
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Design of Highly-Accurate and
Hardware-Efficient Spiking Neural Networks

Chengcheng Tang, Student Member, IEEE, and Jie Han, Senior Member, IEEE,

Abstract—Spiking neural networks (SNNs) have emerged as a
promising alternative to conventional artificial neural networks
(ANNs) for energy efficient design. The rate encoded computation
in SNNs utilizes a number of spikes in a time window to
encode information. In a similar but different scheme, stochastic
computing (SC) encodes binary numbers into and operates on
random binary bit streams. In this article, we first propose a
hardware-efficient design of stochastic SNNs that attains a high
accuracy. As a network becomes more complex or the number
of neurons increases, memory usage tends to grow exponentially.
Inspired by the notion of binarized neural networks (BNNs), we
further propose the design of a weight-binarized SNN (WB-SNN)
to reduce the stringent requirement in memory usage in SNNs.
Both designs take advantage of a priority encoder to transform
the spikes between layers of neurons into index-based signals. In
this way, it mitigates the issue of requiring significant hardware
resources for a relatively low information density. Additionally, a
WB-SNN based convolutional neural network (CNN) is designed
for the recognition task of larger datasets. An implementation
on field programmable gate arrays (FPGAs) for the Modified
National Institute of Standards and Technology (MNIST) image
recognition dataset shows that the stochastic SNN design achieves
a higher accuracy with smaller hardware compared to other
SNNs. Validated by using a multi-layer-perceptron and a CNN
on the MNIST and CIFAR-10 datasets, respectively, the WB-
SNN achieves a significant saving in memory with only a limited
accuracy loss compared with its SNN and BNN counterparts.

Index Terms—Spiking neural networks (SNNs), priority en-
coder, binarized weights, field programmable gate arrays (FP-
GAs), stochastic computing, convolutional neural networks
(CNNs).

I. INTRODUCTION

INSPIRED by neuroscience, a simplified model of the
brain consisting of neurons and synapses proves effective

in tackling difficult computing tasks and machine learning
problems [1]. This simplified computational model as an
attempt to exploit the structure of the human brain provides
a basis for the so-called artificial neural networks (ANNs). In
an ANN, the inputs to each neuron carry signals encoding the
information of external data in a form of feature values, such
as the pixels in an image [2]. The weights on different inputs
mimic excitatory or inhibitory activations from other neurons.
In each neuron, a weighted sum of the inputs is processed
through an activation function and is produced as the output
of the neuron. This output, also known as activation [3], acts
as the inputs of other neurons.

Received 6 September 2024; revised 23 November 2024 and 27 February
2025; accepted 24 April 2025. The review of this article was arranged by
Associate Editor Yang Yi. (Corresponding author: Jie Han.) The authors are
with the Department of Electrical and Computer Engineering, the University
of Alberta, Edmonton, AB T6G 1H9, Canada.

Digital Object Identifier 10.1109/TCASAI.2025.3569509.

Spiking neural networks (SNNs) process information or data
transmitted from neurons to neurons through synapses. It has
a significant potential to save energy and hardware usage
compared with conventional ANNs [4]. SNNs, as its name
implies, utilize spikes other than binary numbers to produce
interpretable computation results. The encoding schemes, such
as firing rate (or frequency) [5]- [6] or the firing latency (or
order), enable the operation of SNNs to be event-driven, that
is, neurons only have to update their states upon the arrival
of spikes, thus saving energy. Another merit of spike-based
computation is its potential to decompose costly arithmetic
operations into repetitive simple tasks. One example is the
neuromorphic chip, TrueNorth, which contains one million
neurons working in parallel and each neuron uses a random
number generator, an integrator and a threshold unit to instan-
tiate the augmented Integrate-and-Fire (IF) model [7] without
using multipliers. In addition, with the rate coding scheme, the
commonly used IF model in SNNs is equivalent to the rectified
linear unit (ReLU) function in ANNs [9]. This equivalence
makes converting ANNs into SNNs very straightforward with
nearly no accuracy loss when a proper weight and threshold
balancing strategy is adopted [8]- [9].

Although SNNs are usually energy-efficient, they are not
hardware friendly because of the large number of neurons
and connecting synapses in the network. When implemented
on field programmable gate arrays (FPGAs), a significant
challenge arises from the limited availability of block-random-
access-memories (BRAMs). This limitation constrains the
number of neurons and synapses that can be implemented,
because large-scale SNNs require extensive memory to store
substantial synaptic weight matrices [10]. Multi-Layer Percep-
tron (MLP) models feature fully connected nodes, but they can
pose scalability issues as the image resolution increases. In a
fully connected (FC) layer, each neuron is connected via a
synapse with every neuron in the previous layer. When the
number of neurons in consecutive layers is approximately N ,
the number of synapses grows quadratically with respect to
the number of neurons per layer, i.e., O(N2), which makes it
costly in implementing large neural networks. Simulating and
implementing SNNs usually require more computational re-
sources than ANNs [11]. In addition, SNNs perform better on
specifically designed neuromorphic hardware such as IBM’s
TrueNorth and Intel’s Loihi, which are not as widely available
as general computing platforms such as central processing
units (CPUs) and graphics processing units (GPUs) [1]. These
have become the major limitations in many SNN designs,
prompting researchers to seek improvements.

