
SUBMITTED FOR REVIEW 1

Low-Power Approximate Unsigned Multipliers with
Configurable Error Recovery

Honglan Jiang*, Student Member, IEEE, Cong Liu*, Fabrizio Lombardi, Fellow, IEEE and Jie Han, Senior
Member, IEEE,

Abstract—Approximate circuits have been considered for appli-
cations that can tolerate some loss of accuracy with improved per-
formance and/or energy efficiency. Multipliers are key arithmetic
circuits in many of these applications including digital signal
processing (DSP). In this paper, a novel approximate multiplier
with a low power consumption and a short critical path is
proposed for high-performance DSP applications. This multiplier
leverages a newly designed approximate adder that limits its carry
propagation to the nearest neighbors for fast partial product
accumulation. Different levels of accuracy can be achieved by
using either OR gates or the proposed approximate adder in a
configurable error recovery. The multipliers using these two error
reduction strategies are referred to as approximate multiplier 1
(AM1) and approximate multiplier 2 (AM2), respectively. Both
AM1 and AM2 have a low mean error distance, i.e., most of the
errors are not significant in magnitude. Compared to a Wallace
multiplier optimized for speed, an 8×8 AM1 with 4 MSBs (most
significant bits) for error reduction and synthesized using a 28 nm
CMOS process shows a 60% reduction in delay (when optimized
for delay) and a 42% reduction in power dissipation (when
optimized for area). In a 16×16 design, half of the least significant
partial products are truncated for AM1 and AM2, which are
thus denoted as TAM1 and TAM2, respectively. Compared with
the Wallace multiplier, TAM1 and TAM2 save from 50% to
66% in power, when optimized for area. Compared to existing
approximate multipliers, AM1, AM2, TAM1 and TAM2 show
significant advantages in accuracy with a high performance. AM2
has a better accuracy compared to AM1 but with a longer delay
and higher power consumption. Image processing applications
including image sharpening and smoothing are considered to
show the quality of the approximate multipliers in error-tolerant
applications. By utilizing an appropriate error recovery, the
proposed approximate multipliers achieve similar processing
accuracy as traditional exact multipliers, but with significant
improvements in power.

I. INTRODUCTION

Approximate computing has emerged as a potential solution
for the design of energy-efficient digital systems [1]. Ap-
plications such as multimedia, recognition and data mining
are inherently error-tolerant and do not require a perfect
accuracy in computation. For digital signal processing (DSP)
applications, the result is often left to interpretation by human
perception. Therefore, strict exactness may not be required and

*These authors contributed equally to this work.
H. Jiang, C. Liu and J. Han are with the Department of Electrical and

Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G
2V4. (Email: honglan@ualberta.ca, cong4@ualberta.ca, jhan8@ualberta.ca)

F. Lombardi is with the Department of Electrical and Computer Engineering,
Northeastern University, Boston, USA. (E-mail: lombardi@ece.neu.edu)

an imprecise result may suffice due to the limitation of human
perception. For these applications, approximate circuits may
play an important role as a promising alternative for reducing
area, power and delay in digital systems that can tolerate
some loss of accuracy, thereby achieving better performance
in energy efficiency.

As one of the key components in arithmetic circuits, adders
have been extensively studied for approximate implementation
[2]–[8]. The so-called speculative adders operate by using a
reduced number of less significant input bits to calculate the
sum, because the typical carry propagation chain is usually
shorter than the width (in bits) of an adder [2]. An error
detection and recovery scheme has been proposed in [3] to
extend the scheme of [2] for a reliable adder with variable
latency. A reliable variable-latency adder based on carry select
addition has been presented in [8]. As a number of approximate
adders have been proposed, new methodologies to model,
analyze and evaluate them have been discussed in [9]–[12].

However, there has been relatively less effort in the design of
approximate multipliers. A multiplier usually consists of three
stages: partial product generation, partial product accumulation
and a carry propagation adder (CPA) at the final stage [13]. In
[14], approximate partial products are computed using inaccu-
rate 2× 2 multiplier blocks, while accurate adders are used in
an adder tree to accumulate the approximate partial products.
In [15], approximate 4×4 and 8×8 bit Wallace multipliers are
designed by using a carry-in prediction method. Then, they are
used in the design of approximate 16×16 Wallace multipliers,
referred to as AWTM. The AWTM is configured into four
different modes by using a different number of approximate
4×4 and 8×8 multipliers. The use of approximate speculative
adders has been discussed in [10] for the final stage addition
in a multiplier. The error tolerant multiplier (ETM) of [16]
is based on the partition of a multiplier into an accurate
multiplication part for most significant bits (MSBs) and a
non-multiplication part for least significant bits (LSBs). The
static segment multiplier (SSM) utilizes a similar partition
scheme [17]. In an n-bit SSM, an m-bit accurate multiplier
(m > n/2) is used to multiply the m consecutive bits from the
two input operands. Whether the (n−m) MSBs of each input
operand are all zero determines the selection of the segment as
input of the accurate multiplier (m MSBs or m LSBs). These
approximate multipliers are designed for unsigned operation.
Signed multiplication is usually implemented by using a Booth
algorithm. Approximate designs have been proposed for fixed-
width Booth multipliers with error compensation [18], [19]
and a radix-8 Booth multiplier using approximate adders to

SUBMITTED FOR REVIEW 2

compute the encoded partial products [20].
In this paper, a novel approximate multiplier design is

proposed using a simple, yet fast approximate adder. This
newly designed adder can process data in parallel by cutting
the carry propagation chain. It has a critical path delay that
is even shorter than a conventional one-bit full adder. Albeit
with a high error rate, this adder simultaneously computes the
sum and generates an error signal; this feature is employed
to reduce the error in the final result of the multiplier. In
the proposed approximate multiplier, a simple tree of the
approximate adders is used for partial product accumulation
and the error signals are used to compensate error for obtaining
a better accuracy.

The proposed multiplier can be configured to two designs
by using OR gates and the proposed approximate adders
for error reduction, referred to as approximate multiplier 1
(AM1) and approximate multiplier 2 (AM2), respectively.
Different levels of error recovery can also be achieved by
using a different number of MSBs for error recovery in
both AM1 and AM2. Compared to the traditional Wallace
tree, the proposed multipliers have significantly shorter critical
paths. Functional and circuit simulations are performed to
evaluate the performance of the multipliers. Image sharpening
and smoothing are considered as approximate multiplication-
based DSP applications. Experimental results indicate that the
proposed approximate multipliers perform well in these error-
tolerant image processing applications. The proposed designs
can be used as effective library cells for the synthesis of
approximate circuits [21], [22].

This paper is a significant extension of [23] and is organized
as follows. Section II presents the proposed approximate adder
and the design of the multiplier. Section III discusses the error
reduction schemes for 8 × 8 and 16 × 16 AM1 and AM2.
Section IV shows the accuracy analysis and in section V, delay
and power consumption are obtained. Section VI compares
the proposed approximate multipliers with the existing designs
in terms of accuracy and hardware overhead. Section VII
discusses the application of the proposed multiplier to image
processing. Section VIII concludes the paper.

II. PROPOSED APPROXIMATE MULTIPLIER

A. The Approximate Adder
In this section, the design of a new approximate adder is

presented. This adder operates on a set of pre-processed inputs.
The input pre-processing (IPP) is based on the interchange-
ability of bits with the same weights in different addends.
For example, consider two sets of inputs to a 4-bit adder:
i) A = 1010, B = 0101 and ii) A = 1111, B = 0000.
Clearly, the additions in i) and ii) produce the same result.
In this process, the two input bits AiBi = 01 are equivalent
to AiBi = 10 (with i being the bit index) because of
the interchangeability of the corresponding bits in the two
operands.

