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Abstract—Scaling of CMOS technology into nanometric feature sizes has raised concerns for the reliable operation 
of logic circuits, such as in the presence of soft errors. This paper deals with the analysis of the operation of 
sequential circuits. As the feedback signals in a sequential circuit can be logically masked by specific combinations 
of primary inputs, the cumulative effects of soft errors can be eliminated. This phenomenon, referred to as error 
masking, is related to the presence of so-called restoring inputs and/or the consecutive presence of specific inputs 
in multiple clock cycles (equivalent to a synchronizing sequence in switching theory). In this paper, error masking is 
extensively analyzed using the operations of state transition matrices (STMs) and binary decision diagrams (BDDs) 
of a finite state machine (FSM) model. The characteristics of state transitions with respect to correlations between 
the restoring inputs and time sequence are mathematically established using STMs; although the applicability of the 
STM analysis is restricted due to its complexity, the BDD approach is more efficient and scalable for use in the 
analysis of large circuits. These results are supported by simulations of benchmark circuits and may provide a basis 
for further devising efficient and robust implementations when designing FSMs.   

Index Terms—Finite state machines (FSMs), Error masking, Sequential circuits, State transition matrices (STMs), 
Transition probability matrices, Binary decision diagrams (BDDs), Soft errors 

——————————      —————————— 

1 INTRODUCTION
he aggressive scaling of CMOS technology has 
resulted in small device dimensions and low 
tolerance to design and process variations, thus 

having a negative impact on the reliability of digital 
circuits [1]. New failure modes have been observed 
due to high integration and device fabrication ef-
fects, such as time-dependent dielectric breakdown 
of materials, hot carrier injection and nega-
tive/positive bias temperature instability in transis-
tors. In addition to permanent defects, soft errors 
have also become a concern as the temporary inter-
ference by noisy environments affects the reliable 
operation of nanometric digital circuits. High inte-
gration densities and low voltage/current thresholds 
have increased the soft error rates (SERs) of circuits 
and systems.  
    To address the above issues, various techniques 
for reliability evaluation have been proposed. These 

include techniques using probabilistic transfer ma-
trices (PTMs) [2, 3], probabilistic gate models 
(PGMs) [4, 5], Bayesian networks [6, 7], probabilistic 
decision diagrams (PDDs) [8] and stochastic compu-
tational models [9]. Methodologies have also been 
developed for the analysis of SERs, including those 
based on error propagation [10], symbolic models 
using binary and algebraic decision diagrams (BDDs 
and ADDs) [11, 12], Markov chains [13] and random 
vector based signatures [14]. The effect of soft errors 
on sequential circuits has been analyzed using a fi-
nite state machine (FSM) model [15]. If a transient 
fault is limited to occur in a single clock cycle, the 
resulting error is classified as critical (or non-critical) 
when it appears at the next state (or output) of a se-
quential circuit [16].  It has been observed that a crit-
ical state transition error may not necessarily cause a 
system error because it can be eliminated by utiliz-
ing some inputs of an FSM [17]. As a framework, a 
statistical analysis has been developed for analyzing 
the probability of such a self-recovery due to the 
effect of transient errors in a sequential circuit [18].  
    Self-recovery is an interesting process, because the 
reliability of a circuit is typically expected to de-
crease with time due to the presence and likelihood 
of errors. Reliability refers to the probability of sys-
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tem survival, i.e., the probability that a system (in 
this paper, a sequential circuit) functions correctly 
and produces correct outputs. This is stringent for 
computing at nanometric scales. For sequential cir-
cuits this is more pronounced because accumulation 
of errors through feedback signals may occur and 
therefore, the reliability may decrease.  

A main contribution of this paper is to show, char-
acterize and assess the reliable operation of a se-
quential circuit through a detailed analysis of its 
state transition matrices (STMs). The dependency of 
circuit reliability on its input distribution and se-
quences is revealed due to the masking of errors. 
Error masking in a sequential circuit refers to the 
logic masking effect imposed on the feedback signals 
by specific combinations of primary inputs (referred 
to as restoring inputs). As a result, the presumably 
monotonically decreasing reliability of a sequential 
circuit can actually be interrupted and restored by 
the primary inputs. The restoring inputs are equiva-
lent to the synchronizing sequences in switching 
theory [19, 20], that have been extensively used to 
facilitate testing of sequential circuits [21]. Both ex-
perimental and theoretical approaches have been 
used to compute synchronizing sequences for testing 
an FSM [22, 23].  

In this paper, error masking is theoretically ana-
lyzed using the STMs in an FSM model as a mathe-
matical framework. To alleviate the complexity is-
sues in the STM computation, an efficient approach 
using binary decision diagrams (BDDs) is further 
employed for analyzing error masking in large cir-
cuits. Using benchmarks as evaluated in [14] and 
[18] for SER analysis, simulation results are present-
ed to show that single- and multiple-step restoring 
inputs can be found by the proposed approach. The 
contribution of this paper is, therefore, to present an 
analytical framework that utilizes STMs and BDDs 
to characterize, analyze and assess the fundamental 
mechanism of error masking. Albeit beyond the 
scope of this paper, this methodology and related 
observations can be complemented by incorporating 
timing and electrical information into the analysis 
for formulating error mitigation schemes for 
nanoscale systems. 