Stochastic Computing (SC) operates on randomly gener-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

ated binary bit sequences, wherein the probability of a ‘1’
is employed to encode a number [12]. Utilizing the same
input interpretation as in SC, we obtain what are known as
stochastic SNNs. In this paper, a highly accurate stochastic
SNN is designed with two unique features: a shared random
number generator (RNG) for all input neurons, and reduced
connections to subsequent neurons through a priority encoder
(PE), thereby significantly saving hardware. To resolve the
problem that several spikes may arrive at the same clock
cycle in a hidden layer, a First-in, First-out (FIFO) and a
Priority Resolving Circuit (PRC) are utilized so that no spike
is discarded in the computation.

Fully-connected neural networks (FCNNs) consisting of an
input layer, two hidden layers and an output layer are used for
verification. The input layer converts the input data into spike
trains using the same encoding method as in SC, but using only
one RNG, so reducing the inefficiencies of traditional methods
that require an RNG for each input. The output layer converts
data back into the binary format and the classification result is
determined by the neuron with the largest membrane voltage
value. A binary tree (BT) method is employed to perform
the comparison in this layer. Due to the inherent hardware
limitations in FPGAs, the network architectures that can be
implemented tend to be constrained in scale. This restricts the
complexity of tasks that SNNs can perform on FPGAs, thus
affecting applications in more complex scenarios.

As another efficient model, binarized neural networks
(BNNs) employ binary values (+1 and −1) for both weights
and activations [14], so the key arithmetic operation, multiply-
and-accumulate can be implemented by a 1-bit XNOR-count
operation [15]. Such simplifications enable considerable mem-
ory savings without incurring a significant loss in accuracy
[15]. Inspired by the notions of BNNs, we further propose
a weight binarized SNN (WB-SNN) by introducing binarized
weights (+1 and −1) into SNNs. It differs from the so-called
binary weight SNN (BW-SNN) [16], where the weights are
−1, 0, and +1. In this scheme, a sign extension of the weights
is required, thus incurring additional hardware costs. However,
the weights in the proposed WB-SNNs are truly binary in +1
and −1 that can respectively be stored as 1 and 0 in the mem-
ory. Then, the binary weights can be accumulated by using
counters during the IF process. In [17], a weight-threshold
conversion method is utilized during the conversion of high-
precision trained convolutional neural networks (CNNs) into
SNNs with binary weights. In the WB-SNN model, however,
binary weights are directly used and obtained in the training
process. In [18], a method is presented for training SNNs
with binary weights using Bayesian learning. However, it is
focused on the software implementation of training without
reaching a high accuracy. Instead, the efficiency of the WB-
SNN is validated and enhanced by innovative hardware design,
as discussed previously and implemented in FPGAs as a proof
of concept.

Unlike MLPs, for which the input image is typically flat-
tened into a one-dimensional vector, leading to a loss of
spatial hierarchy, CNNs are designed to preserve and exploit
the spatial hierarchy. This makes CNNs more effective for
recognition tasks, especially in large datasets, where spatial

relationships are important. In this work, a spiking CNN model
is specifically designed in hardware for implementing the WB-
SNN. It is shown that the WB-SNN is scalable and capable
of working with large networks and datasets.

Some preliminary results have been reported in [19] and
[20]. In [19], each result in the final layer was compared
with others to determine the digit being recognized. However,
the use of additional comparators resulted in unnecessary
hardware overhead. In this paper, a binary tree method is
implemented in hardware to improve the comparison process
in the stochastic SNN design. In [20], only FCNNs are
considered for the design of WB-SNNs, whereas in this paper,
CNNs are designed to show the hardware efficiency of WB-
SNNs in more complex networks and larger datasets. To the
best of our knowledge, this is the first design of a WB-SNN-
based CNN with a detailed hardware architecture.

A. Major Contributions

1) Contribution 1: A design framework for stochastic
SNNs that utilizes only one RNG in the input layer. The
number of connections to each neuron in the subsequent
layer is reduced from N to log2N by using a PE. A
novel binary tree method compares values in the output
layer and obtains the recognition result with significantly
enhanced hardware efficiency.

2) Contribution 2: Substantially reduced memory usage in
the WB-SNNs due to the binary weights. Additionally,
the XNOR-count operation in BNNs is replaced by PEs
shared among all neurons in one layer for an even higher
hardware efficiency. Different from the previous design
of a simplistic WB-SNN based MLP, a WB-SNN-based
CNN is specifically designed and tailored for handling
recognition tasks with larger datasets.

3) Contribution 3: Implemented on FPGAs and verified
using the Modified National Institute of Standards and
Technology (MNIST) and CIFAR-10 datasets, the pro-
posed designs show significant hardware savings over
some state-of-the-art designs.

II. PRELIMINARIES

A. Spiking Neural Networks (SNNs)

As illustrated in Fig. 1, SNNs imitate the bioelectric activ-
ities observed in biological systems. In an SNN, a neuron
receives several channels of input spike trains from other
neurons in the former layer through its synapses [12]. Each
incoming spike will change the internal membrane potential
of the neuron by an amount determined by the amplitude of
the synapse weight. When this potential exceeds a predefined
threshold Vth, an output spike is generated and the potential
value is reset. The structure of SNNs is composed of several
layers of such neurons that rely on these spikes to communi-
cate and transmit information.