The basic rule for the IPP is to switch Ai and Bi if Ai = 0
and Bi = 1 (for any i), while keeping the other combinations
(i.e., AiBi = 00, 10 and 11) unchanged. By doing so, more
1’s are expected in A and more 0’s are expected in B. If ȦiḂi

are the ith bits in the pre-processed inputs, the IPP functions
are given by:

Ȧi = Ai +Bi, (1)

Ḃi = AiBi. (2)

(1) and (2) compute the propagate and generate signals used
in a parallel adder such as the carry look-ahead (CLA). The
proposed adder can process data in parallel by cutting the carry
propagation chain. Let A and B denote the two input binary
operands of an adder, S be the sum result, and E represent the
error vector. Ai, Bi, Si and Ei are the ith least significant bits
of A, B, S and E, respectively. A carry propagation chain
starts at the ith bit when Ḃi = 1, Ȧi+1 = 1, Ḃi+1 = 0. In
an accurate adder, Si+1 is 0 and the carry propagates to the
higher bit. However, in the proposed approximate adder, Si+1

is set to 1 and an error signal is generated as Ei+1 = 1. This
prevents the carry signal from propagating to the higher bits.
Hence, a carry signal is produced only by the generate signal,
i.e., Ci = 1 only when Ḃi = 1, and it only propagates to the
next higher bit, i.e., the (i + 1)th position. Table I shows the
truth table of the approximate adder, where Ȧi, Ḃi and Ḃi−1
are the inputs after IPP. The error signal is utilized for error
compensation purposes as discussed in a later section. In this
case, the approximate adder is similar to a redundant number
system [24] and the logical functions of Table I are given by

Si = Ḃi−1 + ḂiȦi, (3)

Ei = ḂiḂi−1Ȧi. (4)

By replacing Ȧi and Ḃi using (1) and (2) respectively, the
logic functions with respect to the original inputs are given by

Si = (Ai ⊕Bi) +Ai−1Bi−1, (5)

Ei = (Ai ⊕Bi)Ai−1Bi−1, (6)

where i is the bit index, i.e., i = 0, 1, · · · , n for an n-bit adder.
Let A−1 = B−1 = 0 when i is 0, thus, S0 = A0 ⊕ B0 and
E0 = 0. Also, Ei = 0 when Ai−1 or Bi−1 is 0.

Consider an n-bit adder, the inputs are given by A =
An−1 · · ·A1A0 and B = Bn−1 · · ·B1B0, the exact sum is
S̃ = S̃n−1 · · · S̃1S̃0. Then, S̃i can be computed as Si+Ei and
thus, the exact sum of A and B is given by

S̃ = S + E. (7)

In (7) ‘+’ means the addition of two binary numbers rather
than the ‘OR’ function. The error E is always non-negative
and the approximate sum is always equal to or smaller than
the accurate sum. This is an important feature of this adder
because an additional adder can be used to add the error to
the approximate sum as a compensation step. While this is
intuitive in an adder design, it is a particularly useful feature
in a multiplier design as only one additional adder is needed
to reduce the error in the final product.

SUBMITTED FOR REVIEW 3

Fig. 1. An approximate multiplier with partial error recovery using 5 MSBs of the error vector. : a partial product, sum or an
error bit generated at the first stage; : an error bit generated at the second stage; : an error bit generated at the last stage.

TABLE I. Truth table of an approximate adder cell. “X”
represents that no such a combination occurs due to the IPP.

Si/Ei
ḂiḂi−1

00 01 11 10

ȦiȦi−1

00 0/0 X X X

01 0/0 1/0 X X

11 1/0 1/1 1/0 0/0

10 1/0 X X 0/0

B. Proposed Approximate Multiplier

A distinguishing feature of the proposed approximate multi-
plier is the simplicity to use approximate adders in the partial
product accumulation. It has been shown that this may lead
to poor performance [14], because errors may accumulate
and it is difficult to correct errors using existing approximate
adders. However, the use of the newly proposed approximate
adder overcomes this problem by utilizing the error signal.
The resulting design has a critical path delay that is shorter
than a conventional one-bit full adder, because the new n-bit
adder can process data in parallel. The approximate adder has
a rather high error rate, but the feature of generating both
the sum and error signals at the same time reduces errors in
the final product. An adder tree is utilized for partial product
accumulation; the error signals in the tree are then used to
compensate the error in the output to generate a product with
a better accuracy.

The architecture of the proposed approximate multiplier
is shown in Fig. 1. In the proposed approximate multiplier,
the simplification of the partial product accumulation stage is
accomplished by using an adder tree, in which the number
of partial products is reduced by a factor of 2 at each
stage of the tree. This scheme is usually not implemented
using accurate multi-bit adders, because either the hardware
overhead or the delay is unacceptable. However, the newly

proposed approximate adder is suitable for implementing an
adder tree, because it is less complex than a conventional adder
and has a much shorter critical path delay.

Exact fast multipliers often include a Wallace or Dadda tree
using full adders (FAs) and half adders (HAs); compressors
are also utilized in the Wallace or Dadda tree to further
reduce the critical path with an increase in circuit area. These
designs require a proper selection of different circuit modules;
for example, 4:2 compressors, FAs and HAs are commonly
used in a Wallace tree and a judicious connection of these
modules must be considered in a tree design. This increases
the design complexity, especially when multipliers of different
sizes are considered; the proposed design is simple for various
multiplier sizes.

III. ERROR REDUCTION

The approximate adder generates two signals: the approx-
imate sum S and the error E; the use of the error signal is
considered next to reduce the inaccuracy of the multiplier. As
(7) is applicable to the sum of every single approximate adder
in the tree, an error reduction circuit is applied to the final
multiplication result rather than to the output of each adder.
Two steps are required to reduce errors: i) error accumulation
and ii) error recovery by the addition of the accumulated
errors to the adder tree output using an adder. In the error
accumulation step, error signals are accumulated to be a single
error vector, which is then added to the output vector of
the partial product accumulation tree. Two approximate error
accumulation methods are proposed, yielding the approximate
multiplier 1 (AM1) and approximate multiplier 2 (AM2). Fig.
2 shows the symbols for an OR gate, a full adder and half
adder cell and an approximate adder cell used in the error
accumulation tree.

A. Error Accumulation for Approximate Multiplier 1
As shown in Fig. 1, each approximate adder Ai generates a

sum vector Si and an error vector Ei, where i = 1, 2, · · · , 7.

SUBMITTED FOR REVIEW 4

(a) (b) (c)

Fig. 2. Symbols for (a) an OR gate, (b) an full adder or a half
adder and (c) an approximate adder cell

If the error signals are added using accurate adders, the
accumulated error can fully compensate the inaccurate product;
however to reduce complexity, an approximate error accumu-
lation is introduced. Consider the observation that the error
vector of each approximate adder tends to have more 0’s than
1’s. Therefore, the probability that the error vectors have an
error bit ’1’at the same position, is quite small. Hence, an OR
gate is used to approximately compute the sum of the errors for
a single bit. If m error vectors (denoted by E1, E2, ..., Em)
have to be accumulated, then the sum of these vectors is
obtained as

Ei = E1i OR E2i OR ... OR Emi. (8)

To reduce errors, an accumulated error vector is added to
the adder tree output using a conventional adder (e.g. a carry
look-ahead adder). However, only several (e.g. k) MSBs of the
error signals are used to compensate the outputs and further
reduce the overall complexity. The number of MSBs is selected
according to the extent that errors must be compensated. For
example in an 8 × 8 adder tree, there are a total of 7 error
vectors, generated by the 7 approximate adders in the tree.
However, not all the bits in the 7 vectors need to be added,
because the MSBs of some vectors are less significant than the
least significant bits of the k MSBs. In the example of Fig.
1, 5 MSBs (i.e. the (11 − 14)th bits, no error is generated at
the 15th bit position) are considered for error recovery and
therefore, 4 error vectors are considered (i.e., the error vectors
of adders E3, E4, E6 and E7). The error vectors of the other
three adders are less significant than the 11th bit, so they are
not considered. The accumulated error E is obtained using
(8); then, the final result is found by adding E to S using a
fast accurate adder. The error accumulation scheme is shown
in Fig. 3. As no error is generated at the least significant
two bits of each approximate adder Ai (i = 1, 2, · · · , 7),
the least significant two bits of each error vector Ei are not
accumulated.

B. Error Accumulation for Approximate Multiplier 2
The error accumulation scheme for AM2 is shown in Fig.

4. To introduce the design of AM2, consider an 8 × 8
multiplier with two inputs X and Y . For example, consider
the first two partial product vectors X0Y7, X0Y6, ..., X0Y0 and
X1Y7, X1Y6, ..., X1Y0 accumulated by the first approximate
adder (A1 in Fig. 1), where Xi and Yi are the ith least
significant bits of X and Y , respectively. Recall from (6) for
the approximate adder, the condition for Ei = 1 is

Ai−1 = Bi−1 = 1 and Ai 6= Bi. (9)

Fig. 3. Error accumulation tree for AM1. : an error bit
generated at the first stage; : an error bit generated at the
second stage; : an error bit generated at the last stage.

Fig. 4. Error accumulation tree for AM2. : an error bit
generated at the first stage; : an error bit generated at the
second stage; : an error bit generated at the last stage.

