

Abstract—Stochastic circuits use randomly distributed

bitstreams to represent numbers, so leading to small areas and low
power dissipation. However, it does not only result in a long
latency and thus increases energy, but also reduces computing
accuracy. In this brief, a design of parallel stochastic multipliers
with high accuracy and low energy is proposed. To this end, an
algorithm for finding optimal multiplicative bitstreams (OpMulbs)
is developed for multipliers. Experimental results show that the
proposed parallel multipliers using OpMulbs are the most
accurate among currently available stochastic multipliers. They
also require much less energy with a smaller latency, compared to
the others. With a mean squared error of 4.02×10-6, the proposed
8-bit multiplier shows a 42.18%, 48.15%, 20.35%, and 55.56%
reduction in area, power, latency, and energy, respectively,
compared to an 8-bit exact binary multiplier. The applications in
multiply-accumulate units and image processing algorithms show
that the proposed multipliers outperform the state-of-the-art
stochastic designs in several considered criteria and binary designs
in hardware cost.

Index Terms—Stochastic computing, multiplier, bitstream,
computing accuracy, hardware cost.

I. INTRODUCTION
TOCHASTIC computing (SC) generally converts n-bit
numbers within [0, 2n-1] into the interval [0, 1] by using

randomly distributed bitstreams. The main advantage of
carrying out operations through bitstreams is that the area and
power dissipation of arithmetic circuits can be significantly
reduced; e.g., an AND gate can perform multiplication in SC.
Thus, it is suitable for applications containing many multipliers,
such as multiply-accumulate (MAC) units [1], filters [2], neural
networks (NNs) [3, 4], and some image processing algorithms
[1]. It has been shown that a binary-interfaced MAC (BIN-
MAC) is more scalable and reconfigurable than a conventional
MAC using exclusively stochastic logic (ESL-MAC) [5, 6].

The latency of 2n clock cycles for the serial multiplier using
an AND gate exponentially grows as the bit width n of the
binary inputs increases, which leads to a noticeable decrease in

This work was supported by the Fundamental Research Funds for the

Central Universities (No. JZ2020HGQA0162 and No. PA2021KCPY0043), by
the Natural Sciences and Engineering Research Council (NSERC) of Canada
(No. RES0048688), and by Natural Science Foundation of Anhui Province (No.
2108085MF226).

(Corresponding author: Guangjun Xie)

energy efficiency. To reduce the latency, a multiplexer (MUX)
based multiplier can terminate the operation in advance by
detecting each bit in the multiplicator bitstream [5]. At the same
time, the multiplicand bitstream is reduced by 1 every clock
cycle. If it reaches 0, the multiplier finishes the operations. It
shows a high computing accuracy and no longer requires 2n
clock cycles. Assuming that the multiplicand follows a uniform
distribution in the interval [0, 2n-1], the expectation of the
required number of clock cycles is (1+1+2+3…+2n-1)/2n=2n-1-
1/2, where each element in the parenthesis gives the number of
clock cycles for computing each number. This shows that the
multiplier approximately reduces the number of clock cycles by
half on average, compared to the serial one. Thus, the energy
efficiency of this method can still be improved.

To further reduce the latency, the parallel thermometer code
has been introduced for multipliers to reduce the latency from
2n clock cycles to 1 clock cycle [7, 8]. To increase computing
accuracy, a deterministic approach changes the length of
bitstreams from 2n to 22n bits for a completely accurate
computation [9]. This leads to an excessive number of parallel
AND gates in multipliers and results in very high energy
consumption. Moreover, almost half of the elements are 1 in the
truth table of the thermometer code, leading to a high design
complexity of stochastic number generators (SNGs) [7]. This
also reduces the multipliers’ energy efficiency.

