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Abstract—Annealing-based Ising machines have emerged as
high-performance solvers for combinatorial optimization prob-
lems (COPs). As a typical COP with constraints imposed on the
solution, traveling salesman problems (TSPs) are difficult to solve
using conventional methods. To address this challenge, we design
an approximate parallel annealing Ising machine (APAIM) based
on an improved parallel annealing algorithm. In this design,
adders are reused in the local field accumulator units (LAUs) with
half-precision floating-point representation of the coefficients in
the Ising model. The momentum scaling factor is approximated
by a linear, incremental function to save hardware. To improve
the solution quality, a buffer-based energy calculation unit selects
the best solution among the found candidate results in multiple
iterations. Lastly, approximate adders are applied in the design
for improving the speed of accumulation in the LAUs. The design
and synthesis of a 64-spin APAIM show the potential of this
methodology in efficiently solving complicated constrained COPs.

Index Terms—Simulated annealing, parallel annealing, Ising
model, traveling salesman problem.

I. INTRODUCTION

COMBINATORIAL optimization problems (COPs) exist
in a wide spectrum of applications, including artificial in-

telligence, route planning and scheduling [1]. For example, the
optimizations in circuit layout design and routing algorithms
are typical COPs in the semiconductor industry. Many COPs
are nondeterministic polynomial-hard, so computationally in-
tensive to solve. Recently, Ising model-based computers, or
Ising machines, have emerged as efficient solutions for COPs.

The Ising model mathematically describes the ferromag-
netism of a set of magnetic spins [2]. Solving a COP via
an Ising machine is to find the ground state of the energy
[3]. Ising machines function on the principles of physical or
circuit oscillators [4], simulated bifurcation [5] and simulated
annealing (SA) [2] in a Hamiltonian system.

Like thermal annealing in metallurgy, conventional SA is
aimed to converge the energy to a minimum value [2]. How-
ever, it cannot simultaneously update the states of connected
spins, thus resulting in an increased search time. To mitigate
this issue, parallel annealing (PA) leverages a two-layer spin
structure for parallel spin-update [6], [7]. Recently, a PA-based
Ising machine, named STATICA [6], achieved a fast annealing
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for solving unconstrained max-cut problems. However, it is
difficult for this system to escape from local minimum states
when solving constrained COPs due to the limited precision in
coefficients and fluctuations in energy. As a constrained COP, a
traveling salesman problem (TSP) is to find the shortest route
that visits every city exactly once and returns to the origin.
An improved parallel annealing (IPA) exploits an exponential
temperature function with a dynamic offset for efficiently
solving a TSP [7]. For a higher solution quality, however,
it requires a clustering approach to decompose the TSP to
smaller problems, thus incurring additional overhead.

This paper presents the design of an approximate parallel
annealing Ising machine (APAIM) using the IPA to efficiently
solve constrained COPs such as the TSP. Inspired by the
STATICA machine in [6], a general circuit architecture is
developed to implement a 64-spin prototype. Half-precision
floating-point (FP) coefficients are used to obtain an extended
range of numbers for solving complex COPs.

The contributions lie in the following novelties to achieve
a trade-off between solution quality and hardware efficiency:
(1) a new buffer-based energy calculation unit is designed to
improve the solution quality in lieu of the clustering approach,
(2) a linear function approximately implements the momentum
scaling factor in the IPA to reduce the computational complex-
ity, and (3) approximation is applied to less significant bits in
the addition to further save hardware.

The remainder of this paper is organized as follows. Section
II introduces the IPA algorithm for solving TSPs. The circuit
design of the APAIM is discussed in Section III. Section IV
reports the experiment results. Section V concludes the paper.

II. PRELIMINARIES

The Ising model mathematically simulates the formation of
magnetic domains in ferromagnets. The interactions between
the ith and jth spins (Jij) and the external magnetic field (hi)
determines the ith spin state (σi). The Hamiltonian of an Ising
model is given by H = −

∑
i,j Jijσiσj −

∑
i hiσi [1].

An n-city TSP can be formulated as an n2-spin Ising
problem. The Hamiltonian of solving a TSP using the IPA
based on a two-layer structure (HIPA) is given by [7]

HIPA = −
∑

i,k,j,l Jikjlσ
L
ikσ

R
jl − 1

2

∑
i,k hik(σ

L
ik + σR

ik)

+ωik

∑
i,k(1− σL

ikσ
R
ik), (1)

where σL
ik (or σR

jl) is the state of a spin with the index (i, k)
(or (j, l)) in a lattice on the left (or right) layer, Jikjl is the
coupling coefficient between σL

ik and σR
jl, hik is the external
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magnetic field for σL
ik and σR

ik, and ωik is the self-interaction
factor to give the coupling strength between σL

ik and σR
ik.