Among various neuron models, each of which uses a
different function to describe the dynamics of neuron potential,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Synapse

Axon

Soma

Dendrites

Neuron
W1

W2

W3

W4

W5

S1

S2

S3

S4

S5

Σ
Vth

Membrane

Spike 

Train

>

Vth

VMembrane

t t
Integrate Fire

SP

(a)

(b)

Fig. 1. Analogue between (a) a biological neuron and (b) a neuron in
stochastic SNNs (with the spike train generation mechanism in the Integrate-
and-Fire process).

the Integrate-and-Fire (IF) model [4] is the simplest and most
commonly used one. Its behavior can be expressed as

vi =

∫ ∑
j

Wi,j · Sj(t)dt, (1)

where vi is the internal membrane potential of neuron i in
one layer and Wi,j is the weight for the synaptic connection
between neuron i in the current layer and neuron j in the
previous layer. Sj(t) is an impulse function given by a spike
train of ‘0’s and ‘1’s. This equation essentially states that the
membrane potential vi is the integral over (continuous) time
of the weighted sum of incoming spikes. In its discrete form,
this relationship is described by [4]:

Vi (t+ 1) = Vi (t) +
∑
j

Wij · Sj (t) , (2)

where Vi (t+ 1) and Vi (t) are the membrane potentials of
neuron i at the next time step (t+1) and the current time step
(t), respectively.

∑
j Wij · Sj (t) is the sum of the products

of the synaptic weight Wij between neuron j in the previous
layer and neuron i, and the spike output Sj from neuron j at
time t.

Although there are graded spikes (with either single- or
multi-level magnitudes) in certain neuromorphic hardware like
Loihi-2, SNNs typically utilize binary spikes to mimic the
way biological neurons operate [13]. Thus, in this work, the
computation in SNNs is rather simple because the neuron is
activated by event-based spike trains so that the multiplication
is transformed into integration. Therefore, no multiplier is
needed in the hardware implementation. The variation in

the neuron potential can be realized by an integrator that
accumulates the synaptic weights on an event-triggered basis.
It can also be viewed that SNNs use binarization in the neuron
activation while the weight values are in the floating-point
format. Moving one step forward toward binarizing both the
weights and activations of neurons will lead to (fully) binarized
SNNs. The computation is anticipated to be even simpler.

B. Binarized Neural Networks (BNNs)

The idea of BNNs was proposed in [15] as an effort to
replace arithmetic operations with bit-wise operations. Before
that, many efforts were made to reduce the precision of
weights and it has been shown that the number of neurons is
more important than the bit-width of weights [22]. In a BNN,
the weights and activations are constrained to binary values,
such as −1 and +1. Therefore, a single bit can be used to
quantize both synaptic weights and neuron activations. For
example: the bit value 1 represents +1 and 0 indicates −1.
Thus, the multiplication is equivalent to an XNOR operation,
as shown in Table I [14].

TABLE I
EQUIVALENCE OF MULTIPLICATION AND XNOR OPERATION IN BNNS

Multiplication Results XNOR Results
-1 -1 1 0 0 1
-1 1 -1 0 1 0
1 -1 -1 1 0 0
1 1 1 1 1 1

In order to convert the real values in ANNs into this
binary representation, several functions have been utilized,
including the deterministic binarization function and stochastic
binarization function [15]. The first one is known as Sign(x)
for the binarized weight or activation, xb, given by,

xb = Sign(x) =

{
−1 x < 0,
+1 otherwise,

(3)

where x is a real-valued variable as either a weight or an
activation. In stochastic binarization, the variables get −1 or
+1 depending on a probability determined by the hard sigmoid
function σ(x),

σ(x) = min(1,max(0,
x+ 1

2
)). (4)

The stochastic binarization needs to generate random bits
to simulate probabilistic events, which would incur additional
hardware. Therefore, we use the deterministic function to im-
plement the binarization. However, the stochastic binarization
function is used in the training process to approximate the
derivative of binarization during back propagation.

III. SYNERGY BETWEEN SNNS AND BNNS

Integrating the concept of binarization in BNNs into SNNs
can potentially reduce the significant memory demands by
limiting all weights and neuron activations to single bits. Con-
sidering that there is no negative spike in biological neurons,
we choose to encode these spikes as 0 and 1. Additionally,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

weights are encoded as +1 and −1 to represent excitatory and
inhibitory synapses, respectively. However, the neuron activa-
tions are encoded into 0/1 to keep the event-driven feature
of SNNs. Both encodings can be instantiated by just one bit
in hardware, although they implement different meanings, as
will be shown in the following sections. Under such encoding
schemes, some of the commonly used techniques in ANNs
can find their analogies in SNNs.