To address the above issues, a method to find the bitstreams
with the least mean squared error (MSE), referred to as optimal
multiplicative bitstreams (OpMulbs), is proposed and
instantiated in detail in this work for highly accurate and energy
efficient multipliers. Computing accuracy is evaluated using the
MSE and mean absolute error (MAE). Simulation results show
that the multipliers using OpMulbs produce the same MSEs and
MAEs as the state-of-the-art MUX-based designs in [5] while
reaching much lower hardware costs. Several applications are
then implemented to validate the advantages of the proposed
multipliers in lowering hardware costs and improving
computing accuracy.

Y. Zhang, L. Xie, C. Xin, and G. Xie are with the School of Microelectronics,
Hefei University of Technology, Hefei 230009, China (e-mail:
ahzhangyq@hfut.edu.cn; 2098425338@qq.com; xcheng@hfut.edu.cn;
gjxie8005@hfut.edu.cn)

J. Han is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 1H9, Canada (e-mail:
jhan8@ualberta.ca)

Highly Accurate and Energy Efficient Binary-
Stochastic Multipliers for Fault-Tolerant

Applications
Yongqiang Zhang, Member, IEEE, Lingyun Xie, Jie Han, Senior Member, IEEE, Xin Cheng, and

Guangjun Xie

S

mailto:xcheng@hfut.edu.cn

The main contributions of this brief are summarized as
follows. 1) An algorithm for finding the bitstreams with the
smallest MSE and MAE is developed. 2) Parallel stochastic
multipliers with various bit widths are proposed to reach a
higher accuracy and lower hardware costs. 3) The multipliers
are applied to several algorithms to verify their practicability in
fault-tolerant applications.

This brief proceeds as follows. Section II describes the
algorithm and the proposed parallel multipliers. Section III
illustrates the experimental results and applications of the
multipliers. Section IV concludes this work.

II. BITSTREAMS AND MULTIPLIERS

A. The Optimal Multiplicative Bitstream (OpMulb)
Let us take a 3-bit binary number b2b1b0 (ranging in 000 ~

111) to explain the algorithm for finding OpMulbs. The weights
of b2, b1, and b0 are respectively 4, 2, and 1. The number of 1s
in a stochastic bitstream with a length of 8 bits generated by
b2b1b0 is approximately 4b2+2b1+b0. Assume that an initial
bitstream is b2b2b2b2b1b1b00. Then, a full permutation is
performed on the bitstream.

For ease of description, the initial bitstream is denoted as an
initial vector [3 3 3 3 2 2 1 0], where each element maps a bit
in b2b2b2b2b1b1b00. Then, the full permutation of the initial
bitstream becomes that of the initial vector. It is worth noting
that it will be possible to obtain the reverse lexicographic order
[10], in total (23)!=40320 cases, using the perms function in
MATLAB. The number of cases exponentially increases as the
bit width of binary numbers increases. Meanwhile, the
computation time must also be considered. Note that, elements
2 and 3 in this vector are duplications, thus leading to a large
number of duplications in all 40320 cases. After removing these
duplications, the number of cases is C4

8 ×C2
4 ×C1

2 =840. Thus, an
algorithm is required to directly obtain all cases without
duplications, at least the best permutation with the least MSE
has to be found.

Algorithm 1 describes the principle of finding OpMulbs for
an n-bit binary number. Fig. 1(a) illustrates the permutation
process of Algorithm 1 for an initial vector. The initial vector
can be arbitrarily chosen, e.g., [3 3 3 3 2 2 1 0], while the
starting vector is fixed to be in an ascending order, e.g., A1=[0
1 2 2 3 3 3 3]. Consider the process from the previous vector

A2=[1 0 2 2 3 3 3 3] to the next vector A3=[0 2 1 2 3 3 3 3] as an
example; it is divided into four steps.

1) Find the position index p1 of the larger number in the first
ascending pair of numbers in A2. That is, (0 2) enclosed in a
blue circle as the first ascending pair, and A2(p1=3)=2>0.

2) Find the position index p2 of the first number smaller than
the number indexed by p1 in A2. That is, 1 in the red circle less
than 2 found in the first step, and A2(p2=1)=1<2.

