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Abstract—Approximate multipliers (AMs) have widely been
investigated to pursue high-performance and energy-efficient
hardware designs for error-tolerant applications, such as neural
networks (NNs). The computing accuracy of an AM has been
evaluated by using statistical error features; however, it is difficult
to estimate the quality of a specific application using AMs. Thus,
it is of a great challenge to select or design appropriate AMs
for an accuracy-constrained application. This paper proposes an
application-oriented error evaluation framework for AMs with
the aim of exploring the correlation between statistical error
features of AMs and the accuracy degradation in AM-based NN
applications. Specifically, based on the Dropout Feature Ranking
technique, statistical error features of AMs are extensively
studied and ranked by their importance to the accuracy of AM-
based NN applications. The three most informative features are
obtained to construct error models to predict the accuracy loss of
AM-based NN applications. The constructed classification models
show a probability higher than 96% for correctly classifying
the AMs into three categories in accordance with the induced
accuracy loss in AM-based NN applications. Furthermore, re-
gression models can predict the accuracy of NN applications
using an AM with a deviation as low as 6%. These results
show that the proposed error evaluation framework can guide
an efficient selection of AMs for NN applications by using just
several AM error features, instead of running time-consuming
and complicated hardware simulation. The obtained statistical
error features can also provide a guidance for the design or
generation of application-oriented AMs. Moreover, the proposed
framework is applicable for quickly analyzing and selecting other
approximate circuits for error-tolerant applications.

Index Terms—approximate multiplier, statistical error feature,
error model, accuracy degradation, machine learning

I. INTRODUCTION

W ITH the unprecedented development of big data and
artificial intelligence, hardware with high performance

and low power is required for processing massive amount
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of data. Due to the limitation of CMOS technology, it has
become increasingly difficult to further improve performance
and reduce power of the computing circuits. Meanwhile,
some errors can be neglected in the computational outcome
in numerous applications, such as image processing, audio
processing, and machine learning (ML) [1]. Thus, approximate
or low-precision computing has been extensively considered
to improve hardware efficiency with a reasonable accuracy
degradation in some error-resilient applications [2].

Over the last few years, approximate computing has ap-
peared as a potential paradigm to improve performance and
energy efficiency of hardware for compute-intensive appli-
cations with intrinsic error tolerance. For a microprocessor,
circuit designs of approximate adders and multipliers were
proposed nearly two decades ago [3]. In the past decade,
attention has been paid to designs of approximate multipliers
(AMs) due to their high complexity and common utilization as
basic arithmetic circuits [4]. Except for the ad hoc designs, al-
gorithms have been proposed for automatically generating and
synthesizing AMs, such as SALSA [5], CGP [6], SABER [7],
and BLASYS [8].

Although many manually and automatically designed AMs
have been evaluated using some statistical error features such
as the error distance (ED) and mean relative ED (MRED),
it remains a problem to determine the accuracy degradation
when using them to substitute exact multipliers in some error-
tolerant applications. Thus, selecting suitable AMs for these
specific applications with a limited accuracy loss from a large
AM library is difficult and time-consuming, as it may need a
large amount of software and hardware simulation.

To address this challenge, methods for quickly evaluating
the error effects of approximate arithmetic circuits on applica-
tions have been investigated by using learning-based method-
ologies [9], [10]. In [9], the probability mass function (PMF)
of the inputs for each arithmetic operation in an application
is used to obtain its weighted mean error distance (WMED).
The WMEDs for all operations are then utilized as the input
features of a learning-based model to predict the quality of
the result. However, this model is not suitable for complex
applications that require numerous operations such as neural
networks (NNs), due to the difficulty in acquiring the PMF of
the inputs for each operation. Moreover, the error model can
be very complicated when the number of required operations
is large; it can result in a long training time and a large
degradation in the predicted accuracy. Using nine conventional
statistical error features, [10] has presented several learning-
based classifiers for a multi-layer perceptron (MLP) and a
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small convolutional neural network (CNN) on MNIST and
SVHN datasets. The classifiers distinguish the AMs (a set of
600 designs that are also included in this work) that can result
in an accuracy for image classification close to the accurate
design. However, the considered networks and datasets in
[10] are very simple; thus, the devised classifiers are hard
to be adapted to more complex NN applications. In addition,
the predicted accuracy of the classifiers is below 86%. The
mathematical analysis in [11] shows that the AMs with low
variance of relative error likely result in a low accuracy loss
in AM-based CNN applications. However, only AMs with
specific attributes are analyzed and verified in [11]; it is
unclear whether the conclusion is applicable to arbitrary AMs.
Hence, an effective framework is urgently needed to quickly
and precisely select and design proper AMs for complex error-
tolerant applications with a limited accuracy loss.

This paper evaluates the error characteristics of AMs with
respect to complex NN applications; hence, AMs can be
quickly selected (from a design library) and designed to satisfy
different accuracy constraints in NN applications. First, the
statistical error features of AMs are ranked as per their im-
portance to the accuracy of NN applications. Based on several
informative error features, error models are then established
to predict the accuracy loss of an AM-based NN application.
Since only three statistical error features of an AM are
utilized, time-consuming software and hardware simulations
are avoided for the applications. The major contributions of
this paper are listed as below.

• A framework is proposed for constructing the error mod-
els of AMs to predict the accuracy loss of AM-based
applications. This framework can be generally replanted
to other error-tolerant applications and approximate cir-
cuits.

• An AM library with over 1,200 AMs (including 500
automatically generated AMs [12] and more than 700
manually designed AMs) is constructed. For each AM, its
lookup table implementation, error measurements evalu-
ated by 16 statistical error features, and accuracy loss
when used on three common datasets are generated for
error feature analysis and model construction.

• Three out of 16 statistical error features contributing most
to the accuracy loss of the applications are obtained
by using the Dropout Feature Ranking approach. This
reduces the complexity of the error models and provides
a guidance for the design of AMs.

• Several error models are established using ML methods
for predicting the accuracy degradation of an AM-based
NN application based on the statistical error features.
These models can quickly select suitable AMs for NN
applications with a true positive rate of over 96%.

• The selected statistical error features of AMs are further
analyzed with respect to the accuracy of the AM-based
NN applications and the hardware efficiency. These fea-
tures provide a guidance for the design and generation of
application-oriented AMs.

