
  
Abstract—Stochastic circuits use randomly distributed 

bitstreams to represent numbers, so leading to small areas and low 
power dissipation. However, it does not only result in a long 
latency and thus increases energy, but also reduces computing 
accuracy. In this brief, a design of parallel stochastic multipliers 
with high accuracy and low energy is proposed. To this end, an 
algorithm for finding optimal multiplicative bitstreams (OpMulbs) 
is developed for multipliers. Experimental results show that the 
proposed parallel multipliers using OpMulbs are the most 
accurate among currently available stochastic multipliers. They 
also require much less energy with a smaller latency, compared to 
the others. With a mean squared error of 4.02×10-6, the proposed 
8-bit multiplier shows a 42.18%, 48.15%, 20.35%, and 55.56% 
reduction in area, power, latency, and energy, respectively, 
compared to an 8-bit exact binary multiplier. The applications in 
multiply-accumulate units and image processing algorithms show 
that the proposed multipliers outperform the state-of-the-art 
stochastic designs in several considered criteria and binary designs 
in hardware cost. 

Index Terms—Stochastic computing, multiplier, bitstream, 
computing accuracy, hardware cost. 

I. INTRODUCTION 
TOCHASTIC computing (SC) generally converts n-bit 
numbers within [0, 2n-1] into the interval [0, 1] by using 

randomly distributed bitstreams. The main advantage of 
carrying out operations through bitstreams is that the area and 
power dissipation of arithmetic circuits can be significantly 
reduced; e.g., an AND gate can perform multiplication in SC. 
Thus, it is suitable for applications containing many multipliers, 
such as multiply-accumulate (MAC) units [1], filters [2], neural 
networks (NNs) [3, 4], and some image processing algorithms 
[1]. It has been shown that a binary-interfaced MAC (BIN-
MAC) is more scalable and reconfigurable than a conventional 
MAC using exclusively stochastic logic (ESL-MAC) [5, 6]. 

The latency of 2n clock cycles for the serial multiplier using 
an AND gate exponentially grows as the bit width n of the 
binary inputs increases, which leads to a noticeable decrease in 

 
This work was supported by the Fundamental Research Funds for the 

Central Universities (No. JZ2020HGQA0162 and No. PA2021KCPY0043), by 
the Natural Sciences and Engineering Research Council (NSERC) of Canada 
(No. RES0048688), and by Natural Science Foundation of Anhui Province (No. 
2108085MF226). 

(Corresponding author: Guangjun Xie) 

energy efficiency. To reduce the latency, a multiplexer (MUX) 
based multiplier can terminate the operation in advance by 
detecting each bit in the multiplicator bitstream [5]. At the same 
time, the multiplicand bitstream is reduced by 1 every clock 
cycle. If it reaches 0, the multiplier finishes the operations. It 
shows a high computing accuracy and no longer requires 2n 
clock cycles. Assuming that the multiplicand follows a uniform 
distribution in the interval [0, 2n-1], the expectation of the 
required number of clock cycles is (1+1+2+3…+2n-1)/2n=2n-1-
1/2, where each element in the parenthesis gives the number of 
clock cycles for computing each number. This shows that the 
multiplier approximately reduces the number of clock cycles by 
half on average, compared to the serial one. Thus, the energy 
efficiency of this method can still be improved. 

To further reduce the latency, the parallel thermometer code 
has been introduced for multipliers to reduce the latency from 
2n clock cycles to 1 clock cycle [7, 8]. To increase computing 
accuracy, a deterministic approach changes the length of 
bitstreams from 2n to 22n bits for a completely accurate 
computation [9]. This leads to an excessive number of parallel 
AND gates in multipliers and results in very high energy 
consumption. Moreover, almost half of the elements are 1 in the 
truth table of the thermometer code, leading to a high design 
complexity of stochastic number generators (SNGs) [7]. This 
also reduces the multipliers’ energy efficiency. 