3) Swap A2(p1=3)=2 and A2(p2=1)=1 to obtain an
intermediate vector [2 0 1 2 3 3 3 3], as the dotted arrows show.

4) Reverse the order of numbers with indexes smaller than
p1=3 in the intermediate vector, as the red arrows indicate. That
is, change (2 0) to (0 2) in the black circle.

The permutation process is finished to get the targeted vector
A3=[0 2 1 2 3 3 3 3]. All others are performed in the same way
to reach the last permutation AN=A840=[3 3 3 3 2 2 1 0].

Not only do we record the results of each permutation but
also perform a multiplication of each permutation by the initial
bitstream, and then compute their MSEs. The bitstreams with
the smallest MSEs are saved to be OpMulbs, which will be used
for the stochastic multipliers later.

B. The Proposed Parallel Multiplier
With the found OpMulbs, parallel stochastic multipliers are

proposed to reduce latency from 2n clock cycles to 1 clock cycle.
Take a 3-bit multiplier with the binary inputs A=a2a1a0 and
B=b2b1b0 as an example, as shown in Fig. 1(b). The multiplier
uses hard-wired connections to generate parallel bitstreams,
followed by 2n=23=8 AND gates and a SUM unit to obtain 3-
bit binary results in one clock cycle.

The pairing of two hard-wired connections to each AND gate
is dominated by OpMulbs. An input of the multiplier can be
coded from an initial bitstream, while the other one is coded
from an OpMulb. For signed multiplication, it is only necessary
to add a sign bit to each binary input and to use two's
complement to operate.

The multipliers in [8] share binary input and output interfaces
and AND gates to implement parallel operations. The use of
hard-wired connections in the proposed multipliers exempts the
generation of stochastic bitstreams from dedicated SNGs, i.e.,
thermometer code generators. These simple connections benefit
from OpMulbs, which makes the multipliers more hardware
efficient. However, the SNGs and the deterministic approach in
the multipliers in [8] lead to a significant increase in bitstream
length and thus reduce energy efficiency if the multipliers
perform exact computation, which is optional in many fault-
tolerant applications, such as NNs, filters, and image processing.
We show in the following that OpMulbs provide sufficient
computing accuracy for the proposed multipliers.

Fig. 1. (a) An example of algorithm 1. (b) A 3-bit parallel multiplier.

Algorithm 1 Algorithm for finding optimal multiplicative bitstreams
generated by an n-bit binary number
Input: n (bit width of a binary number)
Output: A (matrix to store all permutations without duplications)
Initialization:

11 2 2
2 4 2

n

nN C C C
−

= × × × , A=zeros(N,2n)

for i=1 to n do
 A(1,2i-1+1:2i)=i;
for p=2 to N do
 t=A(p-1,:);
 for p1=2 to 2n do
 if t(p1-1)<t(p1) then break;
 for p2=1 to 2n do
 if t(p2)<t(p1) then break;
 exchange(t(p1),t(p2));
 for k=1 to p1/2 do
 exchange(t(k),t(p1-k));
 A(p,:)=t;

III. EXPERIMENTAL RESULTS AND APPLICATIONS
The MSE for n-bit multipliers is computed by

()2

2 1 2 1

0 0
MSE

2 2

n n

xy x y
n n

x y

P P P− −

= =

− ×
=

×∑∑ , (1)

where Px and Py respectively represent the binary values of a
permutation and the initial bitstream, and Pxy denotes their
ANDed result. The mean absolute error (MAE) is also
employed to evaluate the computing accuracy. The MAE is
obtained by one million Monte Carlo trials for each input within
the range of [0, 1] randomly generated by using the rand
function in MATLAB. All circuits are synthesized by the
Synopsys Design Compiler with a TSMC 65 nm library at the
typical corner and with a nominal supply voltage of 1.2V. The
command ‘compile_ultra’ is used to ungroup all components
and automatically synthesize the circuits according to timing
constraints. The power is measured by PrimePower using a
vector-free power analysis model.