1) Batch Normalization + Binarization vs. IF neuron
model: Batch normalization is a technique used in neural net-
works to standardize the inputs to a layer for each mini-batch,
which is a subset of the training dataset used to train a model.
It helps reduce the internal covariate shift and accelerate the
training process [27], so it stabilizes the learning process and
is considered essential in the training and inference of ANNs.
The internal covariate shift here refers to a phenomenon in
deep learning, in which the distribution of each layer’s inputs
changes during training; it may result in some issues, such as
a slow convergence rate. For the IF neuron model, which deals
with membrane potentials and spikes rather than continuous
activation functions, the approach would focus on normalizing
the membrane potentials across a network or batch of neurons.
For a minimal batch of input activation values Vi, the basic
equation for batch normalization is:

yi =
Vi − V̄√
σ2 + ϵ

· γ + β, (5)

where V̄ and σ2 are the mean and variance of the inputs, ϵ is a
small constant value to avoid division by zero, γ and β are re-
scaling and bias parameters that are learned during the training
process, and yi is the batch normalized input activation value.
Once the training is completed, all these values stay constant
in the inference process.

As per the encoding schemes considered for the proposed
designs, all neuron activations are binarized to 0 or 1, i.e.,

ybi =

{
1, (yi > 0)
0, (yi ≤ 0)

. (6)

Considering that all the variables in (5) take constant values
during inference, we can merge the batch normalization and
binarization into one step [27], such that the neuron activation
is determined by

ybi =

{
1, (Vi > Vth)
0, (Vi ≤ Vth)

, (7)

where Vth is also a constant. This process is similar to the
IF neuron model in SNNs: whenever the membrane potential
reaches the threshold Vth, an output spike is generated. When
incorporating batch normalization in SNNs, the threshold Vth

may be adapted based on the normalized membrane potential
[6]. Therefore, it is determined by the following equations:

Vth = σbat · γ + β, (8)

σbat =
V̄√

σ2 + ϵ
(9)

where σbat represents the mini-batch standard deviation of the
membrane potential.

2) 0/1 Encoded Spikes vs. Dropout: Dropout is an effective
approach to prevent a neural network from over-fitting [28]. It
is done by randomly choosing a fraction of the neuron nodes
and removing them from the network. The dropped nodes,
along with their weights, are temporarily excluded during
both forward and backward propagation. This random selec-
tion ensures that all neuron nodes are eventually considered
and updated after a sufficient number of training iterations.
Dropout helps prevent overfitting and ensures that the network
does not become overly reliant on any specific node, thereby
making the network more robust. Under the proposed scheme
of using 0/1 encoded spikes, there is always a portion of
neurons that generate no spike, i.e., remain inactive. These
inactive neurons vary case by case for different inputs, so they
can be considered as arbitrarily picked, similar to the working
mechanism of dropout. Another benefit of this similarity is
the sparsity that is brought into the regime as the inactive
neurons will take no part in computation, resulting in a reduced
computation cost.

Thus, the use of 0/1 encoded spikes aligns with the concept
of dropout as applied in computational practice. While dropout
improves the robustness of a neural network by making it
less sensitive to specific weights of neurons, the inherent
sparsity and randomness of spiking in SNNs can help the
network avoid overfitting to noise in the training data, therefore
enhancing the network’s robustness and efficiency. On the
other hand, the neuron activations are encoded to −1 or 1 in
BNNs. Hence, all neurons are considered active and must be
taken into account, which results in a more costly computation
flow.

IV. A DESIGN FRAMEWORK FOR STOCHASTIC SNNS

Leveraging the similarities between the encoding schemes
of SNNs and SC, we propose an efficient hardware design
for stochastic SNNs. To illustrate it, fully-connected neural
networks are considered as they are versatile and widely used
in many applications. The key components and the detailed
design of each layer are discussed as follows.

A. Hardware Design of a PE with a PRC

As a basic and key unit used in the proposed SNN designs,
a PE encodes the index of an activated bit with the highest
priority among all inputs. In this way, the index of an active
neuron (i.e., a neuron with an output spike) is identified in
a group of neurons. The schematic and truth table of an 8-
input priority encoder are shown in Fig. 2. Reserved for the
case when there is no input spike, the least significant input
D0 is optional with no impact on the output. Thus, it is not
instantiated in hardware. One useful feature of a PE is its
ability to construct a large PE using smaller ones. Fig. 2(c)
shows how a 16-input PE is constructed using two 4-input
PEs. This feature provides considerable flexibility to make it
fit into neuron layers of different sizes [20].

To locate all the input channels with logic-high signals, a
PE works with a PRC [25], so the found indexes are sent to
the output one by one. A PRC is designed to work with the
PE, as shown in Fig. 3. Its main function is to avoid repeated



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

(a) (b)

PE4

D12-15

D8-11

D4-7

D0-3

MUX
4

2

4

Q0-3

(c)

OR

OR

OR

OR

PE4 2

Concat

4

4

4

4

Q3

Q2

Q0

Q1

PE4

Q1

Q0

D3

D2

D1

D0

D0D1D2D3

x000
x100
xx10
xxx1

Q1 Q0

0 0
0 1
1 0
1 1

Fig. 2. (a) An 4 to 2 priority encoder (PE4). (b) The truth table. (c) A 16 to
4 priority encoder (PE16) constructed by two PE4s.

encoding of the same activated input bit. When the PE finishes
encoding the bit with the highest priority, the PRC clears this
bit so that the PE can move on to encode the bit with the next
highest priority.