This paper is organized as follows. Section II introduces
some preliminaries, including the generation of AMs, some

commonly used statistical error features, and neural networks
as the applications of AMs. Section III-B presents the over-
all framework for constructing error models, and introduces
three feature selection approaches and four prediction model
construction methods. The early experimental preparations are
presented in Section IV. Section V gives the experimental
results of classification and regression models. Section VI dis-
cusses the error and hardware characteristics of the AMs with
respect to the accuracy of the NN applications. Conclusion is
drawn in Section VII.

II. PRELIMINARIES

In this section, we first introduce some AM design method-
ologies including manual and automated designs. Then, statis-
tical error features used to evaluate the quality of AMs are pre-
sented and the relationship between them is also explored. For
error-tolerant applications, several common NNs and datasets
for image classification are studied; they are briefly introduced
at the end of this section.

A. Approximate Multiplier Generation

In general, AMs are designed by modifying the original (ex-
act) designs at the circuit and algorithm levels. At the circuit
level, an AM is obtained by deliberately removing some logic
gates from the accurate design [13], or simplifying the truth ta-
bles [14] and Karnaugh maps [15], [16], [17]. At the algorithm
level, the binary logarithmic algorithm [18] approximately
implements the multiplication by using simple adders [19],
[20], [21]. Some automated processes and synthesis algorithms
can automatically generate AMs, usually under a given error
constraint [12], [8]. This method produces hundreds of AMs
and a large amount of time is needed to evaluate their usability
in specific applications when considering both the accuracy
and hardware requirements. These AMs show deterministic
output errors; in other words, their outputs are fixed for the
same inputs. On the contrary, AMs based on voltage over-
scaling [22] show uncertain probabilistic errors, which are not
considered in this paper.

B. Statistical Error Features

The error characteristics of AMs depend on their approx-
imation schemes. For each AM, the computing errors are
usually given by several error metrics that statistically measure
the differences between the approximate and accurate outputs.
However, when an AM is applied to substitute the exact
multiplier in an application, it is not clear how many and
which error features can precisely indicate the accuracy loss in
the application. Therefore, all commonly used statistical error
features for evaluating AMs are studied in this paper.

The statistical error features of an AM are usually computed
by using exhaustive simulations with all possible inputs, or
Monte Carlo simulations with random inputs from a specific
distribution, such as uniform and normal distributions. Let
M and M ′ be the accurate and approximate results of the
AM, respectively. The two basic metrics for computing the
values of the statistical error features are the error calculated
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TABLE I: Error features of approximate arithmetic circuits.
Feature Description Computation formula
µE The mean of all possible Es.

∑N
i=1 p(Ei)Ei

σE The variance of the E.
∑N

i=1 p(Ei)(Ei − µE)2

µED The mean value of EDs.
∑N

i=1 p(Ei)EDi

NMED
The µED normalized by the
maximum accurate result.

µED/Mmax

σED The variance of the ED.
∑N

i=1 p(Ei)(EDi − µED)2

µRE The mean value of REs.
∑N

i=1 p(Ei)REi

σRE The variance of the RE.
∑N

i=1 p(Ei)(REi − µRE)2

µRED The mean value of REDs.
∑N

i=1 p(Ei)REDi

σRED The variance of RED.
∑N

i=1 p(Ei)(REDi − µRED)2

rmsE The root mean square of EDs.
√∑N

i=1 p(Ei)ED2
i

rmsRE The root mean square of REDs.
√∑N

i=1 p(Ei)RED2
i

WE The maximum value of EDs. maxi∈[1,N ] EDi

WRE The maximum value of REDs. maxi∈[1,N ] REDi

ER The probability of error. p(M ′
i ̸= Mi), i ∈ [1, N ]

Ess The errors are single-sided. Ess =


1 ∀i ∈ [1, N ],

Ei < 0 or Ei > 0

0 otherwise

Ezo
Errors may occur when the
accurate result is zero.

Ezo =


1 ∃i ∈ [1, N ],

M ′
i ̸= 0 when Mi = 0

0 otherwise

as E = M ′ −M and the relative error to the accurate result,
RE = E/M . The absolute values of E and RE are also
widely used to show the error magnitude, denoted as ED
and RED, respectively. When these metrics are evaluated
on average, variance, mean squared deviation, normalization
and maximization, we can obtain the error features shown in
Table I. p(Ei) is the probability of generating an error of Ei.
N is the number of inputs used for error evaluation. Also,
the probability of producing an error, ER, is a commonly
used metric for evaluating how often the computing result is
incorrect.

Moreover, we propose two Boolean metrics to consider
the accuracy performance of an approximate circuit in a
relatively complex application. As shown in Table I, Ess

denotes whether the errors in a design are single-sided, i.e.,
Ess is 1 when all Es are negative or positive; otherwise, Ess is
0. This metric is introduced because the frequent accumulation
operations are sensitive to single-sided errors [4]. Thus, Ess

implies whether an approximate circuit can be used for accu-
mulation. As the data in deep learning are usually sparse, many
multiplication results are zero; thus, ensuring an accurate result
for the zero output is of great significant relevance. Therefore,
Ezo is considered in this paper to specify whether an error
occurs when the accurate output is zero. Ezo is an effective
metric to assess if an approximate circuit is appropriate for
the processing of sparse data.

C. Neural Networks and Datasets for Image Classification

Over the past few decades, many NN architectures have
been proposed to handle some basic tasks in machine learning,
e.g., classification. In ISLVRC 2014, the VGG [23] prototype
consisting of several convolutional layers improves the accu-
racy of image classification. To solve the issue of vanishing
gradient, ResNet [24] introduces the concept of residual, which
further expands the classification capability of deep CNNs.
In ISLVRC 2015, ResNet won the competition and became a
prevalent NN for image classification. These two architectures

can be constructed with various numbers of layers, such as
VGG-16, VGG-19, ResNet-18, ResNet-34, etc.

To train and test the classification capabilities of NNs,
several classical datasets have been constructed. MNIST is
a relatively simple dataset of handwritten numbers from 0 to
9 that contains 60,000 28 × 28 gray images for training and
10,000 images for testing. CIFAR-10 [25] is a more complex
dataset consisting of ten types of different objects and each
type has 6,000 32 × 32 GRB images, among which 5,000
images are for training. To further increase the complexity of
datasets, CIFAR-100 [25] consists of 100 classes of images
and each class contains 600 32 × 32 RGB images, i.e., 500
images for training and the remaining 100 for testing. Gen-
erally, the more complex the dataset is, the more complex an
NN is needed to obtain an acceptable classification accuracy.
A large NN results in a huge hardware overhead in computing,
especially for multiplication. The utilization of AMs can obtain
significant improvements in hardware efficiency.

