. Subnetwork

The subnetwork serves two purposes. The first is the gen-
eration and transmission of triggering messages and empty
signals. The second is header information transmission for
lookahead [41] and flit-by-flit routing [22], [27].

The triggering message should include the DR id and DR
start time. The header information should include the message
class, destination router id, flit number, and global MSHR
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identifier for both routing computation and packet reassembly.
A subnetwork with 16-bit wide links, buffers and crossbars
should be enough.

Figure 8 shows the subnetwork design. The top red part
corresponds to the main network4 [41], and the gray parts
are additional units including the subnetwork and one-bit wire
grid. DeDR first decides the input type at every subnetwork
input port. The input type can be header information, trigger-
ing messages and empty signals. The three bold lines starting
from the input type unit in the left of Figure 8 represent the
processing of each type of messages. The middle of Figure
8 shows a buffer that stores necessary information for the
deflection mode and is denoted as the deflection table. The
deadlock detection unit on top of the deflection table includes
both timeout counters and the probe mechanism [47]. The
empty register below the deflection table represents if the
router has been free of flits for three consecutive cycles. Based
on the input type, each router performs the following actions
based only on local information.

• If it is a header information, it helps the flit in route
computation and allocation.

• If it is a triggering message, the input type unit selects
the triggering messages with the highest priority and sends
them to the deflection table. If the router is not in the
deflection mode, the router enters the deflection mode, records
the message information in the deflection table, decides the
up/down directions and forwards the message out of the down
directions. If the router is in the deflection mode and the
message has a lower priority, the message is dropped. If
the router is in the deflection mode and the message has a
higher priority, the router updates information in the deflection
table, decides the up/down directions again and forwards this
message out of the new down directions.

• If it is an empty signal, the signal is directly sent to
the empty register. If there are empty signals from all down
directions, the empty register value is 1 and the router is not
the DR, the empty signal will be forwarded to all up directions.
If the router is the DR, it places a voltage pulse on the one-bit
wire grid to finish the deflection mode.

The subnetwork could increase the network power con-
sumption if all its component are powered-on during the
normal state. Besides, during the transition from the normal
state to the deflection mode, all data packets need to copy the
header information to the buffers of the subnetwork, which is
difficult to complete within one cycle. Therefore, we make a
modification on the triggering of the deflection mode. During
the normal state, the buffers of the subnetwork are power gated
[10] to save static power. When a router detects a deadlock,
it first generates a voltage pulse on the one-bit wire grid
to inform other routers to wakeup the subnetwork buffers
and copy header information. After 10 cycles of wakeup
(considering that 8 cycles are enough to wakeup a 128-bit wide
router [9], 10 cycles should be a conservative assumption),
the detector router starts broadcasting the triggering message

4Except for the crossbar and input link, the other necessary components of
the basic router are removed for brevity.
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on the subnetwork. During the 10-cycle wakeup, the network
remains in the normal states.

V. EVALUATION

In this section, we present experimental results to illustrate
DeDR’s high over-saturation performance on faulty NoCs. All
the experiments are performed using the gem5 [7] simulator
with Garnet2.0 [1] on an 8x8 mesh network. Link faults are
randomly inserted, but the network remains connected, i.e. at
least one path exists between every pair of nodes. For every
number of faulty links, we randomly generate enough different
topologies until the average results stabilize. Each synthetic
simulation runtime is 100K cycles, and the warmup time is
10K cycles. The simulation runtime under real workloads
is 5M cycles. The flow control used is virtual cut through,
although DeDR can also use wormhole. Each VNet has 2
packet-sized VCs. Each data packet consists of 5 flits and
each control packet consists of 1 flit. The flit size is 128 bits.
In synthetic traffic evaluation, the network has 1 VNet for
data packets. In real workloads evaluation, the network has 3
VNets to achieve protocol deadlock freedom. The router model
used has one-cycle router latency [41] and one-cycle link
latency. DeDR is compared to ARIADNE [2], Static Bubble
[47], SPIN [46] and DRAIN [36]. These four approaches are
representative avoidance-based, recovery-based and subactive
deadlock freedom approaches. For fairness of comparison,
the deadlock recovery frameworks, DeDR, Static Bubble and
SPIN, are combined with routing tables constructed in the
same way as those of ARIADNE, except that the up*/down*
routing restrictions are removed. DRAIN also uses the routing
tables of ARIADNE when the network is not draining packets
on the escape VC. But in practice, DeDR, Static Bubble, SPIN
and DRAIN can also be combined with other routing methods
[17], [18]. The deadlock detection threshold T of timeout
counters is set as 40 cycles. The threshold time of the probe
detection is set as 25 cycles. The drain epoch of DRAIN is set
as 1K cycles. These configurable parameters are determined
empirically.