For the first approximate adder in the partial product accu-
mulation tree, its inputs are A = X0Y7, X0Y6, ..., X0Y0 and
B = X1Y7, X1Y6, ..., X1Y0. Thus, the ith least significant bits
for A and B are Ai = X0Yi and Bi = X1Yi−1, respectively.
If X0 or X1 is 0, there will be no error in this approximate
adder because either A or B is zero. Therefore, no error
occurs unless X0X1 = 11. When X0X1 = 11, Ai and Bi
are simplified to Yi and Yi−1, respectively. Then to calculate
Ei, Ai−1, Bi−1, Ai and Bi are replaced by Yi−1, Yi−2, Yi
and Yi−1, respectively. For Ei to be 1, YiYi−2Yi−1 = 011
according to (9). Therefore, an error only occurs when the
input has “011” as a bit sequence. Based on this observation,
the “distance” between two errors in an approximate multiplier
is at least 3 bits. Thus, two neighboring approximate adders in
the first stage of the partial product tree cannot have errors at
the same column, because the errors in a lower approximate
adder are those in the upper adder shifted by 2 bits when
both errors exist. The errors in two neighboring approximate
adders can then be accurately accumulated by OR gates, e.g.,

SUBMITTED FOR REVIEW 5

Partial
Products

Approximate
Adders

Approximate
Adders

Approximate
Result

M
U

X

Final Result

AM2

1st Level
Errors

AM1
OR

gates

Fig. 5. Block diagram of the proposed multipliers.

an OR gate can be used to accumulate the two bits in the error
vectors E1 and E2 in Fig. 1. After applying the OR gates to
accumulate E1 and E2 as well as E3 and E4, the four error
vectors are compressed into two. For E5, E6 and E7, they are
generated from the approximate sum of the partial products
rather than the partial products. Therefore, they cannot be
accurately accumulated by OR gates.

Another interesting feature of the proposed approximate
adder is as follows. Assume Ei = 1 in (6), then Ai−1 =
Bi−1 = 1 and Ai 6= Bi. Since Ai−1 = Bi−1 = 1, i.e.,
Ai−1⊕Bi−1 = 0, it is easy to show that Ei−1 = 0. Moreover
as Ai 6= Bi, i.e., AiBi = 0, then Ei+1 = 0. Thus, once there is
an error in one bit, its neighboring bits are error free, i.e., there
are no consecutive error bits in one row. Therefore, there is
no carry propagation path longer than two bits when two error
vectors are accumulated, and the error vectors are accurately
accumulated by the proposed approximate adder.

Based on the above analysis, E5 and E6 are accurately
accumulated by one approximate adder in the first stage of the
error accumulation. After the first stage of error accumulation,
three vectors are generated, and another two approximate
adders are then used to accumulate these three vectors as
well as the error vector remaining from the previous stage
(E7). Simulation results (found in later sections) show that
the modified error accumulation outperforms the OR-gate error
accumulation with little overhead on delay and power.

Hereafter, the proposed n×n approximate multiplier with k-
MSB OR-gate based error reduction is referred to as an n/k
AM1, while an n × n approximate multiplier with k-MSB
approximate adder based error reduction is referred to as an
n/k AM2. The structures of AM1 and AM2 are shown in Fig.
5.

C. 16× 16 Approximate Multipliers
In both AM1 and AM2, all the error vectors are com-

pressed to one error vector, which is then added back to
the approximate output of the partial product tree. Compared
to 8 × 8 designs, 16 × 16 multipliers generate more error

vectors, and too much information would be ignored if the
same error reduction strategies are used. That is, using only
one compressed error vector does not make a good estimation
of the overall error. In the modified designs, the error vectors
generated by the approximate adders are compressed to two
final error vectors. Take a 16 × 16 AM1 as an example, the
eight error vectors generated at the first stage of the partial
product accumulation tree are compressed to one error vector,
EV1, using OR gates. The remaining seven error vectors from
the second, third and fourth stages are compressed to another
error vector EV2. Then both EV1 and EV2 are added back to
the output of the partial product at the fourth stage. Similarly,
the proposed approximate adders are used in a 16× 16 AM2
to compress the eight error vectors from the first stage to one
error vector and the remaining error vectors to another error
vector.

Truncation can also be applied to the proposed designs
for large input operands. Therefore, 16 LSBs of the partial
products are truncated in 16× 16 AM1 and AM2, resulting in
truncated AM1 (TAM1) and truncated AM2 (TAM2).

IV. ACCURACY EVALUATION

Arithmetic accuracy in approximate circuits is compromised
for improvements in other metrics (such as reduced circuit
complexity and delay). In [9], the error distance (ED) and mean
error distance (MED) are proposed to evaluate the performance
of approximate arithmetic circuits. For multipliers, ED is
defined to be the arithmetic difference between the accurate
product (M) and the approximate product (M

′
), i.e.,

ED = |M
′
−M |. (10)

MED is the average of EDs for a set of outputs (obtained by
applying a set of inputs). A metric applicable for comparing
multipliers of different sizes is the normalized MED (NMED),
i.e.,

NMED =
MED

Mmax
, (11)

where Mmax is the maximum magnitude of the output of an
(accurate) multiplier, i.e. (2n − 1)2 for an n × n multiplier.
The relative error distance (RED) is defined as:

RED =
|M ′ −M |

M
=
ED

M
. (12)

Similarly, the mean relative error distance (MRED) can be
obtained.

The error rate (ER) is defined as the percentage of erroneous
outputs among all outputs [25]. For evaluating the worst-case
output, the maximum error (ME) is defined as the maximum
error distance normalized by the maximum output of the
accurate multiplier. In this paper, the NMED, MRED, ER and
ME are used to evaluate the proposed multipliers.

A. Accuracy Evaluation of 8× 8 Multipliers
As an error can occur at any stage (e.g., the partial product

accumulation stage and the error accumulation stage) and
complicated correlations exist, it is difficult, if not impossible,

SUBMITTED FOR REVIEW 6

to develop mathematical models for the error analysis of the
approximate adders. Thus, the functions of the proposed mul-
tipliers are realized using Matlab and an exhaustive simulation
is performed for an 8× 8 approximate multiplier.

Approximate multipliers with both the OR gate and the
approximate adder based error reduction, as well as the accu-
rate adder based error reduction, are evaluated. Fig. 6 shows
the four metrics (NMED, MRED, ER and ME) in logarithm
when using different numbers of MSBs for error reduction.
For the approximate multipliers, there is no error in the least
significant 2 bits of the output, so the largest number of MSBs
used for error reduction is 14. Let m denote the number of
MSBs used for error reduction. The values of NMED and
MRED of AM1 and AM2 drop drastically as m is increased
from 4 to 8 and continues to drop as m increases, even though
at a slower rate. In terms of ER, the values for the proposed
multipliers decrease slowly with an increasing m from 4 to 8
and then follow a sharper decline. The MEs for AM1 and AM2
do not decrease as much as the multiplier with an accurate error
accumulation when m increases. This occurs because some
errors at the higher bit positions are not accurately accumulated
by using the OR gates or the proposed approximate adders. The
values of NMED, MRED, ER and ME finally drop to zero for
the accurate error accumulation when 14 MSBs are used for
error reduction (not shown in Fig. 6 because the logarithmic
values are infinite).

For the same m, AM2 has a better performance than AM1
in terms of NMED, MRED and ER. For example, if 8 MSBs
are used for error reduction, the NMED of AM2 is 0.17%
while it is 0.30% for AM1. Moreover, if 14 MSBs are used
for error reduction, AM1 has an error rate of 17.6%, while the
error rate of AM2 can be as low as 5.8%.

These four figures also indicate that the proposed approx-
imate multiplier has a rather high error rate, but the errors
are usually very small compared to both the accurate and
the largest possible output of the approximate multiplier. For
example, for m=8, the error rate of AM1 can be as high as
61.55%, but the MRED is only 1.87%, i.e., most of the errors
are not significant.

B. Accuracy Evaluation of 16× 16 Multipliers
Fig. 7 shows the Monte Carlo simulation results for the 16×

16 designs of AM1, AM2, TAM1 and TAM2 with 108 random
inputs. Likewise, the error decreases with an increasing number
of bits used for error reduction. It is still true that AM2/TAM2
has a better accuracy than AM1/TAM1. Another observation
is that AM1/AM2 has a better accuracy than TAM1/TAM2, as
expected.

AM1/AM2 has a smaller NMED than TAM1/TAM2, how-
ever the difference is very small. This is because truncation of
several LSBs does not significantly affect the overall NMED.
For the same reason, the ME of TAM1/TAM2 is slightly
higher than AM1/AM2. Yet for MRED, we can see that
the difference between AM1/AM2 and TAM1/TAM2 becomes
more significant because the relative error is easily affected
by truncation. All these four approximate designs have high
ERs (98%-100%), and TAM1/TAM2 results in nearly an ER

(a) (b)

Fig. 8. (a) An exact full adder and (b) the approximate adder
cell.

of 100%. This is not surprising since 16×16 designs generate
more error bits than 8 × 8 designs, and the truncation even
generates more errors. However, the NMED and MRED are
still kept very small.

V. DELAY, POWER AND AREA EVALUATION

A. Analysis and Estimation

1) Delay Estimate: Based on the linear model of [26], the
delays of a full adder (Fig. 8(a)) and the approximate adder cell
(Fig. 8(b)) are approximately 4τg and 3τg , respectively, where
τg is an approximate “gate delay”. The delay of an XOR (or
XNOR) gate is 2τg due to its higher complexity compared to
an NAND (or NOR gate) [27].