A. Multiplier
Computing accuracy: Fig. 2 shows the MSEs of all possible

permutations without duplication for 3-bit and 4-bit binary
inputs. The values marked in red are the MSEs generated by
using OpMulbs, which have the smallest values. TABLE I and
TABLE II list the smallest MSEs and MAEs of 3-bit to 8-bit
multipliers designed using the obtained OpMulbs and previous
designs in [5, 8, 11]. ‘Shared’ means the outputs of a linear
feedback shift register are reversed and shared between two
SNGs to realize high computing accuracy [11]. The proposed
multipliers provide the same MSEs and MAEs as the MUX-
based designs in [5], while the sharing-based multipliers reach
higher values of these metrics. The designs in [8] using the
deterministic approach (denoted by the_det) produce the same
results as binary multipliers. If the deterministic approach is not

applied in the designs in [8] (thermo for short), the largest MSEs
and MAEs occur, since all 1s in the thermometer code proceed
to 0s and the 0s involved in multiplication do not affect the
number of 1s in results.

Fault tolerance: The aforementioned method [12] to inject
various probabilities of errors into the inputs of multipliers is
applied. Each bit in the inputs is randomly selected and flipped
with a given probability within [0, 1]. Fig. 3 shows the MSEs
of 3-bit multipliers versus the probability of bit flip-induced
errors. Apparently, the MSEs increase as the errors increase.
The proposed 3-bit multiplier presents lower MSEs than other
designs, so it has a higher fault tolerance than others. The same
observation is true for higher-bit multipliers.

Hardware cost: TABLE III shows the hardware
measurements of 3-bit multipliers, including an exact 3-bit
binary multiplier. 3×3=9 AND gates are used to generate the
partial products, which are then compressed by using the 4-2
compressor in [13], half adders, and full adders into two rows,
based on the Dadda tree structure. A ripple carry adder is then
used to compute the final addition.

The MUX-based design terminates operations in advance to
reduce latency according to the inputs. Its latency is computed
by the critical path delay (CPD) multiplied by the expected
number of required clock cycles, i.e., 0.46×(2n-1-1/2)=0.46×(23-

1-1/2). In the same way, the sharing-based multiplier is also a
serial design, of which the latency is computed by the CPD
multiplied by the number of clock cycles, i.e., 0.11×2n=0.11×23.

The latencies of the thermo, the_det, binary, and proposed
multipliers are respectively equal to their CPD since they are
designed to operate in parallel. Energy efficiency (EE) is
denoted as the ratio of the energy of previous multipliers to that
of the proposed design in TABLE III. With these data, the
proposed multiplier is more energy efficient than its stochastic
counterparts and the binary design. This benefits from the
parallel design and the hard-wired connections dominated by
OpMulbs to avoid complex SNGs.

Fig. 2. The MSEs of each permutation for n-bit numbers. (a) 3-bit. (b) 4-bit.

TABLE I
THE MSES OF 3-BIT TO 8-BIT MULTIPLIERS

 n-bit
MSE

3
(10-3)

4
(10-4)

5
(10-4)

6
(10-5)

7
(10-5)

8
(10-6)

MUX [5] 2.26 6.75 1.93 5.38 1.48 4.02
Thermo [8] 11.5 112.2 111.4 1111.8 1111.3 11111.5
The_det [8] 0 0 0 0 0 0
Shared [11] 2.37 9.20 3.37 11.78 3.97 12.94

Binary 0 0 0 0 0 0
Proposed 2.26 6.75 1.93 5.38 1.48 4.02

TABLE II
THE MAES OF 3-BIT TO 8-BIT MULTIPLIERS

 n-bit
MAE

3
(10-2)

4
(10-2)

5
(10-2)

6
(10-3)

7
(10-3)

8
(10-3)

MUX [5] 3.52 2.02 1.10 5.89 3.10 1.62
Thermo [8] 8.20 8.30 8.33 83.31 83.33 83.33
The_det [8] 0 0 0 0 0 0
Shared [11] 3.59 2.23 1.44 8.82 5.26 3.07

Binary 0 0 0 0 0 0
Proposed 3.52 2.02 1.10 5.89 3.10 1.62

Fig. 3. The MSEs of 3-bit multipliers versus the probability of errors.