A. Throughput and Latency

1) Synthetic traffic:
Figure 9∼11 shows typical examples of the latency, mini-
mal throughput and average throughput comparisons under
uniform random and bit complement traffic as the injection
rate increases. The experiments are carried out on a network
with a fixed distribution of 2 faulty links for performance
demonstration.
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In Figure 9, due to the removal of turn restrictions, DeDR,
SPIN, Static Bubble and DRAIN have a slightly lower zero-
load latency than ARIADNE. These four approaches also have
the same saturation point which is higher than ARIADNE
under uniform random traffic. This is because they benefit
from the fully adaptive routing when no deadlock occurs.
However, under bit complement traffic, the saturation point
of SPIN, Static Bubble and DRAIN is the lowest because
the network is much easier to suffer deadlocks and become
saturated. The saturation point of DeDR is the highest because
the occasional deflections help delay the network saturation.

In Figure 10, the minimal throughput of all approaches
keeps increasing until the network becomes saturated. In the
over-saturation scenario, DeDR is the only one that sustains
a minimal throughput of almost half of the peak throughput.
In contrast, the minimal throughput of other approaches all
become close to zero. A network using DeDR would have
a better fairness even if no additional fairness mechanism is
applied.

In Figure 11, DeDR significantly improve the average over-
saturation throughput of other approaches. The performance
curves of SPIN and Static Bubble are almost indistinguishable
due to the high similarity in their designs. DRAIN has the
lowest throughput due to the inefficient draining path. The
draining path is a single unidirectional ring that covers the
whole network. Using a ring as the deadlock resolution method
has been observed to be detrimental to throughput [44], [45].

Figure 12 shows the average over-saturation throughput
comparisons as the number of faulty links varies. For every
number of faulty links, DeDR consistently generates the high-
est over-saturation throughput. The improvements of DeDR
over baselines is 1.1∼8.0× under uniform random traffic and
1.2∼8.1× under bit complement traffic. DeDR also generates
the most graceful throughput degradation [12] as the number
of faulty links increases, which is less than 40% for 20 faulty
links. The throughputs of Static Bubble and SPIN are very
close due to the similarity in their implementations. ARIADNE
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always has the second highest over-saturation throughput. But
its performance degrades faster than DeDR as the number
of faulty links increases. DRAIN has a slightly higher over-
saturation throughput than SPIN and Static Bubble under
uniform random traffic. But its throughput is the lowest under
bit complement traffic. This is because the network is much
easier to suffer deadlocks under bit complement traffic and
DRAIN is slow in removing frequent deadlocks with the
periodic forced packet movement.

In Figure 12, we also give the results when the network
is fault-free and regular. Except for XY routing, the other
approaches still use the adaptive routing tables constructed
in ARIADNE and differ in the deadlock freedom mechanism.
XY routing has a much higher over-saturation throughput than
others under uniform random traffic due to its load balance.
Under bit complement traffic, the over-saturation throughput
of DeDR is slightly higher than XY routing. DeDR is more
suitable for faulty networks. In regular networks, simpler
approaches such as XY routing are more suggested to be
adopted.

2) Real workloads:
Figure 13 shows the average packet latency under real work-
loads. The latency is normalized to ARIADNE. The workloads
are adopted from Synfull [4]. The configurations of the work-
loads and cores in an 8× 8 network are the same as [4], [30].
The network has a fixed distribution of 20 faulty links. In all
9 workloads, DeDR consistently has the lowest latency. Under
water nsquared, facesim, lu cb and water spatial, the network
undergoes temporary deadlocks and saturations. DeDR is in
the deflection mode for 5.45%, 11.63%, 4.13%, 8.90% of
the runtime under these four wordloads repectively. Although
deadlocks are rare in general, the positive feedback loop
renders the latencies of SPIN, Static Bubble and DRAIN are
higher than that of DeDR due to their lower over-saturation
throughput and poor fairness. Although SPIN has a higher
over-saturation throughput than Static Bubble under synthetic
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Fig. 14. Normalized average over-saturation throughput comparison with
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Fig. 15. Impact of deadlock detection methods

traffic, Static Bubble has lower latencies than SPIN across
these 4 benchmarks due to fewer observed deadlocks. In the
other benchmarks, the average injection rate is so low that
deadlock never occurs during the runtime. Therefore, DeDR
has the same performance as SPIN, Static Bubble and DRAIN.
Due to the removal of up*/down* routing restrictions and the
benefit of minimal routing, DeDR, SPIN, Static Bubble and
DRAIN usually have lower latencies than ARIADNE.