This paper is organized as follows. Section 2 de-
fines the terminologies used in this paper. Section 3 
presents the STM framework for characterizing error 
masking. Section 4 presents an efficient evaluation 
using BDDs; simulation results are also provided. 

Section 5 concludes the paper. 

2 DEFINITIONS  
Consider a Mealy model of a sequential circuit, as 

shown in Fig. 1. In this circuit, there are m+n inputs: 
m of them are Primary Inputs while the remaining n 
inputs are Present States (i.e., the feedback signals 
from the flip-flops). There are also l+n outputs: l of 
them are Primary Outputs, while the remaining n 
outputs are Next States (they will be stored in the 
flip-flops and then fed back into the inputs during 
the next clock period). 

Fig. 1. Mealy model of a sequential circuit. 

A finite state machine (FSM) is a classical abstract 
model for the functions of a sequential circuit. An 
FSM of the general Mealy model is defined as a six 
tuple <I, S, , S0, O, λ>, where I is the set of inputs, S 
is the set of states, 𝛿: 𝑆 × 𝐼 → 𝑆 is the next-state func-
tion of an input and the present state, 𝑆0 ⊆ 𝑆 is the 
set of initial states, O is the set of outputs, and 
𝜆: 𝑆 × 𝐼 → 𝑂 is the output function of an input and 
the present state [24]. For the sequential circuit of 
Fig. 1, I is a set of vectors of m bits, O is a set of vec-
tors of l bits, and S can be represented by a set of 
vectors of n bits. An FSM can efficiently be described 
by a state transition graph, in which every node (or 
vertex) represents a state of the machine and every 
arc (or directed edge) indicates a state transition.  

The state transitions in an FSM can be described 
by a state transition matrix (STM); in the traditional 
representation, the STM has Boolean entries (0 or 1) 
to denote the deterministic functions of a sequential 
circuit. For a probabilistic operation (due to the oc-
currence of soft errors for instance), the state transi-
tions are described by a transition probability matrix 
[15, 16] due to the underlying Markov nature of the 
FSM. For the sequential circuit of Fig. 1, let 𝐼 =
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{𝑥0, 𝑥1, … , 𝑥2𝑚−1} , 𝑆 = {𝑠0, 𝑠1, … , 𝑠2𝑛−1}  and 𝑂 =
{𝑦0, 𝑦1, … ,𝑦2𝑙−1}; the transition probability matrix  𝚽𝐢 
is a 2n × 2n matrix for a given input vector 𝑥𝑖:  
 𝚽𝐢 = 

 

⎣
⎢
⎢
⎢
⎡
p(𝑠0|𝑠0)                     p(𝑠1|𝑠0)                   …  p(𝑠2n−1|𝑠0)        
p(𝑠0|𝑠1)                     p(𝑠1|𝑠1)                   …   p(𝑠2n−1|𝑠1)       

… … … … … … … … … … … … … … … … . … … … … …
… … … … … … … … … … … … … … … … … . … … … …

p(𝑠0| 𝑠2n−1)            p(𝑠1|𝑠2n−1)             …  p(𝑠2n−1|𝑠2n−1)    ⎦
⎥
⎥
⎥
⎤

,     (1) 

where the (k, j) entry p�sk�sj� denotes the transition 
probability from the present state sj to the next state 
sk  for the input 𝑥𝑖 . For deterministic operations, 
p�sk�sj� = 0 or 1 for any k and j, thus yielding an ide-
al STM 𝚻𝐢 for the input 𝑥𝑖. Since an STM is unique for 
every input vector, a total of 2m STMs are required 
to describe the operations of the sequential circuit of 
Fig. 1.  
     Next, a cumulative STM (CSTM) is defined; a 
CSTM, 𝚻𝐭𝟏,𝐭𝟐, describes the state transitions from time 
𝑡1 to 𝑡2 for a set of inputs (between 𝑡1 and 𝑡2). It is 
given by:  

𝚻𝐭𝟏,𝐭𝟐 = �𝐓(r)
t2

r=t1

,                                 (2) 

where 𝐓(r) (with 𝑡1 ≤ 𝑟 ≤ 𝑡2) is an STM at time r (for 
a corresponding input). For a set of inputs between 
time 0 and t-1, for example, the corresponding CSTM 
is 𝚻𝟎,𝐭−𝟏 . Given an initial state, 𝒔(𝟎), the state at a 
subsequent time t can be computed as: 