III. AN ERROR MODEL CONSTRUCTION FRAMEWORK

In this section, we first introduce the overall framework
for constructing the application-oriented error models. Then
the implementation details including three types of feature
selection strategies and four prediction model construction
methods are presented.

A. Overall Framework

Fig. 1 shows the overall framework to quickly evaluate
the error effects of AMs on NN applications. It consists of
three stages, data generation, model construction, and model
verification.

At the data generation stage, an AM library is built based on
different approximation methodologies as discussed in Section
II-A. Two files for each AM, .m file and .bin file, are generated.
A .m file is used to produce the 16 statistical error features via
Matlab. A .bin file stores the results of an AM in the form of
look-up tables, which is used to substitute the exact multiplier
in the inference of the pre-trained NNs, thereby obtaining the
accuracy of the AM-based NNs on the aforementioned datasets
in Section II-C [26].

After data generation, the obtained data are then divided into
training and testing sets. Using the training set, the statistical
error features of AMs are ranked as per their importance to the
application accuracy loss. As the correlations between the AM
error features and the accuracy of an AM-based application
are complex, we propose to adapt the feature selection ap-
proaches in ML to learn these correlations, including the Filter,
Wrapper, and Embedded methods. Several most informative
error features out of the 16 candidates are then obtained to
establish error models based on classical prediction models,
e.g., MLP, support vector machine (SVM), decision tree (DT),
among others. Thus, simple error models using a few AM
error features can be obtained for predicting the accuracy loss
of AM-based applications. The testing dataset is then used to
evaluate the quality of the constructed error models, where
the models with a lower complexity and higher prediction
accuracy are preferred.
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Fig. 1: The proposed framework for constructing the error
models of AMs with respect to NN applications.

To further verify the versatility of the error models, a dataset
for some dedicated AMs designed by using the methods
different from those of the training and testing AM sets are
generated. The selected statistical error features of the dedicate
AMs are used in the error models as inputs to predict the
accuracy loss of the NN applications. The prediction results
are then compared with the actual results obtained by using
these AMs in the considered applications.

When the error models are obtained from this framework,
the effectiveness of newly designed AMs in NN applications
can be predicted. As shown in Fig. 2, only the selected error
features of newly generated AMs need to be calculated and
used in the error models. The accuracy loss of the AM-based
NN application predicted by the error models is then compared
with the provided accuracy constraint, thus determining the
effectiveness of the AM. This process can be efficient for AM
selection and generation for specific NN applications such that
time-consuming simulations for AM-based NN applications
are avoided.

B. Feature Selection Strategies

The statistical error features of an AM are generally ob-
tained from the difference between the approximate and accu-
rate results, so they are highly correlated. However, the use of
correlated features in the construction of a learning-based error
model can lead to overfitting, which impacts the prediction

Statistical error testbenchAM design

selected
error features

Error modelsUsability of AM

accuracy constraint

accuracy loss

functional abstraction

Fig. 2: The utilization of error models for predicting the
effectiveness of new AMs in NN applications.

accuracy of the model. Moreover, when considering too many
features, it may result in a complex data collection process. To
determine those that have the most impact on the application
accuracy, we need to select some informative error features in
terms of their importance to the application accuracy.

In this paper, we propose to adapt feature ranking and
selection methodologies in ML for evaluating the importance
of the AM error features to the accuracy of an AM-based
application. To select proper input features for the model of
an ML application, three categories of feature ranking and
selection approaches have been developed, i.e., Filter, Wrapper
and Embedded [27].

1) Filter Method: In this method, the features are selected
without considering model construction. The amount of infor-
mation for each feature is calculated. The more informative
features are then used to train the model. Various criteria
have been developed to evaluate the information carried by
features. Considering the efficiency and suitability, the vari-
ance selection (σ2) [28], Chi-square verification (χ2) [29] and
max relevance and min redundancy (mRMR) [30] methods are
considered in this paper.

For the variance selection, the feature information is as-
sessed by the variance that is given by [28]

σ2
i =

n∑
j=1

(xij − Ei)
2, (1)

where xij denotes the value of the ith feature in sample
j and Ei is the average value of all n samples. A larger
σ2
i indicates that the distribution of the ith feature is more

scattered; thus, containing more information. However, using
variance for feature selection is not always effective; when the
distributions of the features are concentrated, less information
can be expressed by the variance. In addition, it is not accurate
to use variance to measure the amount of information when
the distributions of features are different.
χ2 is proposed to verify the independence between two

events, so it describes the difference between a hypothetical
value and an actual measured value [29]. It is calculated as

χ2
i =

n∑
j=1

(xij −mij)
2

mij
=

n∑
j=1

(xij − Ei)
2

Ei
, (2)

where mij and xij denote the hypothetical and measured
values respectively. The mean Ei is usually used for mij .
Once χ2

i is achieved, the corresponding p-value is obtained
by looking up the table. A smaller p-value indicates a higher
independence of the two events. Although χ2 provides a way
to solve the problem of inconsistent distribution in variance
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selection by using a division, it only describes the amount of
information that a feature carries, but the relationship between
features and application results are not revealed.

The mRMR method selects the features that have minimum-
redundant information and maximum-relevance to the con-
sidered target result [30]. As a common method to measure
the correlation between two variables, the mutual information
(MI) [31] is used to calculate the correlations in the mRMR
method. MI describes the degree of dependence between two
features. Let k− 1 features be chosen from the feature set X ,
represented by Sk−1; then, the next step is to choose the kth
feature from the remaining features in the subset of X−Sk−1

by using

max
xj∈X−Sk−1

I (xj ; c)− 1

k − 1

∑
xi∈Sk−1

I (xi; xj)

 , (3)

where xi and xj are the sample values of the ith and jth
features in the subset Sk−1 and X −Sk−1 respectively, and c
is the target class for each sample. I(x; y) is the MI between
feature x and feature y. When the features are discrete values,
MI is calculated as

I(xi; y) =
∑

xij∈xi

∑
yj∈y

p(xij) log
p(xij , yj)

p(xij)p(yj)
, (4)

where p (xij) and p (yj) are the probabilities of xij and yj ,
respectively. p (xij , yj) is the joint probability of xij and yj .
The mRMR method comprehensively considers the correlation
between features as well as features and targets; however, it
only evaluates the correlation between two features, which
does not show the influence of multiple features on the targets.