For an n× n approximate multiplier (n is the power of 2),
there are m = log2 n stages in the partial product accumulation
tree. The first stage with 2m rows of partial products are
compressed to 2m−1 rows of partial products in the second
stage and 2m−1 error vectors. These error vectors are then
compressed (i.e., accumulated) using OR gates or approximate
adders in a similar tree structure. Since the numbers of rows
in the second partial product accumulation stage and the errors
generated by the first stage are the same, it takes m−1 stages
for both stages to be compressed to 1. Again, the number of
error vectors generated by the second partial product accu-
mulation stage is the same as the partial product rows in the
third partial product accumulation stage; both of them require
m − 2 stages to compress the rows to 1. Thus, when an n-
row partial product tree is compressed to 1 row, errors from
the log2 n stages are also compressed to log2 n error vectors,
provided that the delays for compressing two partial products
and accumulating two error vectors are the same. As the delay
of an OR gate is shorter than that of the approximate adder,
fewer error vectors remain after log2 n stages in AM1. For
ease of analysis, the numbers of the remaining error vectors
after log2 n stages in both AM1 and AM2 are considered to
be approximately log2 n. Then it takes dlog2 log2 ne stages
to finally compress these log2 n error vectors. Therefore, the
delay of the proposed partial product accumulation scheme is
modeled to be the sum of the delay of compressing the partial
product tree and the delay to accumulate the remaining log2 n
error vectors, i.e.

DAMi = (log2 n)× 3τg + dlog2 log2 ne × τi, (13)

where τi = τg (the delay of an OR gate for AM1) for i = 1
and τi = 3τg (the delay of an approximate adder for AM2)
for i = 2.

SUBMITTED FOR REVIEW 7

4 6 8 10 12 14
Number of bits used for error reduction

-20

-15

-10

-5

lo
g 2

(N
M

E
D

)

AM1
AM2
Error accumulation using accurate adders

(a) NMED

4 6 8 10 12 14
Number of bits used for error reduction

-14

-12

-10

-8

-6

-4

-2

lo
g 2

(M
R

E
D

)

AM1
AM2
Error accumulation using accurate adders

(b) MRED

4 6 8 10 12 14
Number of bits used for error reduction

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

lo
g 2

(E
R

)

AM1
AM2
Error accumulation using accurate adders

(c) ER

4 6 8 10 12 14
Number of bits used for error reduction

-14

-12

-10

-8

-6

-4

-2

lo
g 2

(M
E

)

AM1
AM2
Error accumulation using accurate adders

(d) ME

Fig. 6. Accuracy comparison of the approximate 8× 8 multiplier using approximate and exact error accumulation vs. different
number of bits for error reduction.

10 11 12 13 14 15 16
Number of bits used for error reduction

-12

-11.5

-11

-10.5

-10

-9.5

-9

lo
g 2

(N
M

E
D

)

AM1
AM2
TAM1
TAM2

(a) NMED

10 11 12 13 14 15 16
Number of bits used for error reduction

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

lo
g 2

(M
R

E
D

)

AM1
AM2
TAM1
TAM2

(b) MRED

10 11 12 13 14 15 16
Number of bits used for error reduction

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

lo
g 2

(E
R

)

AM1
AM2
TAM1
TAM2

(c) ER

10 11 12 13 14 15 16
Number of bits used for error reduction

-4.85

-4.8

-4.75

-4.7

-4.65

-4.6

-4.55

-4.5

-4.45

lo
g 2

(M
E

)

AM1
AM2
TAM1
TAM2

(d) ME

Fig. 7. Accuracy comparison of the approximate 16× 16 multipliers vs. the number of bits used for error reduction.

TABLE II. Estimated delay of the partial product accumulation
tree of the proposed and conventional multipliers of different
sizes.

n 8 16 32 64 2l

DAM1(τg) 11 14 18 21 3l + log2 l
DAM2(τg) 15 18 24 27 3l + 3 log2 l
DW (τg) 16 24 32 40 ≈ 6.5l

There are 4 compression stages in an 8 × 8 Wallace mul-
tiplier, and blog1.5nc stages in an n × n Wallace multiplier
(n ≥ 16). Thus the delay of a Wallace tree is approximately
given by [28]

DW = 4 blog1.5nc τg. (14)

Table II shows the delay of the partial product accumulation
tree in both the proposed and Wallace multipliers. For a 16-bit
multiplier, the delay of an exact multiplier tree is nearly 1.5×
as large as the delay of the proposed multiplier tree. As the
size of the multiplier increases, this factor is approximately 2.
In the Wallace multiplier that is optimized for speed [27], the
partial product accumulation delay is improved for up to 30%
by optimizing the signal connections between full adders. As
a result, the proposed partial product accumulation design is
29% faster than the optimized Wallace multiplier. In summary,
the proposed multiplier can significantly reduce the delay of
the partial product accumulation tree, which scales with the
size of the multiplier.

In an n×n Wallace multiplier, a final 2n-bit carry propagate
adder is required for adding the resultant two partial product
rows. The entire delay of a Wallace multiplier is given by

the addition of the delays caused by the Wallace tree and the
final carry propagate adder. In the proposed design, however,
the partial products are compressed to one row and thus, only
a (k − 1)-bit adder (k < 2n) is required to compensate the
error. Thus, the proposed approximate multiplier is faster than
a Wallace multiplier when the same adder design is used for
final addition.

2) Area Estimate: Let the area of a basic gate be αg , and
the area for an XOR (or XNOR) gate be 2αg [29]. Then, the
area of a full adder cell is 7αg , and the area of the approximate
adder cell is 5αg . If the error signal Ei is not required, the
circuit area for generating a sum Si is 4αg , i.e., an NOR gate
is not needed.

As the number of partial product rows is reduced by 1 by
using an (n − 1)-bit approximate adder, (n − 1) (n − 1)-bit
approximate adders are required to compress the n partial
product rows to one row. Also, (n − 1) error vectors are
generated, because each approximate adder produces an error
vector. The number of OR gates (or approximate adders) used
for error accumulation is determined by the number of MSBs
used for error reduction (i.e., k). Thus, the area of the proposed
partial product accumulation scheme is estimated to be

AAMi = (n− 1)2 × 4αg + αi, (15)

where αi is the area of the error generation and accumulation
circuit in AMi (i = 1 or 2).

In an n × n Wallace multiplier, a full adder compresses
three partial products to two, i.e., one bit is reduced by using
a full adder. Thus, (n − 2) rows of full adders are used to
compress the n partial product rows to two; each row consists

SUBMITTED FOR REVIEW 8

TABLE III. Estimated area of partial product accumulation tree
for the proposed and conventional 8× 8 multipliers.

k 4 6 8 14

AAM1(αg) 205 221 245 281
AAM2(αg) 213 264 305 385
AW (αg) 294 294 294 294

of approximately (n− 1) full adders. The area of the Wallace
tree is given by

AW = 7(n− 2)(n− 1)αg. (16)

Consider n = 8 as an example, Table III shows the estimated
areas of the Wallace tree and the partial product accumulation
tree of the proposed multipliers using different numbers of
MSBs for error reduction. According to the estimate, the partial
product accumulation tree of AM1 has smaller a area than
an Wallace tree, whereas the area of AM2’s partial product
accumulation tree is larger than an Wallace tree when the
number of MSBs used for error reduction is larger than 8. Note
that the final adder used for error reduction in the proposed
multiplier has smaller area than a Wallace multiplier. Thus, to
achieve a similar area as a Wallace multiplier, the number of
MSBs used for error reduction in AM2 can be larger than 8.

3) Power Estimate: The power consumption of a CMOS
circuit consists of short-circuit power, leakage power and dy-
namic power [26]. Compared to the dynamic power, the short-
circuit and leakage powers are relatively small and vary with
device fabrication. Dynamic power is dissipated for charging or
discharging the load capacitance when the output of a CMOS
circuit switches. By using a probabilistic power analysis, the
average dynamic power of a circuit is given by [30]

Pavg = fclk · V 2
dd

N∑
i=1

CL(xi) · α0→1(xi), (17)

where fclk is the operating clock frequency of the circuit, Vdd
is the supply voltage, N is the number of nodes in the circuit,
CL(xi) is the load capacitance at node xi, and α0→1(xi) is
the probability of the logic transition from 0 to 1 at node xi.
α0→1(xi) is computed by

α0→1(xi) = Ps(xi)Ps(x̄i), (18)

where Ps(xi) is the signal probability at node xi; it is defined
as the probability of a high signal value occurring at xi.

As the basic components of the Wallace and the proposed
multipliers, the full adder and the proposed approximate adder
are analyzed using (17). In (17), fclk and Vdd are the same for
the two components, CL(xi) depends on the fabrication. Thus,
the difference in dynamic power dissipation between these two
components is mainly caused by α0→1(xi).