TABLE III
THE HARDWARE MEASUREMENTS OF 3-BIT MULTIPLIERS

Multiplier Area
(μm2)

Power
(mW)

CPD
(ns)

Latency
(ns)

Energy
(pJ) EE

MUX [5] 134.3 0.012 0.46 1.61 0.019 6.5
Thermo [8] 85.7 0.005 0.71 0.71 0.004 1.3
The_det [8] 516.6 0.022 1.56 1.56 0.035 11.8
Shared [11] 112.7 0.012 0.11 0.88 0.010 3.5

Binary 100.4 0.009 0.50 0.50 0.005 1.5
Proposed 74.2 0.005 0.57 0.57 0.003 1.0

TABLE IV
THE HARDWARE MEASUREMENTS OF 8-BIT MULTIPLIERS

Multiplier Area
(μm2)

Power
(mW)

CPD
(ns)

Latency
(ns)

Energy
(pJ) EE

MUX [5] 379.1 0.033 0.71 90.52 2.95 76.5
Thermo [8] 3543.5 0.113 6.25 6.25 0.70 18.3
The_det [8] 694092.9 23.659 8.29 8.29 196.13 5082.1
Shared [11] 274.7 0.021 0.17 43.52 0.93 24.1

Binary 701.6 0.054 1.72 1.72 0.09 2.4
Proposed 405.7 0.028 1.37 1.37 0.04 1.0

In addition, the hardware costs for 8-bit multipliers are listed
in TABLE IV, which indicate the energy efficiency of the
proposed design of stochastic multipliers.

B. Multiply-Accumulate Unit
The proposed 6-bit multiplier shows an MSE of 5.38×10-5,

which is low enough for many fault-tolerant applications [11].
So 3-bit to 6-bit multipliers are investigated in various
applications to verify the efficacy of the proposed multipliers.

An m-input MAC using the proposed multipliers requires
only cascading m multipliers in parallel. All products are
summed by using a binary adder, so the results do not need to
be scaled.

Computing accuracy: Fig. 4 shows the MAEs of MACs using
different stochastic multipliers versus the number of inputs m
(2≤m≤28), where the terms ‘MUX3’, ‘Thermo3’, ‘Shared3’,
and ‘Proposed3’ means a MAC composed of respective 3-bit
stochastic multipliers.

The proposed 6-bit multiplier-based MACs show almost the
same MAEs as those denoted as MUX6, whereas Thermo6 and
Shared6 present higher MAEs. The MACs using the proposed
lower-bit multipliers show lower MAEs than other designs,
because of the utilization of OpMulbs. The data also show that
the MAEs linearly increase as the number of the inputs of
MACs increases. The increasing rates of the designed MACs
are smaller than others.

Hardware cost: TABLE V lists the hardware measurements
of m-input MACs using various 6-bit multipliers (2≤m≤28),
where the 256-input and 9-input MACs are respectively used

for image multiplication and image smoothing later. The energy
of the proposed multiplier-based MACs is respectively reduced
by 97.68%, 33.14%, 99.64%, 98.73%, and 59.68% on average
compared with the MUX, thermo, the_det, sharing, and binary
designs, as can be seen from the average and normalized
measures. The ‘Gate’ means the number of equivalent NAND
gates for the average area, which also shows the efficiency of
the proposed designs.