To address the above issues, a method to find the bitstreams 
with the least mean squared error (MSE), referred to as optimal 
multiplicative bitstreams (OpMulbs), is proposed and 
instantiated in detail in this work for highly accurate and energy 
efficient multipliers. Computing accuracy is evaluated using the 
MSE and mean absolute error (MAE). Simulation results show 
that the multipliers using OpMulbs produce the same MSEs and 
MAEs as the state-of-the-art MUX-based designs in [5] while 
reaching much lower hardware costs. Several applications are 
then implemented to validate the advantages of the proposed 
multipliers in lowering hardware costs and improving 
computing accuracy. 
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The main contributions of this brief are summarized as 
follows. 1) An algorithm for finding the bitstreams with the 
smallest MSE and MAE is developed.  2) Parallel stochastic 
multipliers with various bit widths are proposed to reach a 
higher accuracy and lower hardware costs. 3) The multipliers 
are applied to several algorithms to verify their practicability in 
fault-tolerant applications. 

This brief proceeds as follows. Section II describes the 
algorithm and the proposed parallel multipliers. Section III 
illustrates the experimental results and applications of the 
multipliers. Section IV concludes this work. 

II. BITSTREAMS AND MULTIPLIERS 

A. The Optimal Multiplicative Bitstream (OpMulb) 
Let us take a 3-bit binary number b2b1b0 (ranging in 000 ~ 

111) to explain the algorithm for finding OpMulbs. The weights 
of b2, b1, and b0 are respectively 4, 2, and 1. The number of 1s 
in a stochastic bitstream with a length of 8 bits generated by 
b2b1b0 is approximately 4b2+2b1+b0. Assume that an initial 
bitstream is b2b2b2b2b1b1b00. Then, a full permutation is 
performed on the bitstream. 

For ease of description, the initial bitstream is denoted as an 
initial vector [3 3 3 3 2 2 1 0], where each element maps a bit 
in b2b2b2b2b1b1b00. Then, the full permutation of the initial 
bitstream becomes that of the initial vector. It is worth noting 
that it will be possible to obtain the reverse lexicographic order 
[10], in total (23)!=40320 cases, using the perms function in 
MATLAB. The number of cases exponentially increases as the 
bit width of binary numbers increases. Meanwhile, the 
computation time must also be considered. Note that, elements 
2 and 3 in this vector are duplications, thus leading to a large 
number of duplications in all 40320 cases. After removing these 
duplications, the number of cases is C4 

8 ×C2 
4 ×C1 

2 =840. Thus, an 
algorithm is required to directly obtain all cases without 
duplications, at least the best permutation with the least MSE 
has to be found. 

Algorithm 1 describes the principle of finding OpMulbs for 
an n-bit binary number. Fig. 1(a) illustrates the permutation 
process of Algorithm 1 for an initial vector. The initial vector 
can be arbitrarily chosen, e.g., [3 3 3 3 2 2 1 0], while the 
starting vector is fixed to be in an ascending order, e.g., A1=[0 
1 2 2 3 3 3 3]. Consider the process from the previous vector 

A2=[1 0 2 2 3 3 3 3] to the next vector A3=[0 2 1 2 3 3 3 3] as an 
example; it is divided into four steps. 

1) Find the position index p1 of the larger number in the first 
ascending pair of numbers in A2. That is, (0 2) enclosed in a 
blue circle as the first ascending pair, and A2(p1=3)=2>0. 

2) Find the position index p2 of the first number smaller than 
the number indexed by p1 in A2. That is, 1 in the red circle less 
than 2 found in the first step, and A2(p2=1)=1<2. 

3) Swap A2(p1=3)=2 and A2(p2=1)=1 to obtain an 
intermediate vector [2 0 1 2 3 3 3 3], as the dotted arrows show. 

4) Reverse the order of numbers with indexes smaller than 
p1=3 in the intermediate vector, as the red arrows indicate. That 
is, change (2 0) to (0 2) in the black circle. 