Assume that 0 and 1 are equally likely to occur in each
input bit of the multiplication, i.e., the signal probability of
an input bit is 0.5, the partial product generated by a 2-
input AND gate has a signal probability of 0.5× 0.5 = 0.25.
For ease of calculation, the input partial products to the full
adder and the proposed approximate adder are assumed to
be mutually independent. For the full adder in Fig. 8(a), the
signal probabilities of the two outputs are computed as per their

truth tables, i.e., Ps(S) = 7/16 and Ps(Cout) = 5/32. Thus,
α0→1(S) = 7/16 × (1 − 7/16) = 0.246 and α0→1(Cout) =
0.132. Compared to the full adder, the proposed approximate
adder in Fig. 8(b) has a similar signal probability at the sum
output, i.e., Ps(Si) = 53/128, while Ps(Ei) = 3/128 that is
significantly lower than Ps(Cout). So, α0→1(Si) = 0.243 and
α0→1(Ei) = 0.023.

As Ps(Si) < Ps(S) and Ps(Ei) < Ps(Cout), the dynamic
power dissipated at the two outputs of the proposed approx-
imate adder is lower than a full adder. As for the internal
nodes, the full adder has one more node than the proposed
approximate adder. Thus, the proposed approximate adder
consumes lower dynamic power than a full adder. Moreover,
the dynamic power consumed by the error vector accumulation
circuit is very low due to the low switching activity at Ei.
Consequently, the proposed approximate multiplier is more
power-efficient than a Wallace multiplier.

B. Simulation results

1) 8× 8 Multipliers: AM1 has shown advantages in speed
and power consumption compared to a Wallace multiplier
for FPGA implementations, as discussed in [23]. A more
detailed discussion of the circuit implementations is pursued
next. Designs for 8× 8 AM1 with 4, 5, . . . , 9 MSBs using an
OR-gate based error reduction, 8 × 8 AM2 with 4, 5, . . . , 9
MSBs using an approximate adder based error reduction,
and the 8 × 8 optimized Wallace multiplier [27] have been
implemented in VHDL and synthesized by using the Synop-
sys Design Compiler (DC) with an industrial 28nm CMOS
process. Simulations are performed at a temperature of 25◦C
and a supply voltage of 1V. The modules for implement-
ing the multiplier circuits are taken from the 28nm library
as C32 SC 12 CORE LR tt28 1.00V 25C. The critical path
delays of these multipliers are reported by the Synopsys DC
tool. The power dissipation is found by the PrimeTime-PX
tool using 10 million random input combinations with a clock
period of 2 ns. The delay, area, power and power-delay
product (PDP) are shown in Fig. 9, where the area is optimized
to the smallest value for the results in (a), (b), (c) and (d),
and the critical path delay is constrained to the smallest value
without timing violation for the results in (e), (f), (g) and (h).
The reported power consumption is the total power, i.e., the
sum of the dynamic and static powers.

Fig. 9(a) and (e) indicate that the proposed approximate mul-
tiplier designs have shorter delays than the accurate Wallace
multiplier. The critical path delays of AM1 and AM2 increase
with the number of MSBs employed in the error reduction
process. At the same number of MSBs in error reduction,
AM1 shows a shorter delay than AM2; this occurs because
AM1 uses a simpler OR-gate based error reduction scheme.
Specifically, the delays for 8/4 AM1, 8/4 AM2 and the
Wallace multiplier are 0.40 (0.16) ns, 0.43 (0.16) ns and 1.08
(0.40) ns, respectively, for the area (delay)-optimized circuits.
Thus AM1 and AM2 with 4-bit error reduction are faster by
63% and 60% than the Wallace multiplier when optimized
for area, while they are faster by 60% when optimized for
delay. For the 8-bit error reduction scheme, these values are

SUBMITTED FOR REVIEW 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

4 5 6 7 8 9

D
el

ay
 (

n
s)

Number of bits used for error reduction

AM1 AM2 Wallace

(a) Delay (optimized for area)

70

80

90

100

110

120

130

140

150

160

170

4 5 6 7 8 9

P
o
w

er
 (

u
W

)

Number of bits used for error reduction

AM1 AM2 Wallace

(b) Power (optimized for area)

110

120

130

140

150

160

170

180

190

200

4 5 6 7 8 9

A
ra

e
(u

m
2
)

Number of bits used for error reduction

AM1 AM2 Wallace

(c) Area (optimized for area)

10.0

30.0

50.0

70.0

90.0

110.0

130.0

150.0

170.0

190.0

4 5 6 7 8 9

P
D

P
 (

fJ
)

Number of bits used for error reduction

AM1 AM2 Wallace

(d) PDP (optimized for area)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

4 5 6 7 8 9

D
el

ay
 (

ns
)

Number of bits used for error reduction

AM1 AM2 Wallace

(e) Delay (optimized for delay)

110

160

210

260

310

360

410

460

510

4 5 6 7 8 9

P
ow

er
 (

uW
)

Number of bits used for error reduction

AM1 AM2 Wallace

(f) Power (optimized for delay)

110

160

210

260

310

360

410

460

510

560

4 5 6 7 8 9

A
re

a
(u

m
2
)

Number of bits used for error reduction

AM1 AM2 Wallace

(g) Area (optimized for delay)

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

4 5 6 7 8 9

P
D

P
 (

fJ
)

Number of bits used for error reduction

AM1 AM2 Wallace

(h) PDP (optimized for delay)

Fig. 9. Delay, power and area comparisons of proposed 8 × 8 approximate and Wallace multipliers. “Wallace” indicates the
accurate 8× 8 Wallace multiplier, and the X-axis is not applicable for it.

22% (28%) and 19% (5%), respectively, for the area (delay)-
optimized circuits.

The power dissipation and area of the multipliers show the
same trend as the delay (Fig. 9(b), (f) and (c), (g)). For the
area-optimized circuits, 8/4 AM1 and 8/4 AM2 save as much
as 42% in power and 34% in area compared with the Wallace
multiplier. The power improvements of AM1 and AM2 are
21% and 17% when 8 MSBs are used for error reduction. For
the delay-optimized circuits, 8/4 AM1 and 8/4 AM2 consume
a lower power by 53% and a smaller area by 38% than the
Wallace multiplier. For the 8-bit error reduction scheme, the
power savings of AM1 and AM2 are approximately 20%. The
area-optimized 8/4 AM1 and AM2 use a smaller area by
nearly 23% (by 38% for delay-optimized circuits) than the
accurate design. However, the area of AM2 is larger than the
Wallace multiplier when the number of error reduction bits is
larger than 8. Fig. 9(d) and (h) show that the PDPs of AM1 and
AM2 are smaller than the Wallace multiplier by 38% to 81%
and 27% to 81%, respectively, with 4 to 8-bit error reduction.

2) 16×16 Multipliers: Similarly, designs for 16×16 AM1,
AM2, TAM1 and TAM2 are implemented in VHDL and
synthesized by using the Synopsys DC tool with the same
technique and configurations as the 8 × 8 designs. Different
from the 8× 8 designs, the power for the 16× 16 designs is
evaluated under a clock period of 4 ns. Also, the optimized
16 × 16 Wallace multiplier [27] is synthesized. The reported
results of the critical path delay, power consumption and area
utilization are shown in Fig. 10, where the number of bits used
for error reduction for the proposed designs is from 10 to 16,
and these numbers are not applicable for the accurate Wallace
multiplier.

Fig. 10 shows that the delays of AM1, AM2, TAM1 and
TAM2 are shorter than the Wallace multiplier by approximate-
ly 24% to 50% when optimized for area. However, AM2 and

TAM2 are slower than the Wallace multiplier when the designs
are synthesized for the minimal delay, while TAM1 is faster
by more than 25%. The power dissipations of 16 × 16 AM1
and AM2 are very close for the same number of bits used
for error reduction (Fig. 10(b) and (f)). They save from 18%
to 35% in power compared with the Wallace multiplier when
optimized for area, while this value is from 20% to 60% for the
delay-optimized circuits. Similarly, TAM1 and TAM2 consume
a lower power by 50% to 66% (for optimized area) and by
40% to 66% (for optimized delay). The results for area show
a similar trend. Compared to the Wallace multiplier, TAM1 and
TAM2 save from 38% to 62% in optimized area, while the area
is reduced by 32% to 60% when delay is optimized. For the
area-optimized circuits, the area improvement is between 5%
and 30% for AM1 and AM2; it decreases with the number of
bits used for the error reduction. The results in Fig. 10(d) and
(h) show that TAM1 incurs a smaller PDP by 61% to 83%
than the Wallace multiplier, and this value is between 32%
and 79% for TAM2.