2) Wrapper Method: In the Wrapper method, a subset
of features is continuously selected from the feature set in
the training of a specific model. The feature subset is then
evaluated on the test dataset; the subset returning the best test
result is finally selected. As an efficient Wrapper method, the
Las Vegas method (LVM) [32] is discussed next.

LVM can be described by Algorithm 1, where Ev and E′
v

are the evaluation results of the optimal and current iterations,
and d and d′ are the numbers of features in the current optimal
(X∗) and randomly selected (X ′) feature subsets, respectively.
At each iteration, a subset of features is randomly selected for
training the model, and the evaluation results of the trained
model on the test dataset are saved as E′

v . If E′
v is smaller

than the optimal result Ev , or if E′
v = Ev and x′ < d, Ev

and X∗ are updated. Otherwise, this process repeats until
the iteration number reaches T . ∆ is a prediction model
such as SVM [33], MLP, DT, or random forest (RF) [34],
among others. Although the Wrapper method directly finds
the optimal subset of features for the models, training of the
model is time-consuming and likely to find a local optimal
subset.

3) Embedded Method: In the embedded method, the input
features are selected along with the model training. In this
paper, we propose to use a relatively advanced approach,
the dropout feature ranking (DFR) [35], for the ranking and
selection of the AM error features. DFR is derived from the

Algorithm 1 LVM Algorithm

Inputs: dataset D; feature set X; model ∆; parameter T ;
Outputs: subset feature X∗

1: Ev = ∞, d = |X|, X∗ = X , t = 0
2: while t < T do
3: Randomly generate a subset of features X ′

4: d′ = |X ′|
5: E′

v = −CrossV alidation(∆(DX′
))

6: if (E′
v < Ev) ∨ ((E′

v = Ev) ∧ (d′ < d)) then
7: t = 0, Ev = E′

v , d = d′, X∗ = X ′

8: else
9: t = t+ 1

10: end if
11: end while

variational dropout [36] mechanism in NNs and can be re-
garded as a reinforcement learning technique. Specifically, the
dropout is performed by adding masks to neurons in the hidden
layers. The mask is then sampled from a Bernoulli sequence
consisting of 0s and 1s; so, the neurons are probabilistically
removed by setting a node to its original value or 0. To enhance
the dropout operation, a variational dropout is explored by
introducing the dropout rate θ that can be optimized via a
loss objective function. In DFR, the following loss objective
function is utilized when training the model M with a mini-
batch size of BN and FN features.

L(θ) = − 1

BN

BN∑
i=1

log(pM (yi|f(xi, zi))) +
λ

BN

BN∑
i=1

FN∑
j=1

zij

(5)
where xi is the input vector containing the feature values,
yi is the target output, and log(pM (yi|f(xi, zi))) is the
corresponding loss. θ represents the dropout rate vector for
the FN features, i.e., θ = (θ1, · · · , θFN

). λ is a constant
that depends on cross validation. Rather than obtained from a
discrete Bernoulli distribution, zi is relaxed by sampling from
a Concrete distribution, i.e., zi is given by

zi = sigmoid(
1

t
(logθ)−log(1−θ)+log(u)−log(1−u)) (6)

where u is a vector containing FN random numbers within
[0,1] following a uniform distribution, i.e., uj ∼ U(0, 1), j =
1, · · · , FN . t is an empirical coefficient that is fixed to 0.1.

The minimum loss can be reached when smaller dropout
rates are achieved for more informative features; thus, the
importance of the features can be ranked by comparing the
values of their dropout rates. As DFR not only learns the
contributions of the input features to the target task, but also
considers the correlations among features, it is well suited for
the aim of this paper. Thus, DFR is mainly used to select the
most informative AM error features as the inputs of the error
models. In addition, the other feature selection methods are
tested for comparison.

C. Prediction Models
To map the statistical error features of AMs to the accuracy

loss of the applications, several classical prediction models are
utilized to construct error models. Specifically, we build clas-
sification and regression models to predict the accuracy loss of
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the AM-based NN applications. In this paper, four prediction
models, the SVM, MLP, DT and RF, are investigated.

1) SVM Model: SVM aims at mapping the input vector
x = {xi, i = 1, 2, · · · , l} into a higher dimensional space
Z [37]. A linear hyperplane can be constructed in Z space
to classify Z into two classes. The linear hyperplane is
determined by maximizing the margin between the two classes
of vectors to be classified; the vectors with the minimum
distance to the hyperplane are referred to as support vectors.
For the multi-classification problem, using one-versus-one
method, classifiers for each two classes are constructed, and
the final decision is made by the voting results of the two-class
classifiers. Different from the classification tasks, the input
samples for regression tasks are constrained to both sides of
the hyperplane as much as possible to obtain the smallest mean
squared error.

2) MLP Model: MLP consists of an input layer, the hidden
layers and an output layer. In this work, the input layer takes
the AM error features as inputs; the hidden layers are fully
connected, and the activation function is ReLu; the output
layer is determined by the target task. In the classification task,
the output is processed using softmax, such that the activation
of each neuron represents the probability of the input sample
that belongs to a class. In the regression task, sigmoid is used
as the activation function to predict the application accuracy
using the AM. The regression task is more complex than the
classification task and requires more hidden layers.

3) DT Model: DT describes the classification of a sample
using a tree structure. A DT has one root with no incoming
edges and certain leaves without outstretched branches. All
nodes between the root and leaves are internal nodes, which
partition the temporary space into at least one subspace as
per one or more features. The root or an internal node often
represents a feature, while a leave indicates a class. A sample
can be classified as one class from the root to the leaves as per
its features [38]. Commonly used algorithms for DT include
ID3, C4.5 and CART [39]. The CART specializes in complex
and unbalanced data, and has a pruning method to lower the
model complexity. Hence, CART is utilized in this work. This
algorithm is based on the Gini index (GI) criteria; however,
DT can only classify discrete features. For continuous features,
discretization such as the dichotomy method can be used.