Jikjl and hik are related to the route distance between cities
and parameters to balance the weights between the objective
function and constraints.

As shown in Algorithm 1, the state of a spin is randomly
initialized to “−1” or “+1”, the temperature (T ) for annealing
is initialized to a relatively large value, and the dynamic offset
(∆T ) for increasing the temperature is initialized to “0” (Line
1). Spins in the left layer are updated when the current iteration
(s) is odd; otherwise, the spins in the right layer are updated
(Lines 3-5). First, in each iteration, T and ωik are recalculated.
ωik is set to “0” with the probability p or decreased to c ·ωik

with the probability 1−p, where p is the dropout rate and c is
the momentum scaling factor (Line 9). The local field (lfik)
for obtaining the variation (∆Eik) depends on Jikjl and hik

(Line 10). ∆Eik indicates the change in energy when σik is
flipped (Line 11). Subsequently, the spin-flip probability (Pik)
is calculated using the Metropolis algorithm [8] (Line 12).
After each iteration, for introducing some randomness to help
the system jump out of the local minima, ∆T will increase by
an increment value (Tinc) when no spin is flipped; otherwise,
∆T will be reset to “0” (Lines 17-19). At the end of a search
(i.e., reaching the predefined number of iterations smax), the
spin configuration provides the final solution.

III. THE DESIGN OF THE APAIM

A. The Architecture

Fig. 1 shows the architecture of the APAIM with N(= n2)
spins, inspired by the STATICA design in [6]. It consists
of N local field accumulator units (LAUs), N spin update
units (SUUs), a delta-driven simultaneous spin update unit
(DDSS), a controller, an annealing schedule unit (ASU), N
self-interaction generating units (SIGUs), N/2 random number
generators (RNGs), a solution update unit (SOUU), and a
memory block. The 2-D model in (1) is implemented as a 1-D
Ising model for efficiency by converting σik to σ(i−1)·n+k.

The local field (lfi), dropout rate (p), momentum scaling
factor times self-interaction (c · ωi) for computing ∆Ei (Line
11 in Algorithm 1), and dynamic offset (∆T ) (Line 17) are
calculated in the LAUs. The SIGUs temporarily set ωi to “0”
with probability p (Line 9). The SUUs use random numbers
from the RNGs, lfi from the LAUs, and ωi from the SIGUs to
compute the new spin states (Lines 11 to 14). It outputs ∆i to
indicate whether the ith spin is flipped. Then, lfi ·σi values are
prepared for the total energy calculation. The states of spins on
the left and right layers, denoted by σL

i and σR
i , respectively,

can be represented by σnew
i and σold

i , where σnew
i denotes

σL
i (or σR

i ) and σold
i denotes σR

i (or σL
i ) for updating σL

i

(or σR
i ). The sigmas and ∆s are sent to the DDSS to obtain

index and σold
j , while the sigmas and energies are used for

the solution update. The index is sent to the memory block to
select one from {2·J0,j , 2·J1,j , ..., 2·JN−1,j}. These J values
and σold

j are used in the LAUs for new lfi calculation (Line
10). Finally, the controller determines the system operation by
coordinating the circuit timing with an instruction signal.

Algorithm 1 Improved Parallel Annealing for TSPs [7]
1: Initialize spin configurations, T , ∆T
2: for s = 1 to smax do
3: if s is odd then

A ⇐ L,B ⇐ R
4: else

A ⇐ R,B ⇐ L
5: end if
6: Update p and c, T ⇐ (T +∆T ) · rs−1

7: for i = 1 to n do
8: for k = 1 to n do
9: ωik ⇐ 0 with p, or ωik ⇐ c · ωik with 1− p

10: lfik ⇐ (hik

2 +
∑

j,l Jikjlσ
B
jl)

11: ∆Eik ⇐ (2lfikσ
A
ik + 2ωikσ

A
ikσ

B
ik)

12: Pik ⇐ min{1, exp(−∆Eik/Ts)}
13: if Pik > rand then

σA
ik ⇐ −σA

ik

14: end if
15: end for
16: end for
17: if no spin is flipped then

∆T ⇐ ∆T + Tinc

18: else
∆T ⇐ 0

19: end if
20: end for

B. A Local Field Accumulator (LAU)

A LAU is newly designed for reusing its adder. ∆Ei is
computed as ∆Ei = 2lfiσ

new
i +2ωi for simplicity in hardware

(Line 11) [6]. The LAU calculates the local field lfi as
hi

2 +
∑

j Jijσ
old
j . This unit is idle when the other units are

working. Hence, it can be utilized to accumulate other values
in the system, including the dropout rate p(= 0, 0.5− s