VI. COMPARISON WITH EXISTING APPROXIMATE
MULTIPLIERS

Next, 8 × 8 AM1 and AM2 are compared with three
other approximate multipliers of the same size: the ETM
[16], the underdesigned multiplier (UDM) [14] and the SSM
[17], as illustrated in Fig. 11. The accuracy characteristics
are obtained by Monte Carlo simulation with 108 random
input combinations. The circuit characteristics are obtained
by synthesizing all approximate designs using the same tool,
process, temperature and supply voltage with the same input
combinations and clock period as detailed in the previous
section. Moreover, the PDP and area-delay product (ADP) are
calculated to better assess performance at the circuit level. In

SUBMITTED FOR REVIEW 10

1

1.2

1.4

1.6

1.8

2

2.2

2.4

10 11 12 13 14 15 16

D
el

ay
 (

ns
)

Number of bits used for error reduction

AM1 AM2 TAM1 TAM2 Wallace

(a) Delay (optimized for area)

100

150

200

250

300

350

400

450

10 11 12 13 14 15 16

P
o
w

er
 (

uW
)

Number of bits used for error reduction

AM1 AM2 TAM1 TAM2 Wallace

(b) Power (optimized for area)

150

250

350

450

550

650

750

850

10 11 12 13 14 15 16

A
re

a
(u

m
2
)

Number of bits used for error reduction

AM1 AM2 TAM1 TAM2 Wallace

(c) Area (optimized for area)

80.0

180.0

280.0

380.0

480.0

580.0

680.0

780.0

880.0

980.0

10 11 12 13 14 15 16

P
D

P
 (

fJ
)

Number of bits used for error reduction

AM1 AM2 TAM1 TAM2 Wallace

(d) PDP (optimized for area)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

10 11 12 13 14 15 16

D
el

ay
 (

ns
)

Number of bits used for error reduction

AM1 AM2 TAM1 TAM2 Wallace

(e) Delay (optimized for delay)

150

250

350

450

550

650

750

850

950

1050

1150

10 11 12 13 14 15 16

P
o
w

er
 (

uW
)

Number of bits used for error reduction

AM1 AM2 TAM1 TAM2 Wallace

(f) Power (optimized for delay)

450

650

850

1050

1250

1450

1650

1850

2050

2250

10 11 12 13 14 15 16

A
re

a
(u

m
2
)

Number of bits used for error reduction

AM1 AM2 TAM1 TAM2 Wallace

(g) Area (optimized for delay)

110.0

160.0

210.0

260.0

310.0

360.0

410.0

460.0

510.0

560.0

610.0

10 11 12 13 14 15 16

P
D

P
 (

fJ
)

Number of bits used for error reduction

AM1 AM2 TAM1 TAM2 Wallace

(h) PDP (optimized for delay)

Fig. 10. Delay, power and area comparisons of proposed 16× 16 approximate and the optimized Wallace multipliers. “Wallace”
indicates the accurate 16× 16 Wallace multiplier, and the X-axis is not applicable for it.

this comparison, ETM and SSM with 4, 5 and 6 MSBs as
the accurate multiplication part are considered and they are
referred to as ETMk and SSMk (k < 8 is the width of the
accurate part). The results are shown in Fig. 11 for each of
the metrics. There is only one configuration for UDM, so the
values for it are constant for each metric.

Among these five multipliers, AM1 has the lowest PDP and
ADP when a similar MRED, NMED or ER is considered. AM2
also performs better than the other approximate multipliers.
ETM has the lowest accuracy in terms of MRED and NMED,
because ETM uses a simple partition scheme and as reported
in [16], it saves significant power. Likewise, SSM shows very
high values of MRED, NMED and ER. As ETM and SSM
utilize an accurate multiplier with size larger than half of
the original design, they attain the smallest values of ME
(Fig. 11(d)). The ME for AM2 is higher than AM1, ETM
and SSM because of the approximate adders used in the
error accumulation tree (Fig. 4). Specifically, the approximate
adders in stage 2 and stage 3 generate not only sums but
also error vectors. As only the sums are used for the final
error compensation, the omitted error vectors at the higher
bit positions can lead to very large errors. Although the ME
values for AM1 and AM2 are not as low as those of ETM and
SSM, the small values of NMED and MRED indicate that the
probability of occurrence of a large ED is very low. UDM has
the lowest ER but the largest ME with a moderate PDP and
ADP.

Fig. 12 shows the comparison results of 16×16 approximate
multipliers for accuracy and hardware overhead. In addition to
ETM, SSM and UDM, another high-performance, area and
power efficient 16× 16 approximate multiplier, AWTM [15],
is considered in this comparison. Also, the truncated Wallace
multiplier (referred to as TWM) that truncates half partial
products with data-dependent error compensation is compared

[31]. Fig. 12(c) shows that all the multipliers have close to
100% ERs except for UDM that has a relatively lower ER.
Among the 16×16 approximate multipliers, TAM1 and TAM2
perform very well in terms of MRED and NMED for a similar
PDP or ADP, while AM1, AM2 and UDM are useful when
most of the input operands are very small. AWTM mode 4 is
also a good design with small values of MRED and NMED,
as well as moderate PDP and ADP. TWM with low MRED,
NMED and ME has a very high accuracy, whereas its PDP and
ADP are relatively high compared to TAM1. Fig. 12(d) shows
that TAM1 (TAM2) has a similar ME with AM1 (AM2), which
indicates that truncation does not significantly affect the ME.

As per the comparison, the large MEs are the main draw-
backs of the proposed designs, as shown in Fig. 11(d and h)
and Fig. 12(d and h). This is because some errors at the higher
bit positions are not correctly accumulated by using OR gates
and the proposed approximate adders. Therefore, to decrease
the MEs of the proposed design, the errors at the higher bit
positions should be accumulated using accurate full or half
adders. The efficiency of this methodology is evaluated by
simulating the 8 × 8 AM1 with 5 and 6 MSBs of errors that
are correctly accumulated (the other MSBs are accumulated
by using OR gates when the number of MSBs used for error
reduction is larger than 5 and 6, respectively); they are referred
to as AM1 (5) and AM1 (6). The comparison results are
shown in Fig. 13. Fig. 13(d) shows that the ME of AM1 is
significantly decreased by increasing the number of accurately
accumulated MSBs, with slightly increased ADP and PDP.
However, the MRED, NMED and ER of AM1 are only slightly
lowered, as shown in Fig. 13(a-c). Thus, some MSBs should
be accumulated using accurate adders when the ME is critical
for an application; otherwise, OR gates or approximate adders
with lower hardware overhead are preferred.

SUBMITTED FOR REVIEW 11

20 40 60 80 100 120 140 160
PDP (fJ)

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

lo
g 2

(M
R

E
D

)

ETM
SSM
UDM
AM1
AM2

(a) PDP (area-optimized) vs. MRED

40 60 80 100 120 140 160 180 200

ADP (um 2
·ns)

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

lo
g 2

(N
M

E
D

)

ETM
SSM
UDM
AM1
AM2

(b) ADP (area-optimized) vs. NMED

20 40 60 80 100 120 140 160
PDP (fJ)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g 2

(E
R

)

ETM
SSM
UDM
AM1
AM2

(c) PDP (area-optimized) vs. ER

40 60 80 100 120 140 160 180 200

ADP (um 2
·ns)

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

lo
g 2

(M
E

)

ETM
SSM
UDM
AM1
AM2

(d) ADP (area-optimized) vs. ME

0 50 100 150 200 250 300

PDP (fJ)

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

lo
g

2(M
R

E
D

)

ETM
SSM
UDM
AM1
AM2

(e) PDP (delay-optimized) vs. MRED

0 50 100 150 200 250
−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

ADP (um 2⋅ns)

lo
g 2(N

M
E

D
)

ETM
SSM
UDM
AM1
AM2

(f) ADP (delay-optimized) vs. NMED

0 50 100 150 200 250 300

PDP (fJ)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g

2(E
R

)

ETM

SSM

UDM

AM1

AM2

(g) PDP (delay-optimized) vs. ER

0 50 100 150 200 250
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

ADP (um 2⋅ns)

lo
g 2(M

E
)

ETM

SSM

UDM

AM1

AM2

(h) ADP (delay-optimized) vs. ME

Fig. 11. Comparison of accuracy and hardware among five approximate 8× 8 multipliers. The number of MSBs used for error
reduction for AM1 and AM2 ranges from 4 to 9 from left to right. The width of the accurate multiplier for ETM and SSM
ranges from 4 to 6 from left to right.