C. Image Processing
Five images including the airplane, cameraman, clock, Lena,

and moon from the USC-SIPI Image Database are multiplied in
pairs and smoothened to assess the practicability of multipliers
[14]. The peak signal to noise ratio (PSNR) and mean structural
similarity index (MSSIM) are used to evaluate the processed
image quality. The the_det and exact binary designs provide
accurate results for computing the PSNR and MSSIM. The
PSNR is given by

1 1

2 2
10

0 0
10log ['(,) (,)]

w r

i j
PSNR w r MAX S i j S i j

− −

= =

 
= × × − 

 
∑∑ ,(2)

where w and r are the length and width of images; MAX is the
maximum value of pixels; and S´(i,j) and S(i,j) are the exact and
stochastic results for each pixel. The MSSIM is defined as

 1 2
2 2 2 2

1 1 2

(2)(2)1(,)
()()

k
x y xy

i x y x y

C C
MSSIM X Y

k C C
µ µ σ

µ µ σ σ=

+ +
=

+ + + +∑ , (3)

where the descriptions for these parameters can be found in [15].
Multiplication: An algorithm for multiplying two images

pixel by pixel by using the stochastic and binary multipliers is
developed in MATLAB.

Smoothing: The smoothing algorithm is given by [16]

 () () ()
1 1

1 1
, , 2, 2

m n
Y i j X i m j n K m n

=− =−

= + + + +∑ ∑ , (4)

where X and Y are respectively an input image to be smoothened
and an output image, K is the smoothing kernel given by

TABLE V
THE HARDWARE MEASUREMENTS OF M-INPUT MACS USING 6-BIT MULTIPLIERS

m 2 4 8 9 16 32 64 128 256 Average Normalization Gate

MUX
[5]

Area (μm2104) 0.07 0.13 0.27 0.30 0.54 1.07 2.14 4.27 8.53 0.0333 1.11

232 Power (mW) 0.06 0.11 0.22 0.24 0.43 0.85 1.70 3.40 6.83 0.0267 1.31
Latency (ns) 22.68 21.42 22.68 23.31 25.83 30.87 64.89 75.60 87.26 0.7216 30.58
Energy (pJ) 1.36 2.36 5.00 5.61 11.14 26.31 110.59 257.69 597.49 1.9554 43.01

Thermo
[8]

Area (μm2104) 0.19 0.38 0.75 0.85 1.50 2.99 5.98 11.96 23.92 0.0935 3.13

649 Power (mW) 0.07 0.14 0.27 0.30 0.53 1.04 2.07 4.16 8.46 0.0328 1.61
Latency (ns) 1.95 1.94 1.89 2.07 2.05 1.99 2.00 2.10 2.09 0.0348 1.47
Energy (pJ) 0.14 0.27 0.50 0.62 1.09 2.06 4.14 8.75 17.67 0.0679 1.50

The_det
[8]

Area (μm2104) 8.12 16.23 32.45 36.50 64.90 129.85 259.69 519.54 1039.70 4.0597 135.58

28192 Power (mW) 4.20 8.18 16.54 18.54 33.06 66.20 132.75 266.21 534.63 2.0815 102.11
Latency (ns) 5.78 5.86 5.67 5.47 5.68 5.95 6.01 6.04 6.00 0.1011 4.28
Energy (pJ) 24.28 47.93 93.78 101.42 187.78 393.89 797.83 1607.91 3207.78 12.4520 274.30

Shared
[11]

Area (μm2104) 0.07 0.14 0.29 0.32 0.58 1.15 2.29 4.56 9.25 0.0359 1.20

250 Power (mW) 0.05 0.09 0.18 0.20 0.35 0.68 1.35 2.85 5.98 0.0226 1.11
Latency (ns) 14.08 14.72 69.76 81.28 90.24 108.80 132.48 154.88 183.68 1.6376 69.38
Energy (pJ) 0.70 1.32 12.56 16.26 31.58 73.98 178.85 441.41 1098.41 3.5743 78.74

Binary

Area (μm2104) 0.10 0.20 0.40 0.45 0.80 1.62 3.24 6.44 12.87 0.0503 1.68

350 Power (mW) 0.08 0.15 0.29 0.32 0.57 1.08 2.24 4.74 9.90 0.0373 1.83
Latency (ns) 1.28 1.28 1.28 1.29 1.28 1.42 2.68 3.11 3.47 0.0329 1.40
Energy (pJ) 0.10 0.19 0.37 0.41 0.73 1.53 6.00 14.74 34.35 0.1126 2.48