The permutation process is finished to get the targeted vector 
A3=[0 2 1 2 3 3 3 3]. All others are performed in the same way 
to reach the last permutation AN=A840=[3 3 3 3 2 2 1 0]. 

Not only do we record the results of each permutation but 
also perform a multiplication of each permutation by the initial 
bitstream, and then compute their MSEs. The bitstreams with 
the smallest MSEs are saved to be OpMulbs, which will be used 
for the stochastic multipliers later. 

B. The Proposed Parallel Multiplier 
With the found OpMulbs, parallel stochastic multipliers are 

proposed to reduce latency from 2n clock cycles to 1 clock cycle. 
Take a 3-bit multiplier with the binary inputs A=a2a1a0 and 
B=b2b1b0 as an example, as shown in Fig. 1(b). The multiplier 
uses hard-wired connections to generate parallel bitstreams, 
followed by 2n=23=8 AND gates and a SUM unit to obtain 3-
bit binary results in one clock cycle. 

The pairing of two hard-wired connections to each AND gate 
is dominated by OpMulbs. An input of the multiplier can be 
coded from an initial bitstream, while the other one is coded 
from an OpMulb. For signed multiplication, it is only necessary 
to add a sign bit to each binary input and to use two's 
complement to operate. 

The multipliers in [8] share binary input and output interfaces 
and AND gates to implement parallel operations. The use of 
hard-wired connections in the proposed multipliers exempts the 
generation of stochastic bitstreams from dedicated SNGs, i.e., 
thermometer code generators. These simple connections benefit 
from OpMulbs, which makes the multipliers more hardware 
efficient. However, the SNGs and the deterministic approach in 
the multipliers in [8] lead to a significant increase in bitstream 
length and thus reduce energy efficiency if the multipliers 
perform exact computation, which is optional in many fault-
tolerant applications, such as NNs, filters, and image processing. 
We show in the following that OpMulbs provide sufficient 
computing accuracy for the proposed multipliers. 

 
Fig. 1.  (a) An example of algorithm 1. (b) A 3-bit parallel multiplier. 
 

Algorithm 1 Algorithm for finding optimal multiplicative bitstreams 
generated by an n-bit binary number 
Input: n (bit width of a binary number) 
Output: A (matrix to store all permutations without duplications) 
Initialization: 

11 2 2
2 4 2

n

nN C C C
−

= × × × , A=zeros(N,2n) 

for i=1 to n do 
 A(1,2i-1+1:2i)=i; 
for p=2 to N do 
 t=A(p-1,:); 
 for p1=2 to 2n do 
  if t(p1-1)<t(p1) then break; 
 for p2=1 to 2n do 
  if t(p2)<t(p1) then break; 
 exchange(t(p1),t(p2)); 
 for k=1 to p1/2 do 
  exchange(t(k),t(p1-k)); 
 A(p,:)=t; 

 



III. EXPERIMENTAL RESULTS AND APPLICATIONS 
The MSE for n-bit multipliers is computed by 
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where Px and Py respectively represent the binary values of a 
permutation and the initial bitstream, and Pxy denotes their 
ANDed result. The mean absolute error (MAE) is also 
employed to evaluate the computing accuracy. The MAE is 
obtained by one million Monte Carlo trials for each input within 
the range of [0, 1] randomly generated by using the rand 
function in MATLAB. All circuits are synthesized by the 
Synopsys Design Compiler with a TSMC 65 nm library at the 
typical corner and with a nominal supply voltage of 1.2V. The 
command ‘compile_ultra’ is used to ungroup all components 
and automatically synthesize the circuits according to timing 
constraints. The power is measured by PrimePower using a 
vector-free power analysis model. 