100 200 300 400 500 600 700
PDP (fJ)

-12

-10

-8

-6

-4

-2

0

lo
g 2

(M
R

E
D

)

ETM
SSM
UDM
AWTM
TWM
AM1
AM2
TAM1
TAM2

(a) PDP (area-optimized) vs. MRED

200 400 600 800 1000 1200 1400

ADP (um 2
·ns)

-18

-16

-14

-12

-10

-8

-6

lo
g 2

(N
M

E
D

)

ETM
SSM
UDM
AWTM
TWM
AM1
AM2
TAM1
TAM2

(b) ADP (area-optimized) vs. NMED

100 200 300 400 500 600 700
PDP (fJ)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

lo
g 2

(E
R

)

ETM
SSM
UDM
AWTM
TWM
AM1
AM2
TAM1
TAM2

(c) PDP (area-optimized) vs. ER

200 400 600 800 1000 1200 1400

ADP (um 2
·ns)

-16

-14

-12

-10

-8

-6

-4

-2

lo
g 2

(M
E

)

ETM
SSM
UDM
AWTM
TWM
AM1
AM2
TAM1
TAM2

(d) ADP (area-optimized) vs. ME

100 150 200 250 300 350 400 450 500
PDP (fJ)

-12

-10

-8

-6

-4

-2

0

lo
g 2

(M
R

E
D

)

ETM
SSM
UDM
AWTM
TWM
AM1
AM2
TAM1
TAM2

(e) PDP (delay-optimized) vs. MRED

300 400 500 600 700 800 900 1000 1100

ADP (um 2
·ns)

-18

-16

-14

-12

-10

-8

-6

lo
g 2

(N
M

E
D

)

ETM
SSM
UDM
AWTM
TWM
AM1
AM2
TAM1
TAM2

(f) ADP (delay-optimized) vs. NMED

100 150 200 250 300 350 400 450 500
PDP (fJ)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

lo
g 2

(E
R

)

ETM
SSM
UDM
AWTM
TWM
AM1
AM2
TAM1
TAM2

(g) PDP (delay-optimized) vs. ER

300 400 500 600 700 800 900 1000 1100

ADP (um 2
·ns)

-16

-14

-12

-10

-8

-6

-4

-2

lo
g 2

(M
E

)

ETM
SSM
UDM
AWTM
TWM
AM1
AM2
TAM1
TAM2

(h) ADP (delay-optimized) vs. ME

Fig. 12. Comparison of accuracy and hardware of approximate 16×16 multipliers. The width of the accurate multiplier for ETM
and SSM ranges from 8 to 10 from left to right. The parameter for AWTM is the mode number (1 to 4) from left to right.

SUBMITTED FOR REVIEW 12

0 50 100 150 200 250 300
PDP (fJ)

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

lo
g 2

(M
R

E
D

)

ETM
SSM
UDM
AM1
AM2
AM1 (5)
AM1 (6)

(a) PDP vs. MRED

0 50 100 150 200 250

ADP (um 2
·ns)

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

lo
g 2

(N
M

E
D

)

ETM
SSM
UDM
AM1
AM2
AM1 (5)
AM1 (6)

(b) ADP vs. NMED

0 50 100 150 200 250 300
PDP (fJ)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g 2

(E
R

)

ETM
SSM
UDM
AM1
AM2
AM1 (5)
AM2 (6)

(c) PDP vs. ER

0 50 100 150 200 250

ADP (um 2
·ns)

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

lo
g 2

(M
E

)

ETM
SSM
UDM
AM1
AM2
AM1 (5)
AM1 (6)

(d) ADP vs. ME

Fig. 13. Comparison of accuracy and hardware (delay-optimized) of improved 8 × 8 AM1 with other designs. The number of
MSBs used for error reduction for AM1 and AM2 ranges from 4 to 9, and the width of the accurate multiplier for ETM and SSM
is from 4 to 6, from left to right. AM1 (5) and AM1 (6) are AM1’s with 5 and 6 MSBs of errors that are correctly accumulated.
Thus, the number of MSBs used for error reduction for AM1 (5) is from 5 to 9, and it is from 6 to 9 for AM1 (6).

(a) original blurred image (b) accurate multiplier

(c) 8/5 AM1 (d) 8/9 AM1

(e) 8/5 AM2 (f) 8/9 AM2

Fig. 14. Images sharpened using the proposed multipliers.

VII. IMAGE PROCESSING APPLICATIONS

A. Image Processing with Proposed Multipliers

Approximate circuits can be used in error-tolerant applica-
tions such as image processing; image sharpening and smooth-
ing applications are studied next. Since multiplication is the
arithmetic operation under investigation, accurate multipliers
are replaced by the proposed approximate multipliers (i.e.,
AM1 and AM2). All other processing steps (such as addition)
are kept accurate.

The sharpening algorithm of [32] is simulated using both
exact and approximate multipliers (i.e., AM1 and AM2). In
the results shown in Fig. 14, approximate multipliers with
different numbers of bits for error reduction are evaluated
and an improvement in performance is achieved when the
number of bits is increased for further error reduction. The
degradation in image quality is evident when 5 bits are used
for error reduction for both AM1 and AM2. However, for an
9-bit error reduction in AM1 and AM2, there is no visually
distinguishable difference with the exact sharpening result.

The image smoothing algorithm is given by [33]:

Y (x, y) =
1

60

2∑
m=−2

2∑
n=−2

X(x−m, y−n)Mask(m,n), (19)

where X is the input image, Y is the output smoothed image,
and Mask is a 5× 5 matrix given by:

Mask =


1 1 1 1 1
1 4 4 4 1
1 4 12 4 1
1 4 4 4 1
1 4 7 4 1

 .
The peak signal-to-noise ratio (PSNR) is used for compar-

ison of the difference between the images obtained by the
accurate and approximate multiplications. Table IV shows the
PSNR values with respect to different numbers of bits for error
reduction in the proposed approximate multiplier. For example,
the resulting image by an 8/9 AM1 has a PSNR of 39.91
dB for image sharpening and 51.56 dB for image smoothing;
this is generally considered to be a good match with the
accurately processed image. Since the result of an approximate
multiplication is then processed by an accurate division for
both image sharpening and smoothing applications, the error
in the approximate multiplication is attenuated. Therefore, the
differences in the PSNRs for AM1 and AM2 are very small
and, thus, difficult to be observed by a 2-digit precision.
However, there is a 0.3 dB difference between the PSNRs
for AM1 and AM2 with 8-bit error reductions for the image
sharpening application.

SUBMITTED FOR REVIEW 13

TABLE IV. PSNR of image processing applications for AM1
and AM2.

Image Processing Image Sharpening Image Smoothing

Configuration 8/4 8/6 8/8 8/4 8/6 8/8
AM1 18.49 25.80 39.91 30.64 40.39 51.56
AM2 18.49 25.80 40.21 30.64 40.39 51.56

TABLE V. PSNR (dB) of image multiplication of five different
approximate multipliers

Multiplier 8/6 AM1 8/5 AM2 UDM ETM5 SSM5

PSNR (dB) 39.12 37.52 34.20 37.06 37.27

B. Comparison with Existing Approximate Multipliers
To evaluate the performance of each approximate multiplier,

image multiplication is selected because it directly employs
multiplication without any other operations. As AM1, AM2,
ETM and SSM have different configurations, configurations
with similar PDP values are selected for image multiplication,
i.e., 8/6 AM1, 8/5 AM2, SSM5 and ETM5, are considered
(Fig. 11). The resulting images by UDM (Fig. 15) show a
reduction in quality, while there are few visible flaws for the
image processed by the other approximate multipliers. In terms
of PSNR, 8/6 AM1 achieves the highest value (Table V),
while UDM has the lowest. The values of PSNR for ETM5
and SSM5 are the second lowest. These results are consistent
with the NMED trend of the approximate multipliers. It also
indicates that an approximate multiplier with a high ME
does not necessarily result in a poor image quality in image
multiplication as long as its NMED is low.

VIII. CONCLUSION

This paper proposes a high-performance and low-power
approximate partial product accumulation tree for a multiplier
using a newly designed approximate adder. The proposed
approximate adder ignores the carry propagation by generating
both an approximate sum and an error vector. OR gate and
approximate adder based error reduction schemes are utilized,
yielding two different approximate 8 × 8 multiplier designs:
AM1 and AM2. Moreover, modifications are made on the
error reduction schemes for 16 × 16 multiplier designs, such
that TAM1 and TAM2 are obtained by truncating 16 LSBs
of the partial products. The proposed approximate multipliers
have been shown to have a lower power dissipation than
an exact Wallace multiplier optimized for speed. Functional
analysis has shown that on a statistical basis, the proposed
multipliers have very small error distances and thus, they
achieve a high accuracy. Simulation has also shown that AM2
has a higher accuracy than AM1 at the cost of a longer delay
and a higher power consumption. Truncation-based designs
(TAM1 and TAM2) achieve a significant improvement in pow-
er and area with a small degradation in NMED. The proposed
approximate multipliers improve over previous approximate
designs especially in accuracy. While previous designs focus
on reducing both delay and power with often unsatisfying
accuracy, the proposed designs achieve excellent delay and
power reductions with a high accuracy. The application of

(a) original image 1 (b) original image 2

(c) accurate multiplier (d) 8/6 AM1

(e) 8/5 AM2 (f) UDM

(g) ETM5 (h) SSM5

Fig. 15. Images multiplied by different multipliers.

the proposed multipliers to image sharpening and smoothing
has shown that the proposed designs are very competitive in
performance with their accurate counterpart.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate Computing: An Emerging
Paradigm For Energy-Efficient Design,” in ETS’13, Proc. of the 18th
IEEE European Test Symposium, 2013.