B. Configurable Parameters

1) Comparison with throttling-combined techniques:
Figure 14 shows the normalized average over-saturation
throughput comparison when an additional throttling mech-
anism is combined with baselines. Columns in Figure 13
with the suffix ’-throttling’ represent baselines combined with
an additional throttling mechanism. The throttling mechanism
Tune [53] used for comparison achieves the best results among
other previous works [6], [8], [35] and has been widely used
for comparisons. Tune uses additional channels for buffer
usage information gathering and congestion estimation. It can
adaptively adjust the throttling threshold to suit the assigned
traffic pattern and network configurations. All the experiments
are carried out under bit complement traffic. It is assumed
that 16 cycles are needed for a node to gather congestion
information and the throttling mechanism never fails due to
faults.

For all numbers of faulty links in Figure 14, the addi-
tional throttling mechanism can improve the over-saturation
throughput, achieving an improvement of 1.03∼1.12× over
ARIADNE, 1.56∼2.34× over SPIN and Static Bubble and
4.25∼4.79× over DRAIN. However, DeDR still consistently
generates better results than the baselines, with an im-
provement of 1.03∼3.15×. The improvement of Tune over
ARIADNE is not significant since ARIADNE has already
achieved a relatively stable over-saturation throughput. The
improvement of Tune over SPIN, Static Bubble and DRAIN is
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Fig. 17. Average network deflection rate

significant since throttling controls congestion and helps avoid
most deadlocks. However, as explained in Section III-D, throt-
tling fails to completely prevent deadlocks from occurring.
Therefore, their low recovery efficiency can still lead to some
performance penalties especially when the number of faulty
links is high.

2) Different deadlock detection mechanisms:
Figure 15 shows the average throughput comparison among
SPIN, Static Bubble and DeDR using different deadlock
detection mechanisms. The experiments are carried out in
a regular network under bit complement traffic to illustrate
the benefits of the combined deadlock detection method.
DeDR-counter only uses timeout counters for detection, while
DeDR-probe only uses the probe detection mechanism. The
saturation point of DeDR-counter is 0.125 flits/node/cycle,
whereas the saturation point of DeDR, DeDR-probe, SPIN and
Static Bubble is 0.135 flits/node/cycle. The probe detection
mechanism has a low false positive rate. Therefore, the latter
approaches improve the saturation point of DeDR-counter
by 8%. However, in terms of over-saturation throughput,
DeDR and DeDR-counter achieve the best result, which is
1.4× higher than DeDR-probe, 2.5× higher than SPIN and
2.6× higher than Static Bubble. DeDR-probe performs worse
than DeDR-counter as DeDR-counter ensures timely deadlock
detection. But due to higher deadlock recovery efficiency
of the deflection mode, DeDR-probe still generates better
over-saturation throughput than SPIN and Static Bubble. By
judiciously combining the probe detection mechanism and
timeout counters, DeDR enjoys the benefits of both detection
mechanisms.

3) Timeout counters threshold time sweep:
Figure 16 sweeps the timeout counter threshold to study its
impact on over-saturation throughput. The probe detection
threshold is not considered here, as DeDR only relies on it
for the first deadlock detection. Its value has a negligible
impact on the over-saturation throughput. As the threshold
increases, the throughputs under bit reverse, transpose and
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shuffle increase as well. The throughput under uniform random
does not vary much. The throughput under bit complement
decreases a little. It can be concluded that a threshold value
between 50 and 100 is suitable for most traffic patterns.
However, a too large threshold value can lead to untimely
deadlock detection, and the fairness problem could deteriorate,
even if under most traffic patterns the average over-saturation
throughput increases.