An 8-bit PRC design is shown in Fig. 3, where load, Q, and
E are the inputs. Q is the output from the PE, indicating the
index of the highest priority bit. E is the signal that captures
spike pattern at one time step. The output D is sent to the
PE aligned with this PRC. AS shown in Fig. 3, when the
input signal load is ‘1’, indicating that this PRC is active,
S1 becomes ‘1’. The other selection signal, S0, for each
multiplexer in the PRC, is the output of the demultiplexer that
processes the PE’s output Q. Specifically, S0 is set to ‘1’ for
the index corresponding to the current highest priority. Thus,
if S0 = 0, the output of this multiplexer will retain its previous
value. Otherwise, the output of this multiplexer will be set to
‘0’, indicating that the PRC clears the bit with the highest
priority. In this manner, the ‘1’ corresponding to the current
highest priority is cleared. Additionally, if load is ‘0’, then D
will be equal to the input E, indicating that this PRC is inactive
under this circumstance. The truth table of these multiplexers
is provided in Table II. For example, consider a spike pattern
E represented as “11000001”, where E7, E6, and E0 are ‘1’.
When the load signal is ‘1’, indicating that the PRC is active,
the signal Q from the PE outputs the index of the highest
priority bit. In this scenario, Q = 7. Consequently, the S0 for
the topmost multiplexer is set to ‘1’, while it remains ‘0’ for
the others. With S1S0 = 11, this multiplexer for E7 performs
the selection operation, resulting in the output D7 being ‘0’. In
this manner, the current priority bit is cleared, and the signal
D, in which now the priority bit is D6, is sent to the PE to
determine the index of this priority bit. This process continues
until all the ‘1’s in the spike pattern E has been processed.

Since the output of a PE is in the binary format, the bit width

of the signal is reduced to log2N from an N -channel input.
When the PE is placed between two layers of neurons in a
network, its output can directly be utilized to find the memory
location and thus, the signal width is also reduced from N
to log2N . The benefits include an increased throughput, and
reduced signal width, circuit size and power consumption.
Although it is important to consider the potential increase in
the critical path length, this increase is not significant in this
design because the PE is not very large.

TABLE II
TRUTH TABLE FOR THE MULTIPLEXERS IN THE PRC

S1S0 11 10 01 00
Output Value 0 D E E

De-

MUX

load

Q

E

Reg

‘0’

MUX
E7

S1
S0

8

8

Reg

MUX
E6

S1
S0

Reg

MUX
E0

S1
S0

D7

D6

D0

‘0’

‘0’

Fig. 3. An 8-bit PRC design.

B. Design of the Input and Hidden Layers

1) The Input Layer: The input layer takes external data,
such as image pixel values, and then converts them into spike
trains. In a spike train, each bit is generated by comparing
the numbers from an RNG and an input channel, in a similar
way to how a stochastic sequence is generated in SC. The
sequence produced follows a Poisson distribution, a basic
model of neuronal firing [23]. However, this model is not
optimal for hardware implementation, as it requires one RNG
for each input. One way to address this problem is to use the
incremental accumulation of the input signal to map uniformly
distributed random numbers to a cumulative distributed func-
tion (CDF) [24]. The input data, xi, are placed on an axis
where the interval lengths, corresponding to the data values,
are accumulated into cumulative value Fi. To clarify, Fi is
equal to xi added to Fi−1, as shown as the inputs in Fig. 4
(a). For example, if x1 = 1, x2 = 2 and x3 = 3, then F1 = 1,
F2 = 3 and F3 = 6. Then a random number would always
fall into one of these intervals, namely (0, 1], (1, 3], (3, 6].
The probability that the random number falls into an interval is
proportional to the value in the input data with the same index.
If a random number R falls within the interval Fi, neuron i
with the same index as Fi will generate a spike, namely ’1’,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

we

neuron
1

neuron
2

neuron
N1

FIFO

PE

D1

D2

DN1

D0

Q0

Q1

PRC

≠ 

re

Din

Concat

Dout

empty0

=

neuron
1

neuron
2

neuron
N2

Concat

QlogN1

re

Q

Din

M
u

x

z-1

P0

P1

P2

PN1

1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 0 1 1 1 1

0 1 0 0 1 0 1 0 0 1

>
RNG1

F1=x1

>

>

>

PE

0 1 0 0 0 0 1 0 0 1

F2=F1+x2

F3=F2+x3

F4=F3+x4

D2

D1

D0

D3

Q1

Q0

X2

>

Mux 

2:1

x_0

x_1

>

Mux 

2:1

x_0

x_1

>

Mux 

2:1

x_0

x_1

>

>

PE

D1

DN-1

D0

Q0

Q1

QlogN-1

Concat
Result

(Binary)

D2

D3

DN-2

Mux 

2:1

x_0

x_1

(a)

(b) (c)

Fig. 4. The design of the stochastic SNNs. (a) The input layer that uses one RNG and a PE. (b) Two hidden layers (The second hidden layer is hidden and
noted as ×2). (c) The newly designed output layer.