𝒔(𝒕) = 𝒔(𝟎) ∗ 𝚻𝟎,𝐭−𝟏.                              (3) 
     Similar matrices can be defined for the transition 
probabilities between the present states and the out-
puts. These matrices are referred to as output transi-
tion matrices. The STMs and the transition probability 
matrices are essentially equivalents of the ideal 
transfer matrices (ITMs) and probabilistic transfer 
matrices (PTMs) [2, 3], so they can be constructed by 
extending and combining the gate ITMs and PTMs 
(as applicable to combinational circuits) to the topol-
ogy and operation of a sequential circuit. Transition 
probability matrices have also been used for the 
Markovian analysis of FSMs [25] and fault-tolerant 
systems [26]. 
     In a sequential circuit, the restoring inputs are the 
primary inputs or a sequence of primary inputs that 
logically mask the feedback signals. Error masking in 
a sequential circuit refers to the phenomenon that 
the feedback signals are logically masked by specific 
combinations of primary inputs (i.e., the restoring 
inputs). This error masking can occur in one or mul-
tiple steps. An N-step error masking is illustrated in 
the state transition diagram of Fig. 2. Assume that 

the state of an FSM at t=0 is not deterministic, but 
probabilistic (possibly due to the effects of soft errors 
in a sequential circuit); so in principle, it can take any 
of the 2n states, as shown in the first row in Fig. 2. 
However, this state space can be reduced at later 
steps as result of the state transition properties of the 
FSM. This is determined by the STMs and thus the 
primary input at each step. If this state space is re-
duced to one that has only one single state after N 
steps, then the initial state at time t0 becomes irrele-
vant for determining the final state; hence, any initial 
error would be masked by this N-step transition pro-
cess. The inputs that result in the occurrence of this 
error masking are a set of restoring inputs. In a state 
transition graph, this is indicated by various state 
transition paths (represented by directed edges) that 
eventually lead to the same destination state (repre-
sented by a vertex). Therefore, a sequential circuit is 
said to be reliable if error masking frequently occurs; 
it is unreliable otherwise. 

3 ERROR MASKING 
3.1 Restoring inputs 
In switching theory it is well known that among 

all output combinations of a sequential circuit, some 
are determined only by the primary inputs, and not 
by the feedback signals (or present states). This 
property is very useful as these inputs can be uti-
lized for determining the values of the outputs and 
therefore voids the cumulative effects of errors. As 
defined previously, these inputs are called restoring 
inputs. A circuit is considered reliable if these restor-
ing inputs frequently appear. In a reliable circuit, 
when the feedback signals are logically masked (i.e. 
not relevant for determining the next state or output 
values), the cumulative effects of errors are effective-
ly mitigated and/or possibly eliminated. 

The next-state function in an FSM is particularly 
important as it determines whether an accumulation 
of errors could occur. If the next state is always fully 
or partially determined by the present state, then the 
design is considered as unreliable, i.e., errors and 
their effects through the feedback signals will accu-
mulate. An unreliable design will fail with a high 
probability after a sufficiently long time. Hence, a 
Moore machine in which the outputs are only de-
termined by the present states (or feedback signals), 
tends to be unreliable in the presence of random soft 
errors. This is consistent with the homogeneity in the  
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Fig. 2. State transition diagram for an N-step error masking. An arrow indicates a state transition for a given input (shown on the 
left). 
Markov characterization of the FSMs.  

For nanoscale computing, the rate of an error is 
projected to be finite but small, so the next state is 
expected to be ideal with a very high probability. In 
a sequential circuit, therefore, a transition probability 
matrix is expected to have entries that are approxi-
mately 0’s and 1’s. This leads to the convergence of 
the transition probability matrix and its ideal STM. 
In fact, the STMs contain original information on the 
distinctive features of a circuit, so they are of funda-
mental importance when determining the restoring 
inputs. 

Fig. 3. An STM indicating the existence of a restoring input. ‘𝚻𝐢’ 
is the STM for the ith input. ‘PS’ denotes the present state and 
‘NS’ denotes the next state.  

Consider as an example the STM shown in Fig. 3 
for an input in the set 𝐼0. In this STM, if the entries in 
a column, which indicate the transitions from the 
present states to a specific next state, are all 1’s, then 
the primary inputs for this STM (i.e., those in the set 
𝐼0) are a set of restoring inputs. A similar procedure 

can be applied to the analysis of output transition 
matrices, which characterizes whether restoring in-
puts exist to at least partially eliminate the accumu-
lated effects of errors to the primary outputs.  

3.2 Error masking in multiple steps 
Restoring inputs can appear in single and multiple 

steps (or clock cycles). For a single step, the STM for 
a restoring input is expected to have all 1’s in a col-
umn. For multiple steps, restoring inputs can be 
found by analyzing the CSTM obtained by (2), i.e., 
the product of STMs at these steps.  
3.2.1 Two step process 
As an example, the two-step case will be first pre-
sented for establishing the conditions such that the 
restoring inputs exist. Let 𝐓𝐮  and 𝐓𝐯  be the two 
 2𝑛 × 2𝑛 STMs involved in a two-step operation (for 
inputs 𝑥𝑢  and 𝑥𝑣  respectively). If 𝑥𝑢  and 𝑥𝑣  are the 
restoring inputs for the jth next state, the two-step 
CSTM is given by                      

𝐓𝐮 ∗ 𝐓𝐯 =

         0 … j − 1 j j + 1 … 2n − 1

⎣
⎢
⎢
⎢
⎡

     0
     0
     0
     …
     0

⋮
⋮
⋮
⋮
⋮

  0
  0
  0
   …
  0

   1
   1
   1
   …
   1

 0
 0
 0
 …
 0

⋮
⋮
⋮
⋮
⋮

         0
         0
         0
         …
         0⎦

⎥
⎥
⎥
⎤

.     (4) 