4) Average network deflection rate:
Figure 17 shows the average network deflection rate as the
injection rate increases. The network deflection rate denotes
the percentage of deflections among all switch grants. For all
the synthetic traffic patterns in Figure 17, before a deadlock
occurs, the deflection rate remains zero. Once a deadlock
occurs, the network enters the positive feedback loop and
the deflection rate increases. But as the injection rate further
increases, the deflection rate stabilizes because the deflection
mode controls the packet injection.

C. Power Consumption and Hardware Overhead

1) Power consumption:
Figure 18 shows the energy efficiency when the network is
over-saturated and the results are normalized to ARIADNE.
The energy efficiency is the reciprocal to the average energy
consumed by each flit. The energy is calculated by gathering
the runtime statistics and use DSENT [52] for estimation under
22 nm technology. DeDR consistently has the highest energy
efficiency, with an improvement over baselines of up to 4.0×
under uniform random traffic and 3.7× under bit complement
traffic. Although DeDR consumes more energy due to the
deflections and additional hardware, DeDR still has a higher
energy efficiency due to its significantly higher over-saturation
throughput.

Figure 19 shows the normalized power consumption com-
parison under real workloads. The power consumption of
DeDR is quite close to ARIADNE, with an increment of up
to 1.4% and a decrement up to 0.6%. Static Bubble performs

TABLE I
HARDWARE OVERHEAD COMPARISON

Approaches DeDR SPIN Static Bubble

Additional units
allocator, SPIN fsm, bubble buffer (21),

subnetwork, probe unit, Static Bubble fsm,
wire grid, move unit, probe unit,
probe unit probe move unit, disable unit,

kill move check probe unit,
enable unit

Overhead 10.7% 4.0% 6.1%

slightly worse than SPIN, DRAIN and ARIADNE due to the
additional bubble buffers. The average injection rate of the
9 workloads is low. Therefore, leakage power dominates the
overall power consumption, making the gaps among different
approaches rather small.

2) Hardware overhead:
Table I plots the hardware overhead comparison among DeDR,
SPIN and Static Bubble, with the results normalized to ARI-
ADNE because all approaches in this paper use the routing
tables adopted from ARIADNE. DRAIN is not compared in
Table I because its hardware overhead is almost negligible.
The middle of the table represents all the additional units we
considered during implementation. The configurations of the
baseline network is given in the first paragraph of Section V.
The network frequency is 1GHz. By synthesizing the modified
routers using the Design Compiler under 45nm TSMC library,
the area of a baseline router is 105386 µm2. The 21 additional
bubble buffers is the main difference between Static Bubble
and SPIN. Although DeDR only need the probe detection unit
adopted from SPIN and Static Bubble, the additional units
listed in Table I makes its overhead larger than Static Bubble
and SPIN. However, considering the significant improved over-
saturation performance, we believe that DeDR manages to
achieve a good tradeoff between area and performance.

VI. RELATED WORK

A. Deadlock Avoidance Based Approaches

Deadlock avoidance based approaches [2], [19], [29], [32],
[40], [44] attempt to place routing restrictions or limit usage
of other traffic resources such as VCs to guarantee that no
deadlock occurs. Immunet [44] uses three routing tables for
adaptive routing and switches to a deadlock-free escape VC5

using BFC to avoid faulty links. However, a large hardware
overhead and long latency [2] are incurred. Immucube [45]
significantly improves the over-saturation throughput of Im-
munet by demanding one VNet to use dimension-ordered
routing. However, its high demand on VCs (at least three
VNets for each message class) renders it more applicable
for off-chip networks [45]. Vicis [19] uses the turn model
for deadlock freedom and removes routing restrictions when
the restrictions disconnect some nodes. However, deadlock
freedom cannot be strictly guaranteed [2].

Researchers in ARIADNE [2] construct a spanning tree over
the network to connect available links and routers, and utilize

5The idea of escape VC can be applied for either deadlock avoidance or
deadlock recovery.
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up*/down* [48] to avoid deadlocks after the network becomes
faulty. uDIREC [40] extends the spanning tree construction to
cover unidirectional link faults. An alternative approach for
deadlock avoidance is segment-based routing [32], dividing
a network into segments and placing different turn restric-
tions in each segment. BLINC [29] uses the basic idea of
segment-based routing to reduce reconfiguration time, but it
places requirements on the number and distribution of faults.
However, the routing restrictions of all these approaches result
in longer average hops and nonminimal routing, which further
negatively affect both flit traversal latency and over-saturation
throughput.