4) RF Model: RF is a special case of the integrated learning
model. Using DT as a base learner, RF decides the final
classification of a sample by the voting result of base learners.
Different from DT, a base learner in RF is trained by using k
samples from the entire training dataset, and different training
datasets are utilized for different base learners. The diversity
of the base learners enhances the generalization of RF.

IV. MODEL CONSTRUCTION PREPARATIONS

This section prepares for the model construction. First, to
measure the quality of the constructed error models, some
model evaluation metrics are shown. Second, an explicit AM
library is built to generate data for model construction. The
required data including the AM error features and the accuracy
results of the AM-based applications are then obtained via sim-
ulations. Finally, the AM error features are ranked according to

their importance to the application accuracy using the training
dataset. Three most informative error features are selected by
using each selection method, for constructing efficient error
models.

A. Model Evaluation Metrics

For classification models, a common evaluation metric is
the accuracy. In the 3-class classification cases, the accuracy
rate is calculated by top-1 and top-2 criteria; they are given
by

top-1 =

∑n
i=1(ŷi

1 = yi)

n
, (7)

and

top-2 =

∑n
i=1(ŷi

1 = yi) ∨ (ŷi
2 = yi)

n
, (8)

where n is the number of samples, yi is the class of the ith
sample, and ŷi

1 and ŷi
2 denote the predicted classes with the

highest and second highest probabilities, respectively.
In this work, the goal of the model is to find the AMs that

result in a reasonable accuracy loss in the NN task, i.e., the first
class of AMs leading to a loss less than a certain threshold.
Therefore, it is important for the first class of samples to be
accurately identified and predicted by the model; thus, recall-1
is calculated to show the recall rate of the first class. Also, the
average recall rates of the three classes are reported, referred
to as macro-tpr. They are calculated as

recall-1 =
TP1

(TP1 + FN1)
, (9)

and

macro-tpr =
1

3

3∑
i=1

TPRi, (10)

where recall-i is also known as the true positive rate (TPR)
of the i-th class. TPi denotes the number of samples that are
predicted as the i-th class and truly belonging to the i-th class,
while FNi denotes the number of samples that are predicted
as not in the i-th class but belonging to the i-th class.

For the regression model, the gap between the actual result
of the AM-based application and the predicted result (obtained
by the model) must be evaluated. In this paper, the mean ab-
solute percentage error (MAPE) is used to show the deviation
between the predicted result and the actual result. It is given
by

MAPE =
1

n

n∑
i=1

|pi − p̂i|
pi

× 100%, (11)

where p̂i and pi are the predicted and actual results of the
application using the ith AM. In addition, the coefficient of
determination (R2) is reported to show the causal relationship
between the predicted result and the features. It is given by

R2 =

∑n
i=1(p̂i − p̄)2∑n
i=1(pi − p̄)2

, (12)

where p̄ is the mean of all pi.
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B. Data Generation

1) AM library: By using an advanced quantization scheme,
the weights and activations of many NN models can be quan-
tized as 8-bit integers with only a marginal loss in accuracy.
The quantization enables efficient hardware implementations
with simple arithmetic circuits [40]. Thus, 8 × 8 unsigned
multipliers are considered in this work. To study the effects
of AM error features on AM-based NN applications, an 8× 8
unsigned AM library is built. In this work, we analyze only
ASIC implementations for AM, other design technologies
such as emerging technologies and FPGA are not considered
because their underlying hardware is different. Three distinct
methodologies are utilized for generating the AM library; 1237
AMs are involved in model construction. The open-source 500
AMs (automatically generated by using CGP) referred to as
mul1 to mul500 [12] are included. In addition, two AM sets are
further generated based on an accurate Wallace tree multiplier.

• In the first set, several full adders (FAs) in the Wallace
tree of an accurate multiplier are removed and the corre-
sponding sums are replaced by constant 0s or 1s, resulting
in 352 AMs. Different AMs are obtained by varying the
location and the number of the removed FAs. These AMs
are denoted as DAM s j k c, where s and j represent
the stage and starting column of the removed FAs; k and
c denote the number of removed FAs and the constant
substituting the sums of the removed FAs, respectively.

• The second set contains 385 AMs generated by replacing
some FAs by approximate FAs (AFAs). Three AFAs
are respectively utilized. Let a and b be the two input
bits, Cin be the carry input, and Sum and Cout be
the sum and carry outputs, respectively. The first AFA
is implemented as Sum = a+b+Cin and Cout = 0. To
compensate for the errors, Cout of the most significant
AFA is generated by using an AND gate, i.e., Cout = ab.
The second AFA is given by Sum = a ⊕ b ⊕ Cin

and Cout = Sum. The third AFA is implemented as
Sum = a ⊕ b ⊕ Cin and Cout = a. These AMs are
denoted as RAM i s j k, where i indicates that the ith
AFA is used, s and j are the stage and starting column
of the replaced FAs; k denotes the number of AFAs used
in the AM.

2) Data processing: For each AM, two types of files are
generated, the .m file for calculating the AM statistical errors
and the .bin file for obtaining the accuracy of the AM-based
NN applications. To compute the statistical errors, the exhaus-
tive inputs in the range of [0, 255] are tested for each AM.
The product from each AM is stored in a look-up table (.bin)
to substitute the accurate product in the considered NNs [26].
Specifically, the pre-trained VGG-16, ResNet-18, and ResNet-
34 are implemented by replacing the accurate 8× 8 unsigned
multipliers by the AMs and then tested on the MNIST, CIFAR-
10, and CIFAR-100 datasets. Note that the cross entropy is
utilized as the loss function in the training of NN models;
the optimization algorithm is Adam with hyperparameters set
as the default values in [41]. The considered combinations of
NNs and datasets used in this work are listed in Table II. The

TABLE II: The combinations of NNs and datasets.
NN MNIST CIFAR-10 CIFAR-100

VGG-16
√ √

×
ResNet-18

√ √
×

ResNet-34
√ √ √
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Fig. 3: Distribution density of the normalized error features
with and without pre-processing.

classification accuracy is then reported for these AM-based
NN applications.