2smax
),

momentum scaling factor times self-interaction c · ωi where
c =

√
s

smax
, and dynamic offset ∆T . To save the area of the

circuit, c is approximated by a linear function s
smax

.
As shown in Fig. 2(a), the LAU consists of a multiplier,

four registers, two multiplexers, and a demultiplexer. Only one
LAU requires four registers in a system and others just need
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Fig. 1. The architecture of the APAIM (adapted from [6]).
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Fig. 2. (a) The local field accumulator unit (LAU), and (b) The self-interaction
generating unit (SIGU). In the LAU, the multiplication only performs ×(+1)
or ×(−1), where +1 and −1 are represented by 1 and 0, respectively. The
multiplication with −1 is implemented by an inverter that flips the sign bit of
input. Then, a multiplexer determines whether ×(+1) or ×(−1) is performed
by taking the value of σold

j as the selection signal.

two, as p and ∆T are two variables shared among all spins.
The demultiplexer and two multiplexers share one select signal
(se), while four different signals control four registers. When
the LAU works for the local field accumulation, mode = 1.
se selects 2 · Jij and σold

j is multiplied with 2 · Jij . Then, the
adder accumulates the product to the value in the register of
lf . Furthermore, the multiplication unit has a mode input; the
input from the multiplexer is the output without any change
when mode = 0. The spin states are initialized to “−1”. Thus,
the initial accumulation result of the local field and external
field (with all spin states being “−1”) is stored in the register.
The product from the multiplier is multiplied by 2 as energy
is increased or decreased by 2·Jij ·σold

j when σold
j is changed.

Therefore, 2 · Jij is stored in the memory block.

C. A Self-Interaction Generating Unit (SIGU)

The newly designed SIGU generates the new self-interaction
factor (Line 9), as shown in Fig. 2(b). It consists of a
comparator and a two-to-one multiplexer. The ωi is multiplied
with the value of c. Then, the output of a SIGU is zero with
a probability p, or c · ωi with the probability (1− p).

D. A Solution Update Unit (SOUU)

An SOUU is newly designed to improve the solution quality.
It selects a solution with the lowest total energy of the Ising
model among the found results. Calculating the energy at every
iteration is inefficient. Moreover, feasible solutions only show
up at local minima or the ground state for TSPs. Therefore, the
SOUU only calculates the energy when the Ising machine is
stuck in a local minimum. It consists of a candidate generator,
an energy calculator and an update unit, as shown in Fig. 3.

In the candidate generator, the noflip signal pulses every
clock cycle if there is no change in the spins’ configuration.
Then, an RS flip-flop and an AND gate are used to generate
a candidate signal that only pulses once. The buffer is for
making the candidate hold for a delay period.
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Fig. 3. The solution update unit (SOUU).

Fig. 4 shows a structure of the energy calculator. A 64-
spin Ising machine requires 64 storage blocks and each of
them uses 16 16-bit registers. It stores up to 16 candidates for
accumulation and all registers are controlled by the candidate
signal. In each storage block, a read address signal deter-
mines which candidate is output to the accumulator, and a
write address signal determines which new candidate data
are written into which registers. The accum done signal
becomes 1 when count = 64. An annealing en signal
changes from 1 to 0 when all data in the 16 registers have
not been accumulated but a new candidate signal arrives.
The Ising machine waits until storage space is released and
then continues the annealing process. An accum en signal
changes from 1 to 0 when all data in the 16 registers have
been accumulated but no new candidate signal arrives. The
Ising machine waits for the next rising edge of candidate to
continue the accumulation process.

A finite state machine (FSM) is developed to realize the
change of annealing en and accum en. In the initial state
1, the FSM waits for candidate = 1, and then moves to state2.
In state 2, annealing and accumulation continue working until
w addr − 15 = r addr (w addr represents write address
and r addr represents read address) and candidate = 1.
In state 3, the FSM waits for the accumulation to be finished.
When an accumulation is finished (accum done = 1), the
FSM moves back to state 2. When all data in the registers have
been accumulated (i.e., w addr = r addr), the FSM moves
back to state 1. Another similar storage array for energies is
used to store sigmas candidate.