B. Deadlock Detection and Recovery Based Approaches
Deadlock recovery based approaches [10], [46], [47], [50]

permit the existence of deadlocks but promise to recover from
them. Nord [10] uses a unidirectional ring as the escape VC
[14] in a power gated NoC but suffers from its long latency.
Router Parking [50], instead, uses spanning tree to construct
the escape VC. In Nord and Router Parking, the escape VC is
enabled when a deadlock is detected according to a timeout
mechanism or the total misrouted hops of a packet. Both of
them have to reserve one VC for deadlock recovery even if
there is no deadlock. Therefore, the saturation point is limited
due to the wasted bandwidth. Besides, escape VC [14] based
approaches place high demands on the number of VCs, and fail
to achieve deadlock freedom and fully adaptive routing with
one VC. Static Bubble [47] extends BFC from ring networks to
achieve deadlock freedom on irregular topologies. SPIN [46]
uses a similar distributed implementation of deadlock detection
and recovery.

C. Subactive Deadlock Freedom Approaches
There is a series of approaches [36]–[39] that removes

deadlock detection but develops method to recover from dead-
locks. They claim themselves to be subactive [36], because by
periodically forcing packet movement, deadlocks are naturally
resolved. BBR [37] reserves bubble buffers in every router
and uses the synchronized packet swapping between adjacent
routers to handle deadlocks. BINDU [39] uses a fixed path
to swap packets so as to reduce the required number of
bubble buffers from one in every router in BBR to one in
the whole network. SWAP [38] forces the progressive packets
movement also via swapping and resolves deadlocks without
any bubble buffers. DRAIN [36] uses periodical draining for
deadlock recovery. These approaches share several character-
istics. First, due to the lack of deadlock detection, they are
late in resolving deadlocks that might have existed in the
network for a long time. Second, they resolve deadlocks in a
probabilistical manner, i.e. the forced packet movement may
not address deadlocks but the probability for a deadlock to
exist approaches zero as the number of recoveries increases.
Therefore, their forced packet movement often incur many
disroutes without effectively resolving deadlocks.

D. Bufferless Deflection
Bufferless deflection or backpressureless flow control based

approaches [13], [15]–[18], [21], [22], [24], [26], [34], [49]

are internally deadlock free, due to packets’ constant routing
and deflections. DeDR manages to apply the backpressureless
flow control during the deflection mode for deadlock recovery.
Compared with previous deflection approaches, DeDR offers
the following changes. First, DeDR operates in the normal
state with buffer backpressure and transitions to the backpres-
sureless flow control only during the deadlock recovery. AFC
[22] is the only existing deflection methods that have also
proposed a transition between two flow controls. But AFC is
proposed for higher energy efficiency when the traffic load is
low. Its motivation and implementation are different to DeDR.
Second, by combing the backpressureless flow control with a
network with buffers, DeDR achieves a higher throughput and
can further improve the performance by adding more VCs.
Third, DeDR can handle protocol deadlocks. But previous
deflection approaches cannot achieve protocol deadlock free-
dom because they cannot separate different message classes
[33], [34]. SCEPTER [13] focus on router bypassing and
source throttling on bufferless NoC. FastTrack [24] reduces
the overhead when implementing bufferless NoC on FPGA.
The Clumsy flow control [26] is a throttling mechanism on
bufferless NoC to reduce the deflection rate. The Banyan
network based switch is replaced by a Benes network in [49]
to enable fault tolerance of allocation.

VII. CONCLUSION

Deadlocks and saturation are expected to be more frequent
in NoCs with faulty links or routers. State-of-the-art deadlock-
free approaches for faulty NoCs fail to sustain a high av-
erage throughput and satisfying fairness when the network
becomes over-saturated. In this paper, we observe a positive
feedback loop between deadlocks and congestions and propose
a deadlock recovery framework that handles both deadlocks
and congestions. A combination of probe detection mechanism
and timeout counters is used for a low false positive rate
and timely deadlock detection. For highly efficient deadlock
recovery, a deflection mode is designed to use backpressureless
flow control to eject all packets in the network. By transmit-
ting special messages, the implementation of the deflection
mode is carried out in a distributed manner and has a good
scalability. DeDR reduces the average flit traversal latency
and significantly improves the over-saturation performance. In
future work, reducing the deflection rate and improving energy
efficiency during the deflection mode will be considered.
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