Proposed

Area (μm2104) 0.06 0.12 0.24 0.27 0.48 0.96 1.92 3.83 7.66 0.0299 1.00

208 Power (mW) 0.04 0.08 0.16 0.18 0.32 0.62 1.26 2.58 5.34 0.0204 1.00
Latency (ns) 0.97 1.02 1.01 1.00 1.01 1.00 1.13 2.37 2.74 0.0236 1.00
Energy (pJ) 0.04 0.08 0.16 0.18 0.32 0.62 1.42 6.11 14.63 0.0454 1.00

Fig. 4. The MAEs for MACs using different stochastic multipliers.

0 1 0

1 1 4 1
8

0 1 0
K

 
 =  
  

. (5)

Computing accuracy: TABLE VI and TABLE VII list the
average PSNRs and MSSIMs for the processed images, where
the data before/after the slashes respectively are the values for
the image multiplication and smoothing. The PSNRs of images
multiplied using the proposed multipliers are respectively
improved by 1.56%, 83.21%, and 14.00% on average, while the
MSSIMs are improved by 5.60%, 10.89%, and 5.84%
compared with those in [5, 8, 11]. The PSNRs and MSSIMs of
the smoothened images are also improved by 76.03% and 18.48%
on average compared with the others. These results also show
that the proposed 6-bit multiplier is accurate enough in image
processing because a PSNR larger than 30 dB is considered
sufficient [17]. Fig. 5 shows examples of the multiplied airplane
and moon images and the smoothened cameraman images,
generated by the considered 6-bit multipliers.

Hardware cost: The circuits for multiplying and smoothing
images are similar to those of 256-input and 9-input MACs,
respectively, as listed in TABLE V. Thus, the proposed
multipliers achieve a high computing accuracy, while
significantly lowering the hardware costs in fault tolerant
applications, compared with the state-of-the-art designs.

IV. CONCLUSION
An algorithm for finding OpMulbs is proposed for stochastic

multipliers. Experimental results show that the proposed
parallel stochastic multipliers using OpMulbs reach the same
computing accuracy while incurring much smaller hardware
costs, compared with previous designs. Applications in MAC
units and image processing also illustrate the effectiveness of
the proposed multipliers. These designs use binary input and
output interfaces, so they can be easily applied to neural
networks by using the designed MACs. This will be
investigated in our future work to accelerate neural networks.

REFERENCES
[1] P. Schober, M. Najafi, and N. Taherinejad, “High-accuracy multiply-

accumulate (MAC) technique for unary stochastic computing,” IEEE
Trans. Comput., vol. 71, no. 6, pp. 1425-1439, Jun. 2021.

[2] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, “Compact
and accurate digital filters based on stochastic computing,” IEEE
Trans. Emerging Top. Comput., vol. 7, no. 1, pp. 31-43, Mar. 2019.

[3] S. Hyeonuk, and L. Jongeun, “A new stochastic computing multiplier
with application to deep convolutional neural networks,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin,
TX, USA, 2017, pp. 29-34.

[4] Y. Hu, Y. Zhang, R. Wang, Z. Zhang, J. Song, X. Tang, W. Qian, Y.
Wang, Y. Wang, and R. Huang, “A 28-nm 198.9-TOPS/W fault-
tolerant stochastic computing neural network processor,” IEEE Solid-
State Circuits Lett., vol. 5, pp. 198-201, Aug. 2022.

[5] H. Sim, and J. Lee, “Cost-effective stochastic MAC circuits for deep
neural networks,” Neural Netw., vol. 117, pp. 152-162, Sep. 2019.

[6] H. Abdellatef, M. Khalil-Hani, N. Shaikh-Husin, and S. Ayat, “Low-
area and accurate inner product and digital filters based on stochastic
computing,” Signal Process., vol. 183, Jun. 2021.