for the input spike train of this neuron. Therefore, the input
layer of the proposed SNN is implemented by comparing the
CDF of input signals with a common RNG, as shown in Fig.
4(a). The resulting spike trains are forwarded to a PE and then
the output is sent to the neurons in the subsequent layer. In this
way, the output binary signal Q from the PE gives the index of
the section in the CDF a random number falls into. Since the
random number is uniformly distributed between one and its
maximum value, Q follows the same distribution as the input,
i.e.,

P (Q = index(xi)) =
xi∑
k xk

, (10)

where the variable k ranges over all the input elements that
contribute to the CDF. This structure has three unique features.
Firstly, the RNG is shared by every input channel. Inevitably,
the required bit-width of the shared RNG is larger than that
of the single RNGs in conventional spike train generation. For
example, if there are q-channels of inputs and each of them
is p-bit wide, the total sum across all channels can reach up
to q × (2p − 1), so we need a p + log(q) bit wide signal
to avoid potential overflow. Nevertheless, hardware savings
are still achieved compared with the use of multiple smaller
RNGs because the overhead only increases logarithmically
with the number of input channels. Secondly, by properly
assigning the range of the random numbers (i.e., by setting
it to be less than the maximum interval value, Fmax), it will
always be located within one section of the CDF, which means
that spikes are generated in every clock cycle of the digital
system. In the input layer, as shown in Fig. 4(a), the sequence
generated by the comparator for F4 (leading to the input of the
PE with the least priority) is a sequence of all “1”s. Hence,
at least one spike is passed through the PE in every clock
cycle. Lastly, by utilizing a PE, the number of connections
to each neuron in the subsequent layer is reduced from N to
log2N by converting the number of connections into the binary
representation, leading to significant hardware savings. Since
the outputs of the PE can be used as address signals by the

succeeding neurons to find the corresponding weight during
computation, it is convenient to utilize distributed memory on
FPGAs to store weights for the neuron.

2) The Hidden Layers: A hidden layer receives spike trains
from the previous layer and propagates these spikes to the
next layer according to some predefined propagation rules.
Unlike the input layer, only one spike needs to be processed
in every clock cycle. Once the spike train departs from the
input layer, the spikes on different channels might arrive at the
same time. Therefore, a structure is designed for the hidden
layers in stochastic SNNs to ensure that no spike is discarded,
as shown in Fig. 4(b). The spike trains from the previous layer
are first concatenated into a data bus and then sent to a FIFO.
Whenever a spike appears on the data bus, the FIFO intakes
the data on the bus and stores it in its queue. The output of
the FIFO is connected to a PRC followed by a PE. Then the
encoded results from the PE are sent back to the FIFO and
PRC to release the next available data or clear the bit that
has been encoded. Note that although two or more spikes can
arrive at the same time, the spike trains are still sparse. The
FIFO only accepts a signal that does not contain all zeros;
when all the spikes in the data bus have been processed, a
new read enable (re) signal is generated to release the next
data. The PRC circuit is used to avoid repeated encoding of
the same bit by collaborating with the PE. When the PE has
encoded the bit with the highest priority, the PRC clears it for
the PE to encode the next highest priority bit. By using this
process, all spikes in the train are sequentially processed and
propagated to the neurons in the next layer.

C. Design of the Output Layer
The function of the output layer is to produce computation

results for an external system. As such, the output layer
needs to convert the data back into the binary format. Thus,
unlike the neurons in other layers, the neurons in the output
layer integrate the incoming spike trains but no longer need
to propagate them. When the stochastic SNNs are used for
classification or identification applications, what matters the
most is the comparison of values in the output layer. The



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

0/1

R
A

M
 f

o
r 

W
ei

g
h

ts

0/1

0/1
>

up/down 

counter

rst

+/-

threshold

z-1 - one clock 

delay

0/1

R
A

M
 f

o
r 

W
ei

g
h

ts

0/1

0/1

Sign bit

Magnitude 

bits

Concat

0/1

Concat

Concat

X3

threshold

>

up/down 

counter

rst

+/-

threshold

>

up/down 

counter

rst

+/-

PE&PRC

M
u

x

z-1

Accumulator

threshold

>

>

threshold

Accumulator

>

threshold

Accumulator

Sign bit

Sign bit

Magnitude 

bits

Magnitude 

bits

(a) (b)

Fig. 5. The design of input and fully-connected layers in WB-SNN. (a) The input layer design, (b) Two hidden layers and the output layer (noted as ×3 to
save space).

neuron with the highest membrane voltage must be identified,
as it gives the result of the classification. Hence, the output
layer is designed for the data conversion, as shown in Fig.
4(c).

In this work, we implemented an approach, known as the
binary tree method, for comparisons in the final layer. This
has been incorporated into the hardware design, as depicted
in Fig. 4(c). In this new design, pairs of membrane voltage
values from different neurons are compared in the output layer.
Each comparison is conducted using a comparator, followed
by a 2-to-1 multiplexer (MUX) that selects the higher value
from each pair. This selection process continues iteratively,
comparing the higher values from the successive pairs, until
only two values remain for the final comparison. The compar-
ison results for each pair of neurons are then connected to an
AND gate, determining if neuron i has the highest membrane
voltage value. The outputs of N AND gates are subsequently
processed by a PE, which converts the index of the neuron that
has the highest membrane voltage into the binary format. This
binary output provides the final identification result. However,
in our previous design [19], we employed a relatively simple
method for comparison. Before the PE executes its task, the
neuron i is compared to all the other neurons in column i. The
N − 1 comparison results are connected to an AND gate to
indicate if neuron i has the largest membrane voltage value.
The number of comparison in the previous design is O(N2)
because each neuron i is compared with all the other neurons
in the output layer. However, with the BT method, the number
of comparisons in the output layer is decreased from O(N2)
to O(N). This reduction will undoubtedly result in substantial
hardware savings.