Let the elements in the ith row and the jth column 
in  𝐓𝐮  and 𝐓𝐯  be given by 𝑎𝑖𝑗  and 𝑏𝑖𝑗  respectively 
(0 ≤ 𝑖 ≤ 2𝑛 − 1 and 0 ≤ 𝑗 ≤ 2𝑛 − 1), then 

𝐓𝐮 ∗

⎣
⎢
⎢
⎢
⎢
⎡

b0j
b1j
b2j
…

b(2n−1)j⎦
⎥
⎥
⎥
⎥
⎤

  = 

⎣
⎢
⎢
⎢
⎡

1
1
1
…
1⎦
⎥
⎥
⎥
⎤
.                            (5) 
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Also, the following is always applicable 

𝐓𝐮 ∗

⎣
⎢
⎢
⎢
⎡

1
1
1
…
1⎦
⎥
⎥
⎥
⎤
  =  

⎣
⎢
⎢
⎢
⎡

1
1
1
…
1⎦
⎥
⎥
⎥
⎤
.                                 (6) 

Subtracting (5) from (6) gives 

𝐓𝐮 ∗

⎣
⎢
⎢
⎢
⎢
⎡

1 − b0j
1 − b1j
1 − b2j

…
1 − b(2n−1)j⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0
0
0
…
0⎦
⎥
⎥
⎥
⎤
.                           (7) 

Since 𝑎𝑖𝑗 and 𝑏𝑖𝑗 can be either 0 or 1 for any i and j, 
there is only one element in each row of 𝐓𝐮 being 1, 
due to the deterministic operation in the state transi-
tions. 

Assume for any i, 
𝑎𝑖𝑐𝑖 = 1.                                       (8) 

Then by (7), 
1 − 𝑏𝑐𝑖𝑗 = 0 or 𝑏𝑐𝑖𝑗 = 1.   (9) 

Both (8) and (9) determine the positions of 1’s in 
the two STMs that establish the conditions for the 
restoring inputs in two steps.  

Moreover, (8) and (9) can be used to analyze two 
extreme conditions. If  𝑐0 ≠  𝑐1 ≠  𝑐2 ≠ ⋯  ≠  𝑐2𝑛−1 , 
the following condition must be applicable for a two-
step masking: 

𝑏0𝑗 = 𝑏1𝑗 =  𝑏2𝑗 =  …𝑏(2𝑛−1)𝑗 = 1.           (10)              
This implies that if the first step does not contrib-

ute to error masking, then the second step must sole-
ly contribute to masking. Consider the second ex-
treme condition; if 𝑐0 =  𝑐1 = 𝑐2 = ⋯ =  𝑐2𝑛−1 = 𝑘 , 
then for a two-step masking it is only required that, 

𝑏𝑘𝑗 = 1 .                                   (11) 
Of course, this corresponds to the opposite case of 

the first condition.  
To better understand the relationship between  𝐓𝐮 

and 𝐓𝐯 in a two-step restoring process, an example is 
presented next. 
Example I: Let 𝐓𝐮𝟎  and 𝐓𝐯𝟎  be two 4x4 STMs, as 
shown in Fig. 4. The Boolean digit under each col-
umn of a matrix indicates whether the next state cor-
responding to this column is possible (value of 1) or 
not (value of 0) after each step. For example, a 1 for 
the first and third columns of 𝐓𝐮𝟎 indicates that the 
first and third next states (i.e., “00” and “10”) are the 
two possible next states after the first step of opera-
tion. Since the output from the first step serves as the 
present state for the second step, only the possible 
next states from the first step are still relevant and 
should be considered in the second step. In this ex-

ample, these next states are the first and third, i.e., 
“00” and “10”. They determine that only the first and 
third rows of 𝐓𝐯𝟎 are relevant in the second step of 
operation (all other rows are masked in the first 
step). This is illustrated in the second row of Fig. 4, 
where the relevant columns are marked in red. Sub-
sequently, if the 1’s in the remaining rows of 𝐓𝐯𝟎be-
long to a single column, this two-step process is then 
expected to yield a single next state corresponding to 
this column, regardless of the present states. There-
fore, a two-step error masking occurs.  

 
Fig. 4. Example of a two-step error masking. 

 
3.2.2 N step process 

In the general case that restoring occurs in N steps, 
the CSTM is given by 
𝐓𝐮𝟏  ∗ 𝐓𝐮𝟐  ∗ … ∗ 𝐓𝐮𝐍  =
         0 … j − 1 j j + 1 … 2n − 1

⎣
⎢
⎢
⎢
⎡

   0
   0
   0
   …
   0

⋮
⋮
⋮
⋮
⋮

  0
  0
  0
   …
  0

   1
   1
   1
   …
   1

 0
 0
 0
 …
 0

⋮
⋮
⋮
⋮
⋮

         0
         0
         0
         …
         0⎦

⎥
⎥
⎥
⎤

                   (12)  

as applicable to a restoring to the jth next state. 
Due to the state-transition property, each row 

in 𝐓𝐮𝐢  (1 ≤ i ≤ N) has only one 1 and all other ele-
ments are 0. Assume that 𝐫𝐢𝐣 = （0,0 … 0,1,0 … 0,0) is 
the jth row in 𝐓𝐮𝐢, then 