[7] Y. Zhang, R. Wang, X. Zhang, Z. Zhang, J. Song, Z. Zhang, Y. Wang,
and R. Huang, “A parallel bitstream generator for stochastic
computing,” in 2019 Silicon Nanoelectronics Workshop, Kyoto, Japan,
2019, pp. 1-2.

[8] Y. Zhang, R. Wang, X. Zhang, Y. Wang, and R. Huang, “Parallel
hybrid stochastic-binary-based neural network accelerators,” IEEE
Trans. Circuits Syst., II, Exp. Briefs, vol. 67, no. 12, pp. 3387-3391,
Dec. 2020.

[9] H. Najafi, and D. Lilja, “High quality down-sampling for deterministic
approaches to stochastic computing,” IEEE Trans. Emerging Top.
Comput., vol. 9, no. 1, pp. 7-14, Mar. 2018.

[10] Saul I. Gass, and M. C. Fu, Encyclopedia of operations research and
management science, Springer New York, NY: Springer New York,
NY, 2013.

[11] S. Salehi, “Low-cost stochastic number generators for stochastic
computing,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 28,
no. 4, pp. 992-1001, Apr. 2020.

[12] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja, “An architecture
for fault-tolerant computation with stochastic logic,” IEEE Trans.
Comput., vol. 60, no. 1, pp. 93-105, Jan. 2011.

[13] C. Chang, J. Gu, and M. Zhang, “Ultra low-voltage low-power CMOS
4-2 and 5-2 compressors for fast arithmetic circuits,” IEEE Trans.
Circuits Syst. I-Regul. Pap., vol. 51, no. 10, pp. 1985-1997, Oct. 2004.

[14] "The usc-sipi image database," https://sipi.usc.edu/database/.
[15] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality

assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600-12, Apr. 2004.

[16] C. Solomon, and T. Breckon, Fundamentals of digital image
processing: A practical approach with examples in matlab, The
Atrium, Southern Gate, Chichester: John Wiley & Sons Ltd, 2011.

[17] M. Ansari, H. Jiang, B. Cockburn, and J. Han, “Low-power
approximate multipliers using encoded partial products and
approximate compressors,” IEEE J. Emerging Sel. Top. Circuits Syst.,
vol. 8, no. 3, pp. 404-416, Sep. 2018.

Fig. 5. The processed images. (a) Multiplication. (b) Smoothing.

TABLE VI
THE AVERAGE PSNRS OF IMAGES USING VARIOUS MULTIPLIERS (DB)
Multiplier 3-bit 4-bit 5-bit 6-bit
MUX [5] 23.34/14.69 29.56/24.01 35.31/28.83 41.17/36.48

Thermo [8] 17.66/9.06 17.97/9.04 18.04/9.06 18.05/9.08
Shared [11] 21.25/9.71 25.92/17.29 31.27/23.70 36.81/29.83
Proposed 24.77/15.29 29.68/24.03 35.74/28.83 41.21/37.24

TABLE VII
THE AVERAGE MSSIMS OF IMAGES USING VARIOUS MULTIPLIERS

Multiplier 3-bit 4-bit 5-bit 6-bit
MUX [5] 0.687/0.532 0.816/0.819 0.930/0.909 0.979/0.959

Thermo [8] 0.683/0.642 0.789/0.671 0.838/0.682 0.857/0.686
Shared [11] 0.692/0.442 0.809/0.735 0.928/0.872 0.976/0.944
Proposed 0.725/0.697 0.861/0.846 0.944/0.909 0.982/0.962

https://sipi.usc.edu/database/

	I. INTRODUCTION
	II. Bitstreams and Multipliers
	A. The Optimal Multiplicative Bitstream (OpMulb)
	B. The Proposed Parallel Multiplier

	III. Experimental Results and Applications
	A. Multiplier
	B. Multiply-Accumulate Unit
	C. Image Processing

	IV. Conclusion
	References