V. A DESIGN FRAMEWORK FOR WB-SNNS

To further improve the hardware efficiency of SNNs, the
design principles of BNNs are incorporated into the so-called
WB-SNNs. This section describes how different types of

neuron layers are designed and connected in the WB-SNN.
They can be used to build various types of neural networks as
reusable units.

A. Input and Fully-connected (FC) layers

FC layers can be found in various types of ANN instantia-
tions including the MLP. While the WB-SNN uses spikes as
a medium in all its inner layers, it is not the case for the input
layer. For instance, the system receives real pixel values in
images as inputs. Nonetheless, this does not cause any further
alteration to the design except that the counter is replaced with
an accumulator to support the accumulation of real values in
this layer. As can be seen in Fig. 5 (a), the pixel values are
sent to the input layer one by one. Although causing extra
latency, this operation makes this design hardware efficient.
The sign bit of each value is XNORed with the binary weight
stored in the memory. The output of the XNOR gate is then
concatenated with the magnitude bits and sent to an accumu-
lator for integration. The accumulation is then compared with
the predetermined threshold for firing a spike. After this IF
process, the neurons in the next layer will receive the generated
spike train.

The design of FC layers in the WB-SNN is illustrated in Fig.
5 (b). Since the neuron output is either 0 or 1, all neurons from
the previous layer are first connected to a PE&PRC block. This
block will transfer the active or inactive status of each neuron
into a binary number that indicates the neuron for which the
input is 1. This binary number is then sent to the random
access memory (RAM) where the weight is stored. The RAMs
have multiple layers, each of which corresponds to one output
neuron. Note that all RAMs share the same input address
signal because each output neuron is connected with all input
neurons. The only difference lies in the weight signal which
is stored separately in the RAM. This feature also facilitates
the parallel processing of the neurons. The output from the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

RAM is then sent to the processing unit for integration and
spike generation.

One may wonder how −1 is stored and realized in the WB-
SNN. It is achieved by using an up/down counter, as shown
in Fig. 5. When the input is 1, the counter counts up; when
the input is 0, the counter counts down. In that way, we only
need one bit to store the weight and at the same time, to
achieve excitatory or inhibitory synapse behavior. Compared
with conventional FC layers, only neurons with active outputs
are selected and processed because of the use of PE&PRC.
This feature does not only save energy but also reduces the
inference latency.

B. The WB-SNN design for CNNs
The potential hardware savings in WB-SNNs suggest that

they are suitable for implementations in more intricate archi-
tectures designed for classifying large datasets. CNNs have
been chosen to fulfill this task. Because of their weight-
sharing characteristics, CNNs can help reduce the memory
requirements used for storing parameters. Typically, a CNN
is composed of convolutional layers, pooling layers, and FC
layers. While the design of FC layers is discussed in the
previous subsection, we focus on the design details of the
convolutional and pooling layers.

1) Design of the Convolutional Layer: As the core com-
ponent in CNNs, the convolution layer makes it possible to
significantly reduce the parameter size compared with the
use of FC layers. At the same time, it allows for local
features, such as edges and corners, to be detected [29]. In the
convolutional layer, the kernel or filter is intricately designed
to facilitate channel-wise mapping, that is, to process each
channel of the input data independently, thus allowing the filter
to effectively capture and emphasize the unique features across
different channels. Unlike node- or pixel-wise mapping that
focuses on individual pixels, channel-wise mapping processes
all channels, e.g., for different color layers in an image, which
enables the convolutional layer to extract more nuanced and
complex features from the input data. Hence, the number of
parameters is determined by three main factors: the size of
each filter (i.e., its height and width), the number of filters used
in the layer, and the number of input channels, as shown in Fig.
6. Following this design philosophy, the working mechanism
of the convolutional layer in this WB-SNN is determined in a
similar way, i.e., the data fetch and processing are conducted
channel-wise.

Fig. 6 shows the convolution process for computing a pixel
value (marked in blue) in the output feature map using a
3 by 3 kernel. Pixel values are specifically encoded as 0s
and 1s. They are represented and managed within a CNN as
multi-dimensional arrays, where each dimension corresponds
to a channel encoding various feature values. These feature
values are then processed through the network’s layers. In
other words, the converted pixel values at the same location in
every channel are acquired and transmitted in parallel under
the control of a convolution address generator, which will be
introduced in the following paragraph. In the meantime, the
weights belonging to one kernel are organized into and stored
as a vector at the same address in the RAM.