[2] S.-L. Lu, “Speeding up processing with approximation circuits,” Com-
puter, vol. 37, no. 3, pp. 67–73, 2004.

[3] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: A new paradigm for arithmetic circuit design,” in Proceedings
of the conference on Design, automation and test in Europe. ACM,
2008, pp. 1250–1255.

[4] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-
speed adder for error-tolerant application,” in Proceedings of the 2009
12th International Symposium on Integrated Circuits. IEEE, 2009, pp.
69–72.

[5] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-
inspired imprecise computational blocks for efficient vlsi implemen-
tation of soft-computing applications,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 57, no. 4, pp. 850–862, 2010.

SUBMITTED FOR REVIEW 14

[6] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: imprecise adders for low-power approximate computing,”
in International Symposium on Low Power Electronics and Design
(ISLPED). IEEE, 2011, pp. 409–414.

[7] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approx-
imate arithmetic designs,” in Proceedings of the 49th Annual Design
Automation Conference. ACM, 2012, pp. 820–825.

[8] K. Du, P. Varman, and K. Mohanram, “High performance reliable
variable latency carry select addition,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2012, pp. 1257–1262.

[9] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” Computers, IEEE Transactions
on, vol. 62, no. 9, pp. 1760–1771, 2013.

[10] J. Huang, J. Lach, and G. Robins, “A methodology for energy-quality
tradeoff using imprecise hardware,” in Proceedings of the 49th Annual
Design Automation Conference. ACM, 2012, pp. 504–509.

[11] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and
synthesis of quality-energy optimal approximate adders,” in Proceedings
of the International Conference on Computer-Aided Design. ACM,
2012, pp. 728–735.

[12] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:
Modeling and analysis of circuits for approximate computing,” in Pro-
ceedings of the International Conference on Computer-Aided Design.
IEEE Press, 2010, pp. 667–673.

[13] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifi-
cation and comparative evaluation of approximate arithmetic circuits,”
ACM Journal on Emerging Technologies in Computing Systems, vol. 13,
no. 4, p. 60, 2017.

[14] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for
power in a multiplier architecture,” Journal of Low Power Electronics,
vol. 7, no. 4, pp. 490–501, 2011.

[15] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power-and area-efficient
approximate wallace tree multiplier for error-resilient systems,” in Fif-
teenth International Symposium on Quality Electronic Design. IEEE,
2014, pp. 263–269.

[16] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed mul-
tiplier for error-tolerant application,” in IEEE International Conference
of Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2010,
pp. 1–4.

[17] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S.
Kim, “Energy-efficient approximate multiplication for digital signal
processing and classification applications,” IEEE transactions on very
large scale integration (VLSI) systems, vol. 23, no. 6, pp. 1180–1184,
2015.

[18] Y.-H. Chen and T.-Y. Chang, “A high-accuracy adaptive conditional-
probability estimator for fixed-width booth multipliers,” IEEE Trans.
Circuits and Systems I: Regular Papers, vol. 59, no. 3, pp. 594–603,
2012.

[19] B. Shao and P. Li, “Array-based approximate arithmetic computing: A
general model and applications to multiplier and squarer design,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 4,
pp. 1081–1090, 2015.

[20] H. Jiang, J. Han, and F. Lombardi, “Approximate radix-8 booth multipli-
er for low-power and high-performance operation,” IEEE Transactions
on Computers, vol. 65, no. 8, pp. 2638–2644, 2016.

[21] K. Nepal, Y. Li, R. Bahar, and S. Reda, “Abacus: A technique for
automated behavioral synthesis of approximate computing circuits,” in
Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014, March 2014, pp. 1–6.

[22] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“Aslan: Synthesis of approximate sequential circuits,” in Design, Au-
tomation and Test in Europe Conference and Exhibition (DATE), March
2014, pp. 1–6.

[23] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance

approximate multiplier with configurable partial error recovery,” in
Design, Automation & Test in Europe Conference, 2014.

[24] B. Parhami, Computer arithmetic. Oxford university press, 2000.
[25] M. A. Breuer, “Intelligible test techniques to support error-tolerance,”

in Asian Test Symposium. IEEE, 2004, pp. 386–393.
[26] N. H. Weste and H. David, CMOS VLSI Design: A Circuit and Systems

Perspective, 3rd ed. Pearson Addison Wesley, 2005.
[27] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for speed

optimized partial product reduction and generation of fast parallel
multipliers using an algorithmic approach,” IEEE Transactions on
Computers, vol. 45, no. 3, pp. 294–306, 1996.

[28] K. Bickerstaff, E. Swartzlander, and M. Schulte, “Analysis of column
compression multipliers,” in IEEE Symposium on Computer Arithmetic,
2001, pp. 33–39.

[29] C. B. K’andrea, M. J. Schulte, and E. E. Swartzlander, “Parallel reduced
area multipliers,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 9, no. 3, pp. 181–191, 1995.

[30] Y.-K. Cheng, Electrothermal analysis of VLSI systems. Springer
Science & Business Media, 2000.

[31] E. J. King and E. Swartzlander, “Data-dependent truncation scheme for
parallel multipliers,” in Conference Record of the Thirty-First Asilomar
Conference on Signals, Systems & Computers, vol. 2, 1997, pp. 1178–
1182.

[32] M. S. Lau, K.-V. Ling, and Y.-C. Chu, “Energy-aware probabilistic
multiplier: design and analysis,” in Proceedings of the 2009 internation-
al conference on Compilers, architecture, and synthesis for embedded
systems. ACM, 2009, pp. 281–290.

[33] H. R. Myler and A. R. Weeks, The pocket handbook of image processing
algorithms in C. PTR Prentice Hall, 1993.

Honglan Jiang received the B.S. and Master degrees
in instrument science and technology from Harbin
Institute of Technology, Harbin, Heilongjiang, China,
in 2011 and 2013, respectively. Since September
2013, she has been a Ph.D. candidate in the De-
partment of Electrical and Computer Engineering,
University of Alberta, Edmonton, Canada. Her cur-
rent research interests are approximate computing
and stochastic computing.

Cong Liu received the B.S. degree in automation
from Tsinghua University, Beijing, China, in 2012.
Since September 2012, he has been a graduate s-
tudent in the Department of Electrical and Com-
puter Engineering, University of Alberta, Edmonton,
Canada. His current research interest is approximate
computing.

SUBMITTED FOR REVIEW 15

Fabrizio Lombardi (M’81-SM’02-F’09) graduated
in 1977 from the University of Essex (UK) with a
B.Sc. (Hons.) in Electronic Engineering. In 1977 he
joined the Microwave Research Unit at University
College London, where he received the Master in
Microwaves and Modern Optics (1978), the Diploma
in Microwave Engineering (1978) and the Ph.D. from
the University of London (1982).

He is currently the holder of the International Test
Conference (ITC) Endowed Chair Professorship at
Northeastern University, Boston. His research inter-

ests are bio-inspired and nano manufacturing/computing, VLSI design, testing,
and fault/defect tolerance of digital systems. He has extensively published in
these areas and coauthored/edited seven books.

Dr. Jie Han received the B.Sc. degree in electron-
ic engineering from Tsinghua University, Beijing,
China, in 1999 and the Ph.D. degree from Delft
University of Technology, The Netherlands, in 2004.

He is currently an associate professor in the De-
partment of Electrical and Computer Engineering at
the University of Alberta, Edmonton, AB, Canada.
His research interests include approximate comput-
ing, stochastic computation, reliability and fault tol-
erance, nanoelectronic circuits and systems, novel
computational models for nanoscale and biological

applications.
Dr. Han and coauthors received the Best Paper Award at IEEE/ACM

International Symposium on Nanoscale Architectures 2015 (NanoArch 2015)
and Best Paper Nominations at the 25th Great Lakes Symposium on VLSI
2015 (GLSVLSI 2015) and NanoArch 2016. He was nominated for the 2006
Christiaan Huygens Prize of Science by the Royal Dutch Academy of Science.
His work was recognized by Science, for developing a theory of fault-tolerant
nanocircuits (2005).

He is currently an associate editor for IEEE Transactions on Emerging
Topics in Computing (TETC) and IEEE Transactions on Nanotechnology. He
served as a General Chair for GLSVLSI 2017 and the IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT 2013), and a Technical Program Chair for GLSVLSI 2016
and DFT 2012.