Consider the case in which a different application accuracy
may be required; the AMs are divided into three categories as
per their accuracy loss in the NN applications. In this work,
two accuracy thresholds are set to classify the AMs; the AM
resulting in an accuracy loss lower than or equal to 3% is
labeled as “class 0”; it is labeled as “class 2” for a loss higher
than 8% and “class 1” for a loss between the two thresholds.
The reason for choosing 3% and 8% as the thresholds is that
the numbers of AMs change drastically at these values. To
generate and evaluate the error models, the AMs are randomly
divided into training and testing sets accounting for 75% and
25% of the entire library, respectively. In addition, for a better
data fitting, the dataset is pre-processed and normalized.

Since the AMs are randomly generated by using various
methods, some AMs produce very large errors. Thus, the direct
normalization of the error features without pre-processing
would likely lead to a loss of valuable information. The
distribution of the error features after using the maximum-
minimum normalization is shown in Fig. 3. Without pre-
processing, 90% of the data are normalized to a value near 0,
resulting in a large information loss, as shown in Fig. 3(a). To
preserve useful information, we have pre-processed the error
features by clipping them at 73%, i.e., setting values larger
than the 73% quantile to 73%. Fig. 3(b) shows the probability
density of the normalized error features after pre-processing.
Compared to the results in Fig. 3(a), they are more uniformly
distributed in the interval [0, 1].

C. Selected AM Error Features

Based on the training dataset obtained in IV-B, the ranking
of the 16 statistical error features obtained by the DFR method
is shown in Fig. 4; the importance of features is sorted as per
their average keep rates (1-pdropout) from 10 trials. For both
the classification and regression models, the most important 3
features are µE , µED, and ER. The keep rates of the first 3
and 2 features are significantly higher than those of the other
features for classification and regression tasks, respectively.
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Fig. 4: Keep rates (1 − pdropout) of the error features from 10 DFR trials. The error features with relatively low keep
rates are not shown in the figures.

TABLE III: Selection of the statistical error features.
Method classification features regression features

Filter

σ2 σRE , σRED , µRE

χ2 µED , NMED, µE

Mc WRE , WE , µE

Md Ess, ER, Ezo

Mq Ezo, Ess, WRE

Wrapper

ldt rmsRE , WRE , µED µED , rmsRE , µE

Lrf σE , σRE , µE µE , σE , µRED

Lsvm ER, µE , σED WE , ER, µRED

Lmlp σRED , ER, rmsE WE , ER, µRED

Embedded DFR µE , µED , ER

For comparison, the ranking and selection results using the
other methods are also shown in Table III. Mc, Md and Mq are
the mRMR method for continuous sample values, discretized
samples with equal distance and quantity, respectively. Lmlp,
Ldt, Lsvm and Lrf denote the LVM method using MLP, DT,
SVM and RF models, respectively. For a fair comparison, the
first three features are selected for the ranking. Note that the
LVM method generates two different optimal feature subsets
for classification and regression models. In this paper, the
number of features in each subset is constrained to three for
the LVM methods.

As shown in Table III, different feature selection methods
result in rather diverse feature subsets; however, some error
features appear more frequently than the others in the obtained
14 subsets. Specifically, the most frequently occurred three
error features are ER, µE , µED; they are the same as the
features obtained by using DFR. Thus, this confirms that
DFR is a very effective method for selecting the statistical
error features to show the impacts on the accuracy of AM-
based applications. The effectiveness of all considered feature
selection approaches is then tested by using the respective
selected features in Table III, where the considered NN and
dataset are VGG-16 and CIFAR-10, respectively.

Both classification and regression prototype models are
established based on SVM, MLP, DT and RF for each feature
ranking method, as shown in Fig. 5. For DT and RF, the
classification and regression models with the features selected
by DFR show the highest accuracy, while the ones using
the features selected by Md and Mq perform the worst. For
the MLP- and SVM-based models (except for the SVM-
based regression models), DFR is the second best, leading
to classification and prediction accuracy very close to the

best selection method. Overall, DFR performs better than the
other feature selection approaches for both classification and
regression tasks. Thus, the AM error features selected by using
DFR method are utilized to construct the error models next.

V. MODEL CONSTRUCTION AND EVALUATION

Using the selected AM error features as the inputs, the
classification and regression models are constructed to predict
the accuracy of an AM-based application, by training the
prototype models. The output labels in the training dataset
are generated based on the accuracy of the NN applications.
The models are assessed by reporting their evaluation metrics
with the testing dataset. Finally, a dedicated AM set is used
to verify the versatility of the models.

A. Classification Models

Three-class classification models based on DT, RF, MLP,
and SVM are constructed with two accuracy loss thresholds,
3% and 8%. The specific models for a particular NN and
dataset denoted as “NN-dataset” (e.g., vgg16-mnist denotes the
model designed for the VGG-16 running on MNIST). Also,
a more general error model for all the considered NNs and
datasets are established, denoted as “domain”. To further verify
the effectiveness of DFR, different numbers of error features
are utilized to build classification models as per the feature
ranking results of DFR.

Consider MLP as an example, the NN of the specific clas-
sification model is given by x-128-256-128-3, where x most
informative error features are utilized as the inputs. As shown
in Fig. 6, the accuracy of most classification models increases
sharply until three features are utilized; this is consistent with
the ranking of error features. When the number of utilized
features reaches three, the classification accuracy stabilizes
at a high level. The accuracy of the model may deteriorate
if less important features are added to the inputs. By using
three error features, the specific error models (except for
vgg16-mnist) result in a 96%-99% top-1 accuracy, 98%-100%
top-2 accuracy, and 88%-100% recall-1. This indicates that
specific error models reach about 96% probability of correctly
selecting an AM within a 3% accuracy loss in the considered
applications, and higher than 98% for the accuracy loss within
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Fig. 5: Accuracy of prototype models using the selected features by different feature selection methods.
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Fig. 6: The accuracy of the MLP-based classification models with different number of input error features.

8%. vgg16-mnist shows a relatively low accuracy because it
can tolerate more errors due to the simple NN and dataset;
therefore, more features or larger prototype models should be
used to learn the relationship between the error characteristics
of AMs and the accuracy of this application. The values of
macro-tpr are much lower than those of recall-1 due to the
low classification accuracy of the second class TPR2 (see
(10)). This occurs because the number of samples belonging
to “class 1” is significantly smaller than those of “class 0” and
“class 2”, resulting in a very low TP2 and hence TPR2.