A. Multiplier 
Computing accuracy: Fig. 2 shows the MSEs of all possible 

permutations without duplication for 3-bit and 4-bit binary 
inputs. The values marked in red are the MSEs generated by 
using OpMulbs, which have the smallest values. TABLE I and 
TABLE II list the smallest MSEs and MAEs of 3-bit to 8-bit 
multipliers designed using the obtained OpMulbs and previous 
designs in [5, 8, 11]. ‘Shared’ means the outputs of a linear 
feedback shift register are reversed and shared between two 
SNGs to realize high computing accuracy [11]. The proposed 
multipliers provide the same MSEs and MAEs as the MUX-
based designs in [5], while the sharing-based multipliers reach 
higher values of these metrics. The designs in [8] using the 
deterministic approach (denoted by the_det) produce the same 
results as binary multipliers. If the deterministic approach is not 

applied in the designs in [8] (thermo for short), the largest MSEs 
and MAEs occur, since all 1s in the thermometer code proceed 
to 0s and the 0s involved in multiplication do not affect the 
number of 1s in results. 

Fault tolerance: The aforementioned method [12] to inject 
various probabilities of errors into the inputs of multipliers is 
applied. Each bit in the inputs is randomly selected and flipped 
with a given probability within [0, 1]. Fig. 3 shows the MSEs 
of 3-bit multipliers versus the probability of bit flip-induced 
errors. Apparently, the MSEs increase as the errors increase. 
The proposed 3-bit multiplier presents lower MSEs than other 
designs, so it has a higher fault tolerance than others. The same 
observation is true for higher-bit multipliers. 

Hardware cost: TABLE III shows the hardware 
measurements of 3-bit multipliers, including an exact 3-bit 
binary multiplier. 3×3=9 AND gates are used to generate the 
partial products, which are then compressed by using the 4-2 
compressor in [13], half adders, and full adders into two rows, 
based on the Dadda tree structure. A ripple carry adder is then 
used to compute the final addition. 

The MUX-based design terminates operations in advance to 
reduce latency according to the inputs. Its latency is computed 
by the critical path delay (CPD) multiplied by the expected 
number of required clock cycles, i.e., 0.46×(2n-1-1/2)=0.46×(23-

1-1/2). In the same way, the sharing-based multiplier is also a 
serial design, of which the latency is computed by the CPD 
multiplied by the number of clock cycles, i.e., 0.11×2n=0.11×23. 

The latencies of the thermo, the_det, binary, and proposed 
multipliers are respectively equal to their CPD since they are 
designed to operate in parallel. Energy efficiency (EE) is 
denoted as the ratio of the energy of previous multipliers to that 
of the proposed design in TABLE III. With these data, the 
proposed multiplier is more energy efficient than its stochastic 
counterparts and the binary design. This benefits from the 
parallel design and the hard-wired connections dominated by 
OpMulbs to avoid complex SNGs. 

 
Fig. 2.  The MSEs of each permutation for n-bit numbers. (a) 3-bit. (b) 4-bit. 

TABLE I 
THE MSES OF 3-BIT TO 8-BIT MULTIPLIERS 

           n-bit 
MSE 

3 
(10-3) 

4 
(10-4) 

5 
(10-4) 

6 
(10-5) 

7 
(10-5) 

8 
(10-6) 

MUX [5] 2.26 6.75 1.93 5.38 1.48 4.02 
Thermo [8] 11.5 112.2 111.4 1111.8 1111.3 11111.5 
The_det [8] 0 0 0 0 0 0 
Shared [11] 2.37 9.20 3.37 11.78 3.97 12.94 

Binary 0 0 0 0 0 0 
Proposed 2.26 6.75 1.93 5.38 1.48 4.02 

TABLE II 
THE MAES OF 3-BIT TO 8-BIT MULTIPLIERS 

           n-bit 
MAE 

3 
(10-2) 

4 
(10-2) 

5 
(10-2) 

6 
(10-3) 

7 
(10-3) 

8 
(10-3) 

MUX [5] 3.52 2.02 1.10 5.89 3.10 1.62 
Thermo [8] 8.20 8.30 8.33 83.31 83.33 83.33 
The_det [8] 0 0 0 0 0 0 
Shared [11] 3.59 2.23 1.44 8.82 5.26 3.07 

Binary 0 0 0 0 0 0 
Proposed 3.52 2.02 1.10 5.89 3.10 1.62 

 
 

 
Fig. 3.  The MSEs of 3-bit multipliers versus the probability of errors. 