In the update unit, the new energy energy candidate is
compared with the lowest energy the Ising machine found
so far. If the new energy is lower, the lowest energy is
updated by energy candidate and the solution is updated
by the corresponding sigmas’ states (sigmas candidate).
Otherwise, the lowest energy and the solution do not change.
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Approximation of the Momentum Scaling Factor

The momentum scaling factor, c =
√

s
smax

, is approxi-
mately realized by a linear function c = s

smax
for hardware
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Fig. 5. The comparison of travel distances between applying a nonlinear
(old) or linear (new) momentum scaling factor. (burma14: a 14-city TSP,
ulysses16: a 16-city TSP, and ulysses22: a 22-city TSP [9])

efficiency. In this way, the adders in LAUs are reused to
calculate c · ωi in each iteration because the increment for
state update is constant. Fig. 5 shows the effect of applying a
linear and nonlinear momentum scaling factor on the solution
quality, evaluated by the average (Ave), the maximum (Max),
the minimum (Min), and the standard deviation (Std) of
the obtained route distances. Using linear approximation for
implementing c results in increases of 1.6%, 1.9% and 0.7%
on Ave, 15.2%, 13.3% and 9.7% on Std, respectively, for the
benchmark datasets burma14, ulysses16 and ulysses22.

B. Approximation for Addition

To solve complicated COPs, we consider a more extensive
range for the coefficients using a 16-bit FP number represen-
tation. However, the FP arithmetic computation is expensive
to implement in hardware. Therefore, the approximation tech-
nique in the lower-part-OR adder (LOA) [10] and the trunca-
tion technique are considered in the mantissa adder to simplify
and accelerate the accumulation. The k less significant bits
(LSBs) in the mantissa adder are approximated by truncating l
LSBs and using OR gates to process the remaining (k−l) bits,
resulting in a lower-part-OR and truncated adder (LOTA). The
circuit area for 64 LAUs without approximation is 78674.4
µm2. When l = 0 and k increases by 1, this circuit area is
decreased by approximately 166.5 µm2. When l = k, the area
for 64 LAUs diminishes by approximately 675.1 µm2 with
every increment of 1 in the value of l. As a first prototype,
a 64-spin APAIM is implemented to solve an 8-city TSP
with distances between each pair of cities scaled to [0, 1]. We
further introduce a metric, the violation rate (V R), to indicate
the probability of getting a result that does not conform to
constraints. Although not shown, due to space limitation, our
experiments indicate that with the increase of k, it is more
likely to find an inferior solution. When l increases from 0 to
4 (with k = l here), the Ave and Std increase, but still with

TABLE I
THE CIRCUIT MEASUREMENTS OF THE APAIM

Ising Machines SpinPrecisionArea (mm2)Power (mW )Delay (ns)

APAIM
k, l = 0 64 16-bit 6.300 41.289 3.97

k = 4, l = 3 64 16-bit 6.269 41.130 3.84
k = 5, l = 3 64 16-bit 6.262 41.108 3.82

STATICA [6] 512 5-bit 12 629 -
-: not reported. The STATICA was designed to solve the max-cut problem
and synthesized using a 65-nm technology, but not for constrained COPs
such as the TSP.

an extremely low V R. l = 3 is selected to guarantee a high
probability that the obtained solution meets the constraints.
For l = 3, the V R significantly increases when k > 5. Thus,
3 < k ≤ 5 and l = 3 are further considered in the APAIM.
Note that no other solutions of TSPs are provided by a PA
machine or available for comparison.

C. Circuit Evaluation

The 64-spin APAIM with 16-bit FP coefficients is imple-
mented with or without approximate adders. Simulation results
are obtained by synthesizing circuits using the Synopsys
Design Compiler. A CMOS 28 nm technology is applied
with a supply voltage of 1.0 V, a temperature of 25◦C, and
a clock frequency of 200 MHz. The circuit measurements
are presented in Table I (for STATICA too). The use of
approximate adders, i.e., the LOTAs, results in a reduction in
area, power, and delay. It indicates that the proposed APAIM
performs computation with a high precision and maintains
hardware efficiency. Thus, it has the potential to achieve a
trade-off between solution quality and hardware efficiency in
solving complicated constrained COPs.

V. CONCLUSION

In this paper, a new Ising machine, named an APAIM,
is designed for solving TSPs as a typical class of COPs.
Various computation units are designed and approximately
implemented to reduce circuit complexity with only a marginal
reduction in solution quality. A prototype of the APAIM is
developed and synthesized for a system of 64 spins with 16-
bit FP coefficients. As a first PA machine able to solve the
TSP, the APAIM achieves a relatively high precision in the
model coefficients and is potentially scalable for solving more
complex problems. A multi-chip architecture might be useful
on this regard and will be investigated in future work.
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