To increase the generality, domain-specific models dealing
with all the considered NNs and datasets are constructed. To
this end, three extra features are added to the specific error
models; they are the NN type, the dataset type, and the cross
feature between NN and dataset. Thus, the form of the utilized
MLP is (x+3)-128-256-128-3. As shown in Fig. 6, the domain-
specific error models achieves 96% top-1 accuracy, 98.8% top-
2 accuracy, and about 93% recall-1. This may benefit from
the larger dataset, i.e., the dataset for the domain-specific

models is 7× as large as that for a specific model. Overall,
the accuracy of the domain-specific models tends to be higher
after the utilized number of error features reaches three. To
summarize, DFR effectively ranks the importance of error
features, and the top three ranked features µE , µED, ER are
more important than the other features.

Finally, the classification models using DT, RF, SVM and
MLP are established respectively with the three most infor-
mative error features obtained by DFR; the evaluation results
are shown in Fig. 7. Among the four models, the RF-based
model attains the best classification accuracy with higher than
96% top-1 and higher than 86.2% recall-1 for all applications.
However, the RF-based models are the most complex: an RF
model is made of 80-380 DTs, and each DT has 380-970
nodes. Thus, the connection complexity of the RF models is
at a level of 106. The DT-based models are simpler with a
complexity at a level of 103 connections, while the accuracy
rate is only 2% lower than that for RF-based models. For the
MLP-based models, the accuracy is about 5% lower than that
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Fig. 7: The accuracy of classification models with 3 error features.
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Fig. 8: The MAPE and R2 of the MLP regression models.

of the RF-based models, with a complexity of 105 connections.
Thus, according to these metrics, DT is the most effective
model for the AM classification in terms of the accuracy loss
of the AM-based NN applications.

B. Regression Models

Regression models are proposed to predict the accuracy
of image classification using AMs. A specific error model
with a structure of x-128-256-521-1024-128-1 MLP is utilized
for the regression models; more complex models are used
to deal with the regression task with a higher complexity.
Fig. 8 shows the MAPE and R2 of the MLP-based regression
models using different numbers of error features. Like the
classification models, a major improvement occurs in MAPE
and R2 when the number of utilized features increases to 2.
This is consistent with the feature ranking result in which the
first 2 features have significantly larger keep rates than others
(see Fig. 4(b)). The accuracies of the regression models for
resnet18-cifar10, resnet34-cifar10, and resnet34-cifar100 tend
to be stable after the number of error features reaches three.

Fig. 9 shows the MAPE and R2 of the regression models
based on DT, RF, and MLP using the three error features
selected by DFR. Compared with the RF-based models, the
MLP-based models have a higher prediction accuracy and a
lower complexity. The DT-based model consists of 1030-7300
nodes, and the RF-based models consist of 20-170 DTs. The
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Fig. 9: Regression error models with three input features.

connection complexity of the RF-based models is at a level
of 107, larger than that of the MLP-based models (106). The
DT-based models show the lowest complexity, yet resulting
in relatively high MAPEs and low R2. Overall, among the
regression models, MLP achieves the best prediction results for
all applications. In addition, the NN of the MLP model can
be flexibly adjusted according to the accuracy requirements;
a balance between model complexity and prediction accuracy
is then achieved.

C. Model Verification

To verify the versatility of the obtained error models, 74
dedicated AMs proposed in the technical literature that are
comprehensively surveyed in [4] are tested. These AMs are
manually designed by using different approximation tech-
niques that are not involved in the training and testing sets
for constructing models. Note that these AMs cover most
typical approximation techniques, including the dynamic seg-
mentation [42], the logarithmic approximation [19], [20], and
using approximate 4:2 compressors for the partial product ac-
cumulation [43], [44], among others. As a small dataset is not
sufficient for a reasonable model evaluation of specific models,
only the domain-specific models with 518 input samples are
tested. As per the simulation results, the models with three
error features provide the best tradeoff between the number
of utilized features and accuracy. Thus, the classification and
regression models with three input features are evaluated. The
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TABLE IV: The verification of domain-specific models.

models Classification Regression
Top-1 Top-2 Recall-1 MAPE R2

MLP 81.67% 95.75% 86.48% 5.73% 75.3%
RF 98.88% 99.44% 86.20% 7.56% 77.9%
DT 96.28% 97.40% 79.32% 7.41% 72.8%

SVM 97.03% 99.44% 72.41% 125.04% 66.2%

results are shown in Table IV; the macro-tpr is not included
due to the small number of samples in “class 1.” Consistent
with expectations, the best classification results are obtained
by RF, resulting in 98.88% top-1 and 86.2% recall-1, whereas
the MLP model shows the best prediction results with a
MAPE of 5.73%. These results indicate that the proposed
error models can effectively predict the error effects of AMs on
the quality of AM-based image classification tasks. Moreover,
this verification experiment demonstrates that the obtained
models are useful to assess arbitrary AMs with various error
features and thus they support the evolution of AM design.

D. Comparison with Related Works

The proposed framework exhibits significant advantages
over state-of-the-art learning-based methodologies for eval-
uating the error effects of approximate arithmetic circuits
on applications [9], [10]. Compared to [9], specifically, this
framework is capable of dealing with more complex appli-
cations, e.g., ResNet34 on CIFAR-100. Several simple NN
applications are studied in [10], but only two-class classifiers
are constructed for 600 AMs with an 86% accuracy, whereas
our framework is validated in three-class classifiers and re-
gression tasks for more than 1200 AMs with much higher
accuracy. Moreover, this framework is applicable to arbitrary
AMs rather than AMs with specific attributes [11].

VI. FURTHER DISCUSSION

This section analyzes the error characteristics of the AMs in
terms of the three selected error features and their effects on
the accuracy of the AM-based NN applications. The VGG-16
on CIFAR-10 with a moderate complexity is considered as an
example. The hardware improvements of AMs that result in
acceptable NN implementations are discussed.