TABLE III 
THE HARDWARE MEASUREMENTS OF 3-BIT MULTIPLIERS 

Multiplier Area 
(μm2) 

Power 
(mW) 

CPD 
(ns) 

Latency 
(ns) 

Energy 
(pJ) EE 

MUX [5] 134.3 0.012 0.46 1.61 0.019 6.5 
Thermo [8] 85.7 0.005 0.71 0.71 0.004 1.3 
The_det [8] 516.6 0.022 1.56 1.56 0.035 11.8 
Shared [11] 112.7 0.012 0.11 0.88 0.010 3.5 

Binary 100.4 0.009 0.50 0.50 0.005 1.5 
Proposed 74.2 0.005 0.57 0.57 0.003 1.0 

TABLE IV 
THE HARDWARE MEASUREMENTS OF 8-BIT MULTIPLIERS 

Multiplier Area 
(μm2) 

Power 
(mW) 

CPD 
(ns) 

Latency 
(ns) 

Energy 
(pJ) EE 

MUX [5] 379.1 0.033 0.71 90.52 2.95 76.5 
Thermo [8] 3543.5 0.113 6.25 6.25 0.70 18.3 
The_det [8] 694092.9 23.659 8.29 8.29 196.13 5082.1 
Shared [11] 274.7 0.021 0.17 43.52 0.93 24.1 

Binary 701.6 0.054 1.72 1.72 0.09 2.4 
Proposed 405.7 0.028 1.37 1.37 0.04 1.0 

 



In addition, the hardware costs for 8-bit multipliers are listed 
in TABLE IV, which indicate the energy efficiency of the 
proposed design of stochastic multipliers. 

B. Multiply-Accumulate Unit 
The proposed 6-bit multiplier shows an MSE of 5.38×10-5, 

which is low enough for many fault-tolerant applications [11]. 
So 3-bit to 6-bit multipliers are investigated in various 
applications to verify the efficacy of the proposed multipliers. 

An m-input MAC using the proposed multipliers requires 
only cascading m multipliers in parallel. All products are 
summed by using a binary adder, so the results do not need to 
be scaled. 

Computing accuracy: Fig. 4 shows the MAEs of MACs using 
different stochastic multipliers versus the number of inputs m 
(2≤m≤28), where the terms ‘MUX3’, ‘Thermo3’, ‘Shared3’, 
and ‘Proposed3’ means a MAC composed of respective 3-bit 
stochastic multipliers. 

The proposed 6-bit multiplier-based MACs show almost the 
same MAEs as those denoted as MUX6, whereas Thermo6 and 
Shared6 present higher MAEs. The MACs using the proposed 
lower-bit multipliers show lower MAEs than other designs, 
because of the utilization of OpMulbs. The data also show that 
the MAEs linearly increase as the number of the inputs of 
MACs increases. The increasing rates of the designed MACs 
are smaller than others. 

Hardware cost: TABLE V lists the hardware measurements 
of m-input MACs using various 6-bit multipliers (2≤m≤28), 
where the 256-input and 9-input MACs are respectively used 

for image multiplication and image smoothing later. The energy 
of the proposed multiplier-based MACs is respectively reduced 
by 97.68%, 33.14%, 99.64%, 98.73%, and 59.68% on average 
compared with the MUX, thermo, the_det, sharing, and binary 
designs, as can be seen from the average and normalized 
measures. The ‘Gate’ means the number of equivalent NAND 
gates for the average area, which also shows the efficiency of 
the proposed designs. 