𝐓𝐮𝐢 =

⎣
⎢
⎢
⎢
⎡

𝐫𝐢𝟎
𝐫𝐢𝟏
𝐫𝐢𝟐
…

𝐫𝐢(𝟐𝐧−𝟏)⎦
⎥
⎥
⎥
⎤
 .                        (13) 

Further, let 𝑐𝑖𝑗 be the column index of the 1 in 𝐫𝐢𝐣; 
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then for the first two steps, 

𝐓𝐮𝟏 ∗ 𝐓𝐮𝟐 =

⎣
⎢
⎢
⎢
⎡

𝐫𝟏𝟎
𝐫𝟏𝟏
𝐫𝟏𝟐
…

𝐫𝟏(𝟐𝐧−𝟏)⎦
⎥
⎥
⎥
⎤
∗

⎣
⎢
⎢
⎢
⎡

𝐫𝟐𝟎
𝐫𝟐𝟏
𝐫𝟐𝟐
…

𝐫𝟐(𝟐𝐧−𝟏)⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝐫𝟐𝐜𝟏𝟎
𝐫𝟐𝐜𝟏𝟏
𝐫𝟐𝐜𝟏𝟐

…
𝐫𝟐𝐜𝟏�𝟐𝐧−𝟏�⎦

⎥
⎥
⎥
⎤

.        (14) 

For the N steps, the CSTM is 
𝐓𝐮𝟏  ∗ 𝐓𝐮𝟐  ∗ … ∗ 𝐓𝐮𝐍 

=

⎣
⎢
⎢
⎢
⎡

𝐫𝟏𝟎
𝐫𝟏𝟏
𝐫𝟏𝟐
…

𝐫𝟏(𝟐𝐧−𝟏)⎦
⎥
⎥
⎥
⎤
∗

⎣
⎢
⎢
⎢
⎡

𝐫𝟐𝟎
𝐫𝟐𝟏
𝐫𝟐𝟐
…

𝐫𝟐(𝟐𝐧−𝟏)⎦
⎥
⎥
⎥
⎤
∗ … ∗

⎣
⎢
⎢
⎢
⎡

𝐫𝐍𝟎
𝐫𝐍𝟏
𝐫𝐍𝟐
…

𝐫𝐍(𝟐𝐧−𝟏)⎦
⎥
⎥
⎥
⎤
 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐫
𝐍�𝐜(𝐍−𝟏)……(𝐜𝟐�𝐜𝟏𝟎�

)�

𝐫
𝐍�𝐜(𝐍−𝟏)……(𝐜𝟐�𝐜𝟏𝟏�

)�

𝐫
𝐍�𝐜(𝐍−𝟏)……(𝐜𝟐�𝐜𝟏𝟐�

)�

…
𝐫
𝐍�𝐜(𝐍−𝟏)……(𝐜

𝟐�𝐜𝟏�𝟐𝐧−𝟏��
)�

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,                            (15) 

where 𝑐(𝑁−1)……(𝑐2�𝑐1𝑖�
) with 0 ≤ 𝑖 ≤ 2𝑛 − 1, determined 

by the positions of 1’s in the STMs of previous steps, 

gives the index of the row vector in 𝐓𝐮𝐍 . 
    If error masking occurs, then all the 1’s are in the 
same column in the matrix obtained by (15), so all 
the rows of the matrix are the same, i.e.,  
𝐫
𝐍�𝐜(𝐍−𝟏)……(𝐜𝟐�𝐜𝟏𝟎�

)�
= 𝐫

𝐍�𝐜(𝐍−𝟏)……(𝐜𝟐�𝐜𝟏𝟏�
)�

=

𝐫
𝐍�𝐜(𝐍−𝟏)……(𝐜𝟐�𝐜𝟏𝟐�

)�
= ⋯ = 𝐫

𝐍�𝐜(𝐍−𝟏)……(𝐜
𝟐�𝐜𝟏�𝟐𝐧−𝟏��

)�

,     (16)                            

and equivalently, the column indices of 1’s are the 
same, i.e., 

c
N�c(N−1)……(c2(c10))�

= c
N�c(N−1)……(c2(c11))�

=

c
N�c(N−1)……(c2(c12))�

= ⋯ = c
N�c(N−1)……(c

2�c1�2n−1��
)�

     (17) 

For a two-step restoring process (as given by (4)), it 
can be obtained from (17) that 
𝑐2𝑐10 = 𝑐2𝑐11 = 𝑐2𝑐12 = ⋯ = 𝑐2𝑐1�2𝑛−1� = 𝑗,              (18) 

i.e., as 𝑎𝑖𝑐1𝑖  = 1 and 𝑐2𝑐1𝑖 = 𝑗 , we have 𝑏𝑐1𝑖𝑗 = 1, for 
any 0 ≤ 𝑖 ≤ 2𝑛 − 1.                                         

  Hence, (16) and (17) reveal the underlying rela-
tionships among multiple STMs, as required for ob-
taining the restoring inputs. STMs are sparse

 

Fig. 5. Example of N-step error masking. 
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matrices, so these relationships can be used to effi-
ciently analyze N-step error masking. 