A. Error Analysis for AM Designs

Fig. 10 shows the classification results of the AMs with
respect to their error features of µE , µED and ER. Without
retraining, “class 0” denotes the AMs resulting in less than
3% accuracy loss in vgg16-cifar10, “class 2” refers to those
AMs that show an accuracy loss greater than 8%; otherwise,
the AMs are marked as “class 1.” Fig. 10(a) shows that an AM
performs well in the application of vgg16-cifar10 when its ER
is smaller than 30%, i.e., the AMs with low values for the z-
axis belong to “class 0.” Similarly, Fig. 10(b) indicates that,
with a µED smaller than 8, the AM must belong to “class 0.”
Considering the µE shown in the x-axis, all AMs of “class 0”
and “class 1” resulting in less than 8% accuracy loss in vgg16-
cifar10 have small µE values; however, a small µE does not
guarantee a small loss in application accuracy. This means
that a small µE is necessary but not sufficient to indicate an
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Fig. 10: Classification results of AMs in pre-trained vgg16-
cifar10 vs. the three most informative error features.

appropriate AM for the application of image classification. As
the ER of an AM is generally high, it is better to limit µED

to a reasonable range when designing AMs.

To sum up, the accuracy of an AM-based NN application
is closely related to the µE , µED, and ER of the AM.
The specific correlations between these error features and
the accuracy of AM-based NN applications are analyzed as
follows. As accumulation dominates the computations in NN,
the output error of a neuron is highly correlated with the
mean error µE of the AM, especially for the case with a large
number of inputs. Thus, µE is a key factor determining the
accuracy of AM-based NN applications. However, a smaller
µE does not guarantee a more accurate accumulation when the
number of inputs is not large enough. In this case, a small µED

is necessary for achieving a relatively accurate accumulation.
In addition, the AM with a very small ER (e.g., smaller than
30%) often results in small errors in accumulation operations
and hence a low accuracy loss in AM-based NN applications.

Note that the image classification results shown in Fig. 10
are obtained by directly replacing the accurate multipliers in
the inference of a pre-trained VGG-16 with the corresponding
AMs. Taking advantages of the learning ability, retraining after
the replacement would adjust the weights to compensate some
errors due to AMs, which can improve the accuracy of AM-
based NN applications. Thus, retraining is attempted next for
the AM-based vgg16-cifar10. Note that only the inference of
the NN is implemented by using AMs, while the backward
propagation for retraining the NN is implemented by using
accurate single-precision floating-point arithmetic operations.
The classification results of AMs as per their effects on the
retrained vgg16-cifar10 are shown in Fig. 11. Due to the
retraining, some AMs result in a higher accuracy than using
the exact design; they are denoted as “class b” in Fig. 11.
This probably occurs because training with AM is equivalent
to adding noise to the NN, which acts as a regularization that
can result in a higher accuracy. Compared to the accuracy
without retraining, vgg16-cifar10 tolerates more errors in the
multiplication. Thus, the threshold values for the ER and
µED (ensuring less than 8% accuracy loss in the AM-based
vgg16-cifar10) are increased to 45% and 33, respectively. This
indicates that retraining an AM-based NN relaxes the error
constraints for AM designs, which may result in more efficient
hardware design when the same accuracy is required for the
applications.
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B. Hardware Improvements

Table V shows the circuit and error measurements for the
accurate and approximate multipliers. Note that two classical
structures for the accurate multiplier are considered, the carry-
save array multiplier and the Wallace tree multiplier, and
denoted as accurate array and accurate Wallace, respectively.
The average values of the circuit measurements for these two
designs are considered as the baseline in the comparison. The
circuits are synthesized by using Synopsys Design Compiler
under HLMC 40 nm process with a supply voltage of 1.1 V at
25◦. The clock period is 2 ns. The syntheses for all circuits are
subject to area optimization. For a similar quality loss in the
NN application, the AMs with the largest µED are synthesized
to obtain the largest hardware gain due to approximation. Both
scenarios with and without retraining are studied.

As shown in Table V, without retraining, DAM 1 2 2 0
results in the most significant reduction in power-delay prod-
uct (PDP) (by 21.88%) and in area-delay product (ADP)
(by 27.52%) compared with the accurate design, with about

3% accuracy loss in vgg16-cifar10. DAM 1 2 2 0 is ob-
tained by discarding some full and half adders in the ac-
curate Wallace multiplier, as shown in Fig. 12. Compared
with accurate Wallace, DAM 1 2 2 0 saves 4 full adders
and 5 half adders for the partial product accumulation, and
utilizes a 9-bit instead of 11-bit carry-propagate adder for
the final addition. By introducing retraining, the AM named
mul8 069 [12] achieves as much as 58.07% and 52.78%
reductions in PDP and ADP with less than 3% accuracy loss.
Moreover, the retrained vgg16-cifar10 using mul8 431 [12]
reaches a higher accuracy than the one using an accurate
multiplier. The PDP and ADP gains for mul8 431 [12] are
both higher than 43%. Thus, retraining enhances the tolerance
of the application to errors due to multipliers. Compared with
the truncation-based AMs (i.e., BAM [13]1 and TruM2), the
AMs using other approximation techniques achieve higher
accuracy with less hardware complexity.

VII. CONCLUSION

Based on a feature ranking and selection strategy, this paper
reveals the relationship between the statistical error features
of AMs and the accuracy of NN applications using AMs. By
using DFR, three most informative error features, the error
bias (µE), the mean error distance (µED), and the error rate
(ER), are obtained. The error models are then constructed by
using the selected error features to predict the impact of AMs
on NN applications. Specifically, classification and regression
models for some particular NNs and datasets are developed
and verified; the obtained models show a high classification
accuracy (over 96% top-1). Given the statistical error features,
the proposed framework can construct effective error models
to predict the accuracy of an application using approximate
arithmetic units. This framework, thus, guides the selection
and design of a proper approximate design for an application
under a particular accuracy constraint.

The analysis shows that a low ER or µED for AMs
guarantees the accuracy of the NN applications. Although a
small error bias (µE) in the multiplication is not a sufficient
condition for ensuring a high-quality NN application, it can
relax the requirements for ER and µED. As an AM with a
low ER is generally hard to be hardware-efficient, a priority in
designing an efficient AM for NN applications lies in lowering
the error bias and distance. Last but not the least, retraining the
AM-based NNs can significantly improve their tolerance for
errors in the multiplication. Some AMs can achieve improve-
ments in PDP and ADP by over 40% compared with an exact
multiplier while achieving no accuracy loss in NN applications
with retraining. Thus, retraining is highly effictive to ensure
the accuracy of AM-based NN applications and allows for
more significant hardware improvements in AM design.
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