C. Image Processing 
Five images including the airplane, cameraman, clock, Lena, 

and moon from the USC-SIPI Image Database are multiplied in 
pairs and smoothened to assess the practicability of multipliers 
[14]. The peak signal to noise ratio (PSNR) and mean structural 
similarity index (MSSIM) are used to evaluate the processed 
image quality. The the_det and exact binary designs provide 
accurate results for computing the PSNR and MSSIM. The 
PSNR is given by 
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where w and r are the length and width of images; MAX is the 
maximum value of pixels; and S´(i,j) and S(i,j) are the exact and 
stochastic results for each pixel. The MSSIM is defined as 
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where the descriptions for these parameters can be found in [15]. 
Multiplication: An algorithm for multiplying two images 

pixel by pixel by using the stochastic and binary multipliers is 
developed in MATLAB. 

Smoothing: The smoothing algorithm is given by [16] 

 ( ) ( ) ( )
1 1

1 1
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m n
Y i j X i m j n K m n
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where X and Y are respectively an input image to be smoothened 
and an output image, K is the smoothing kernel given by 

TABLE V 
THE HARDWARE MEASUREMENTS OF M-INPUT MACS USING 6-BIT MULTIPLIERS 

m 2 4 8 9 16 32 64 128 256 Average Normalization Gate 

MUX 
[5] 

Area (μm2104) 0.07 0.13 0.27 0.30 0.54 1.07 2.14 4.27 8.53 0.0333 1.11 

232 Power (mW) 0.06 0.11 0.22 0.24 0.43 0.85 1.70 3.40 6.83 0.0267 1.31 
Latency (ns) 22.68 21.42 22.68 23.31 25.83 30.87 64.89 75.60 87.26 0.7216 30.58 
Energy (pJ) 1.36 2.36 5.00 5.61 11.14 26.31 110.59 257.69 597.49 1.9554 43.01 

Thermo 
[8] 

Area (μm2104) 0.19 0.38 0.75 0.85 1.50 2.99 5.98 11.96 23.92 0.0935 3.13 

649 Power (mW) 0.07 0.14 0.27 0.30 0.53 1.04 2.07 4.16 8.46 0.0328 1.61 
Latency (ns) 1.95 1.94 1.89 2.07 2.05 1.99 2.00 2.10 2.09 0.0348 1.47 
Energy (pJ) 0.14 0.27 0.50 0.62 1.09 2.06 4.14 8.75 17.67 0.0679 1.50 

The_det 
[8] 

Area (μm2104) 8.12 16.23 32.45 36.50 64.90 129.85 259.69 519.54 1039.70 4.0597 135.58 

28192 Power (mW) 4.20 8.18 16.54 18.54 33.06 66.20 132.75 266.21 534.63 2.0815 102.11 
Latency (ns) 5.78 5.86 5.67 5.47 5.68 5.95 6.01 6.04 6.00 0.1011 4.28 
Energy (pJ) 24.28 47.93 93.78 101.42 187.78 393.89 797.83 1607.91 3207.78 12.4520 274.30 

Shared 
[11] 

Area (μm2104) 0.07 0.14 0.29 0.32 0.58 1.15 2.29 4.56 9.25 0.0359 1.20 

250 Power (mW) 0.05 0.09 0.18 0.20 0.35 0.68 1.35 2.85 5.98 0.0226 1.11 
Latency (ns) 14.08 14.72 69.76 81.28 90.24 108.80 132.48 154.88 183.68 1.6376 69.38 
Energy (pJ) 0.70 1.32 12.56 16.26 31.58 73.98 178.85 441.41 1098.41 3.5743 78.74 

Binary 

Area (μm2104) 0.10 0.20 0.40 0.45 0.80 1.62 3.24 6.44 12.87 0.0503 1.68 

350 Power (mW) 0.08 0.15 0.29 0.32 0.57 1.08 2.24 4.74 9.90 0.0373 1.83 
Latency (ns) 1.28 1.28 1.28 1.29 1.28 1.42 2.68 3.11 3.47 0.0329 1.40 
Energy (pJ) 0.10 0.19 0.37 0.41 0.73 1.53 6.00 14.74 34.35 0.1126 2.48 