Similar to the case of two-step masking presented 
previously, an example is given in Fig. 5. It reveals 
the mappings between the STM elements (as charac-
terized by (16) and (17)) and the accumulating effect 
of error masking in an N-step process.  

For an unreliable design, fault-tolerant and error-
mitigation techniques can be used to reduce the error 
effects [27, 28]. A simple method to accomplish this 
objective is to reset a sequential system periodically, 
as this may help to recover from the accumulated 
errors. This however may not be possible in all ap-
plications due to the disruption of normal circuit 
operation caused by the reset. 

A possible solution to this problem is to use ap-
proximate logic to change the truth table, thus intro-
ducing error masking into the circuit. This will also 
introduce a tradeoff in the precision of the computed 
function, hence as applicable to inexact computing 
(also often referred to as soft computing), attaining 
more masking and less error accumulation. 

3.3 Case study: S27, ISCAS’89 benchmark cir-
cuit 

 The ISCAS’89 benchmark circuit S27 is considered 
in this section using the STM analysis to substantiate 
the characterization of error masking. S27 is a circuit 
with four primary inputs, three D flip-flops and one 
primary output (Fig. 6).  When error masking occurs, 
the next state is totally dependent on the primary 
inputs, but not on the feedback (present state); this is 
applicable to S27 and shown as follows.  

For S27, its STM is an 8x8 matrix. Consider the 
STM for the input “1110,” as shown in Fig. 7; the 
next state (NS) is expected to be “110” regardless of 

the present state (PS).  So when “1110” appears at 
the primary input, errors may have accumulated but 
are logically masked; therefore the reliability in-
creases. An error masking STM can also be a result 
of several steps of STM operations. For example, 
neither the input “1001” nor “0110” is a restoring 
input; however, the synergetic effect of the consecu-
tive presence of these two inputs leads to a two-step 
error masking.  
 
 
 
 

Fig. 7.  𝐓𝟏𝟒 of S27 is the STM for the 14th primary input (i.e., 
“G0G1G2G3”=”1110”). “PS” denotes the present state (G21, 
G22 and G23) and “NS” denotes the next state (G13, G10 and 
G11). 

Table 1 shows the probability of occurrence of 
multiple-step error masking in S27; this probability 
is given by the ratio of the number of input se-
quences causing error masking over the total num-
ber of input sequences. For example, 34 out of the 
total 256 input sequences result in error masking for 
the two-step operation. Note that an N-step error 
masking process means that at least N steps are re-
quired to ensure error masking, i.e. if error masking 
occurs in M steps (M<N), then this is classified as an 
M-step masking and is not considered as a part of 
the N-step masking process.  
Table 1. Simulation results for S27. The probability that mul-
tiple-step error masking occurs is given as the ratio between 
the number of restoring inputs and the total number of inputs. 

Number of 

steps 
1 2 3 4 5 

Error 

masking 

probability 

5/16 34/256 60/4096 92/65536 136/1048576 

Run time (s) 0.0055 0.0159 0.2019 3.7354 72.3031 

Memory 

(MByte) 
0.1 0.3 1.1 2.1 2.8 

    The run time and memory usage of the STM 
analysis are also shown in Table 1. Although the 
memory usage steadily increases with the number of 
error masking steps, the run time changes more 

Fig. 6. Schematic diagram of S27. 
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drastically, because a significantly increased number 
of inputs must be considered in a multiple step 
masking. This makes the analysis of large circuits 
difficult, if not impossible. The complexity issues are 
further discussed in Section 3.5. 
 
3.4 Partial error masking 
    When errors only occur in part of the state bits, 
their effects can be affected by the so-called partial 
error masking. Partial error masking refers to the 
phenomenon in which some of the feedback signals 
are logically masked by specific combinations of 
primary inputs and other feedback signals. Consider 
the sequential circuit model of Fig. 1; if some of the 
present state signals are unreliable, then their error 
effects can be masked by a combination of the other 
present state signals and a primary input. In the STM 
for such a primary input, this means that the rows 
can be re-ordered such that the unreliable state bits 
are next to each other and the corresponding adja-
cent rows lead to the same next state. This process is 
shown in Fig. 8.  

 
Fig. 8.  An STM with the occurrence of partial error masking. In 
𝚻𝐢 (i.e., the STM for the ith input), the third and fourth bits in 
the present state (PS) are masked by the combinations of the 
ith input and the remaining present-state signals, shown in the 
four rows in the middle of the STM. 

The analytical procedure outlined in Section 3.2 is 
applicable also to multiple-step partial error masking; 
however, since only a subset of the state signals are 
of interest, a sub-matrix of each STM is needed in the 
analysis. Similarly, as partial error masking also ap-
plies to output signals, therefore it can be analyzed 
using the output transition matrices of the sequential 
circuit.   
 
3.5 Complexity 
     The analysis using STMs reveals the fundamental 
mechanism of error masking. The mapping relation-

ships given in (16) and (17) can be used for an opti-
mized analysis by leveraging the fact that STMs are 
sparse matrices. Nevertheless, this analysis incurs a 
large computational complexity for finding the re-
storing inputs. Consider the circuit model of Fig. 1 as 
an example; there are a total of 2𝑚 STMs. To find the 
restoring inputs in an N-step process, a total of 
(2𝑚)𝑁 CSTMs need to be examined, thus resulting in 
a computational complexity of at least 𝑂(2𝑚𝑁). This 
computation is of course not scalable for analysing 
large circuits. In the next section, an approach using 
BDDs is proposed for a more efficient analysis. 
 