Proposed 

Area (μm2104) 0.06 0.12 0.24 0.27 0.48 0.96 1.92 3.83 7.66 0.0299 1.00 

208 Power (mW) 0.04 0.08 0.16 0.18 0.32 0.62 1.26 2.58 5.34 0.0204 1.00 
Latency (ns) 0.97 1.02 1.01 1.00 1.01 1.00 1.13 2.37 2.74 0.0236 1.00 
Energy (pJ) 0.04 0.08 0.16 0.18 0.32 0.62 1.42 6.11 14.63 0.0454 1.00 

 

 
Fig. 4.  The MAEs for MACs using different stochastic multipliers. 
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Computing accuracy: TABLE VI and TABLE VII list the 
average PSNRs and MSSIMs for the processed images, where 
the data before/after the slashes respectively are the values for 
the image multiplication and smoothing. The PSNRs of images 
multiplied using the proposed multipliers are respectively 
improved by 1.56%, 83.21%, and 14.00% on average, while the 
MSSIMs are improved by 5.60%, 10.89%, and 5.84% 
compared with those in [5, 8, 11]. The PSNRs and MSSIMs of 
the smoothened images are also improved by 76.03% and 18.48% 
on average compared with the others. These results also show 
that the proposed 6-bit multiplier is accurate enough in image 
processing because a PSNR larger than 30 dB is considered 
sufficient [17]. Fig. 5 shows examples of the multiplied airplane 
and moon images and the smoothened cameraman images, 
generated by the considered 6-bit multipliers. 

Hardware cost: The circuits for multiplying and smoothing 
images are similar to those of 256-input and 9-input MACs, 
respectively, as listed in TABLE V. Thus, the proposed 
multipliers achieve a high computing accuracy, while 
significantly lowering the hardware costs in fault tolerant 
applications, compared with the state-of-the-art designs. 

IV. CONCLUSION 
An algorithm for finding OpMulbs is proposed for stochastic 

multipliers. Experimental results show that the proposed 
parallel stochastic multipliers using OpMulbs reach the same 
computing accuracy while incurring much smaller hardware 
costs, compared with previous designs. Applications in MAC 
units and image processing also illustrate the effectiveness of 
the proposed multipliers. These designs use binary input and 
output interfaces, so they can be easily applied to neural 
networks by using the designed MACs. This will be 
investigated in our future work to accelerate neural networks. 
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Fig. 5.  The processed images. (a) Multiplication. (b) Smoothing. 

TABLE VI 
THE AVERAGE PSNRS OF IMAGES USING VARIOUS MULTIPLIERS (DB) 
Multiplier 3-bit 4-bit 5-bit 6-bit 
MUX [5] 23.34/14.69 29.56/24.01 35.31/28.83 41.17/36.48 

Thermo [8] 17.66/9.06 17.97/9.04 18.04/9.06 18.05/9.08 
Shared [11] 21.25/9.71 25.92/17.29 31.27/23.70 36.81/29.83 
Proposed 24.77/15.29 29.68/24.03 35.74/28.83 41.21/37.24 

TABLE VII 
THE AVERAGE MSSIMS OF IMAGES USING VARIOUS MULTIPLIERS 

Multiplier 3-bit 4-bit 5-bit 6-bit 
MUX [5] 0.687/0.532 0.816/0.819 0.930/0.909 0.979/0.959 

Thermo [8] 0.683/0.642 0.789/0.671 0.838/0.682 0.857/0.686 
Shared [11] 0.692/0.442 0.809/0.735 0.928/0.872 0.976/0.944 
Proposed 0.725/0.697 0.861/0.846 0.944/0.909 0.982/0.962 
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