4. ANALYSIS USING BDDS 
     A binary decision diagram (BDD) is a canonical 
(or unique) representation of a Boolean function [29]. 
It is also efficient in representing a large combinato-
rial set. BDDs have been shown to be effective in 
many applications involving FSMs [24]. In this sec-
tion, a computationally efficient technique employ-
ing BDDs is used for analyzing error masking in se-
quential circuits. The CUDD package has been used 
throughout this study [31]. 
 
4.1 Finding the restoring inputs 
     A BDD is a directed acyclic graph, in which each 
node represents a variable and each edge is labeled 
“True” or “False” (or, “1” or “0”). The edges lead to 
leafs labelled “1” or “0” at the bottom of the graph. 
For the sequential circuit model of Fig. 1, a BDD can 
be generated for every variable (or bit) of the next 
state (and the primary output) as a function of the 
primary inputs and the present state. Therefore, a 
total number of n diagrams must be generated for 
the n variables in the next state. The variables in a 
BDD are usually ordered to find an optimal diagram; 
this ordering is typically done heuristically by rely-
ing on specific features of the system being analyzed 
[30]. To find the restoring inputs, a special ordering 
is imposed such that the variables in the primary 
inputs are first analyzed, followed by those in the 
present state. The BDDs generated for the next state 
of the benchmark circuit S27 are shown in Fig. 9.  
     In a BDD, if there exists a path that starts from the 
root (or a primary input) and reaches a leaf “1” or “0,” 
without traversing through any present state vari-
able, then the primary input dictated by this path is a 
restoring input for this variable in the next state. 
Given the BDDs for the other variables in the next 
state, the restoring inputs for those variables can be 
found in the same way. The restoring inputs for a 
circuit are then obtained as the intersection of the set 
of restoring inputs for each variable in the next state. 
This establishes the conditions for a single-step error 
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masking. For partial error masking, a similar proce-
dure applies when only a subset of the present state 
variables are considered as required by nature of the 
partial masking process.  
Example II: Consider S27 again. Fig. 9(b) shows the 
BDD for the variable G13 in the next state. In this 
BDD, G21 is the only existing present state variable 
and two paths starting from the primary input reach 
the end leafs without traversing G21. These paths 
correspond to the primary inputs G2=”1” and 
G2G1=”01,” or equivalently, G0G1G2G3 =”XX1X” 
and “X10X,” where “X” denotes the don’t-care con-
dition. Similar analysis can be performed for G10 
and G11, and the results are shown in the second 
row of Table 2. The restoring inputs for s27 can then 
be obtained as the intersection of the three sets of 
inputs as shown in the third row of Table 2. This 
confirms the results obtained by the STM analysis in 
Table 1. 
 

                      (a) 

 

                  (b) 

                                         (c) 
Fig. 9. BDDs for the next state of s27: (a) G10, (b) G13, (c) 
G11.  

Table 2. Restoring inputs obtained by the BDD analysis for 
s27; “X” denotes a don’t-care value.  

The next state variable G10 G11 G13 

Restoring inputs for each 

variable 

(G0G1G2G3) 

0XXX 

1XX0 

11X 1 

11XX 

10X0 

XX1X 

X10X 

Restoring inputs for s27 1010, 1100, 1101,1110,1111 

 
4.2 Multiple-step error masking 
     For a multiple-step operation in the temporal do-
main, the so-called time-frame expansion technique 
can be used to convert the operation into a single 
step process, as proposed for soft error analysis of 
sequential circuits in [12]. This is illustrated in Fig. 10. 
For an N-step operation, the present states from the 
second to the Nth steps are treated as internal signals; 
only the initial present state serves as the present 
state of the expanded iterative circuit, while all the 
primary inputs in the N steps become the primary 
inputs of the new circuit. The BDD analysis pro-
posed in the previous subsection can then be used 
for a multiple-step error masking analysis.  

Fig. 10. Time frame expansion of a sequential circuit. The N 
frame expansion of a sequential circuit can be treated as a 
single sequential circuit with x(1), x(2),…,x(N) as inputs, 
y(1), y(2),…,y(N) as outputs, s(0) as the present state and 
s(N) as the next state. 

 
4.3 Simulation results  
The CUDD package [31] was used to generate the 
BDDs from the netlist of a circuit. A customized pro-
gram was then written for extracting the restoring 
inputs from the BDDs. Table 3 shows the simulation 
results for the ISCAS’89 sequential benchmark cir-
cuits for finding (if any) single-step restoring inputs 
using the proposed BDD method. These benchmarks 
have also been used in [14] and [18] for SER analysis. 
A single-step error masking mostly occurs due to the 
presence of a “reset” signal, as observed for s382, 
s400, s444, s526, s820, s832 and s1488. Although 
other single-step restoring inputs are present in 
some circuits (such as s27, as discussed previously, 
and s1196), they do not always exist in a sequential 
circuit; this is generally due to the feature of a se-
quential circuit by which the next state is determined 
by both the primary inputs and the present state. 
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Even though beyond the scope of this paper, don’t-
care values in the logic definition of a sequential cir-
cuit could be assigned through synthesis to imple-
ment restoring inputs, thus avoiding the additional 
implementation of the “reset” signal as well as im-
proving error masking.  
     The runtime and memory usage required by this 
approach are also reported in Table 3. The runtime 
includes the time for generating BDDs and extract-
ing the restoring inputs, while the memory usage is 
only for using the CUDD package to produce the 
BDDs. While the memory usage is relatively stable 
for different circuits, the runtime is largely affected 
by the number of restoring inputs that must be ex-
tracted from the BDDs. Typically, it takes no more 
than a few seconds to generate BDDs for circuits of 
this size.    
Table 3. The number of single-step restoring inputs (No.) for 
ISCAS’89 benchmark circuits found using BDDs with 
runtime (T) and memory usage (M). The runtime includes 
the time for generating the BDDs and extracting the restor-
ing inputs; the memory usage is for the use of the CUDD 
package in producing BDDs.  

Cir-
cuits 

Gates Inputs 
Out-
puts 

FFs No. T (s) 
M 

(MByte) 
s27 10 4 1 3 5 0.8147 1.068 
s382 158 3 6 21 4 1.6324 1.089 
s400 164 3 6 21 4 1.9575 1.089 
s444 181 3 6 21 4 2.1576 1.089 
s526 193 3 6 21 4 1.8003 1.089 
s820 289 18 19 3  217 335.79 1.172 
s832 287 18 19 5  217 389.91 1.172 
s953 395 16 23 29 0 23.098 1.160 

s1196 529 14 14 18 4890 79.965 1.166 
s1488 653 8 19 6 128 15.971 1.145 

      
     To find a multiple-step restoring input, the netlist 
of a time frame extended circuit was first produced. 
Table 4 shows the results of multiple-step error 
masking; the reported runtime and memory usage 
further confirm the efficiency of the proposed BDD 
method. In these cases, the next state of the circuit is 
determined by a multiple clock-cycle state depend-
ency. This process is more complicated than a single-
step masking, as it implies that a time domain over-
head will be incurred in the masking process due to 
the inherent latency. Hence, a designer is confronted 
with a tradeoff assessment of achieving error mask-
ing with a smaller number of cycles (or simply in 
one step) versus additional design complexity in the 
implementation of a sequential circuit.   
     The error masking phenomena observed for some 
circuits, such as the semaphore circuits s382 and s400, 
result from the “reset” signal. This occurs because 

the next state of a semaphore circuit is always de-
termined by its present state unless the circuit is re-
set. Binary counters, whose next state is totally de-
termined by the present state, also exhibit this prop-
erty. Therefore, these features should be considered 
by designers when assessing the reliable operation of 
these types of circuits. 

5. DISCUSSION AND CONCLUSION 
     This paper analyzes the reliable operation of se-
quential circuits in the presence of errors as likely to 
occur at nanometric feature sizes. The major contri-
bution of this paper is the analysis of the phenome-
non (referred to as “error masking”) that affects the 
reliability of a sequential circuit, by utilizing the state 
transition matrices (STMs) and the binary decision 
diagrams (BDDs) in an FSM model. In a sequential 
circuit, restoring inputs allow for the masking of 
feedback signals and thus eliminating the cumula-
tive effect of errors. A partial error masking occurs 
when part of the feedback signals are logically 
masked by a specific combination of the primary 
input and the other feedback signals. 
     In spite of its large computational complexity and 
limited applicability, the STM-based analysis reveals 
the fundamental mechanism of error masking. This 
framework is enhanced by using BDDs to extend the 
proposed analysis to large circuits. Computational 
efficiency can further be improved by using appro-
priate ordering of variables in the construction of 
BDDs, as well as an optimized process for extracting 
the restoring inputs. 
     Simulation results have shown the effectiveness 
of the proposed approach. They also point out a few 
attractive features that albeit beyond the scope of 
this paper, can be exploited to improve the reliable 
operation of sequential circuits. In an implementa-
tion of FSMs, for example, the don’t-care values at 
the inputs can be configured into restoring inputs in 
logic synthesis such that errors in the state variables 
can be corrected during normal operation. Although 
an external reset can be utilized to clear the state 
variables, the use of restoring inputs has the follow-
ing advantages:  
     1) Error masking due to restoring inputs occurs as 
an inherent part of the operation of an FSM without 
incurring an interruption. Therefore, the restored 
state is readily available for the next-step operation 
in the FSM. The time overhead incurred in this proc-
ess is hence significantly reduced.  
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     2) The use of restoring inputs eliminates the need 
for an external reset signal, therefore it simplifies the 
related logic design and reduces the required num-
bers of pins and pads in chip packaging. Subse-
quently, this has an impact on the performance, area 
and cost of a chip [32].  
     3) Multiple-step restoring and partial error mask-
ing allow for more flexibility as well as an extended 
functionality in the operation of an FSM, compared 
to the basic function of a reset.   
     Hence, the proposed error masking is a poten-
tially useful property of FSMs that can be exploited 
for an efficient and robust implementation of se-
quential circuits. 
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