A convolution address generator is designed to produce all
necessary addresses and control signals. The working mecha-
nism is presented in Algorithm 1. The w addr row and the
w addr col indicate the row and column of the write address,
respectively. r addr row and r addr col respectively denote
the row and column of the read address. r and c are the row
and column, respectively, of the kernel element. K equals to
the kernel size and N is the size of the feature map. ker addr
refers to the kernel address. Moreover, padding represents the
padding signal, a flag when the kernel reaches the boundary
of the feature map. In this address generator, two nested loops
are used to generate the write address (w addr) and read
address (r addr). The outer loop traverses all pixel positions
in the output feature maps in a sequential manner. The inner
loop uses the outer loop position (indicated by the row and
column numbers) as the center and traverses all its neighboring
positions defined by the kernel’s dimensions to perform the
convolution. Each channel of pixels in the input feature map
contributes to calculating the neighboring pixels in the output
feature map by convolving with the kernel at various positions
of the feature map matrix. To facilitate this, a kernel address
(ker addr) is generated. Multiplexers use the kernel address
to select the corresponding weight value from the kernel at the
right position. Once the appropriate weight value is selected by
the MUX, it is applied to the corresponding pixel value in the
input feature map. This involves performing the multiplication
of the selected weight value with the input pixel value.

The PRC&PE block takes the encoded pixel values from
the input feature maps and indicates which input neuron gets
a pixel value 1, i.e., the neurons that elicit spikes. This infor-
mation is then forwarded to the RAM to find the corresponding
kernel weight vector. Upon arrival, the kernel address signal is
used to select the corresponding weight from the kernel weight
vector. Subsequently, this weight is sent to the integration and
compare models to compute the pixel values in the output
feature maps. In the output feature maps, computing a single
pixel value requires convolution with data from all channels
of the input feature maps. In this process, the output from the
PE is compared with 0. Only when spikes from all channels
have been processed, is a move forward (mov fwd) signal
generated. This signal prompts the convolution process to
advance to the next stage. It is also worth mentioning that
a padding signal padding is also produced by the convolution
address generator. Padding is a technique used to adjust the
size of the input feature map. Then, the convolution operation
outputs a feature map that retains the same dimensions as the
input feature map. Whenever it finds that the read address
is outside the bounds of the feature map, an active high is
triggered and forwarded to a multiplexer to select an all zero
vector for the input of PRC&PE. Then, the output of the
PRC&PE is also all zero to drive the mov fwd signal to
skip convolution at this padded position. Note that this design
is equivalent to zero-padding in a convolution.

2) Design of the Pooling Layer: A pooling layer is com-
monly used in CNNs to reduce the size of feature maps and
therefore the size of weights as well. In this layer, feature
values in a small region are summarized and squeezed into
one value. It also increases the robustness of the NN model as



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

R
A

M
 f

o
r 

W
ei

g
h
tsPRI&PE

0/1

M
u
x

z-1

0/1

0/1

M
U

X

M
U

X
M

U
X

M
U

X

0

r_addr

>
up/down 

counter

rst

+/-

threshold

>
up/down 

counter

rst

+/-

threshold

>
up/down 

counter

rst

+/-

threshold

padding

ker_addr

w_addr

=

0

mov_fwd

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

width

height

ch
an

ne
l

Convolution 

Address 

Generator

Fig. 6. The design of the convolution layer in the WB-SNNs.

variations in feature maps are filtered to some extent. There
are usually two types of pooling in practice: average-pooling
and max-pooling. In a spike-based system, max-pooling is
preferred because spikes are represented in the binary form.
Compared to other pooling methods, such as average-pooling
that computes the average of activations in a pooling region,
max-pooling is more effective and suitable for the binarized
feature maps because average-pooling could result in non-
binary outputs and cause additional operations. For example,
if there is an odd number of ‘1’s in a 2×2 pooling filter, the
result could be 0.25 or 0.75, neither of which is binary.

Algorithm 1 Convolution Address Generator
1: Input: Write address row: w addr row; Write address

column: w addr col; Kernel size: K;
2: Output: Write address: w addr; Read address: r addr;

Kernel address: ker addr; Padding flag: padding;
3: Begin
4: for all w addr row = 0 : N − 1 do
5: for all w addr col = 0 : N − 1 do
6: for all r, c = K : 1 do
7: r addr row = K − r + w addr row;
8: r addr col = K − c+ w addr col;
9: end for

10: end for
11: end for
12: r addr =concat(r addr row, r addr col);
13: w addr =concat(w addr row,w addr col);
14: ker addr =concat(r, c);
15: if (0 ≤ r addr row < N)||(0 ≤ r addr col < N) then
16: padding = 1;
17: end if

The designed structure of a 2×2 max-pooling layer is
illustrated in Fig. 7. This design aims to reduce the di-
mensionality of the feature map while preserving significant
features. The inputs to this layer include feature values from
the previous layer as a feature map value (feature in), a
validation signal (valid in), and an address signal (addr in).
The output signals are the same, except that the size of the

feature map is reduced and the values are filtered. As can
be seen from Fig. 7, the key components include a FIFO
block, counters, and various logic blocks that facilitate the
processing of data streamed in a row-major order. The feature
values are first ORed to determine the maximum between
the current value and the previous value, delayed by one
clock cycle (z−1). The resulting maximum is then sent to
the FIFO when we is ‘1’, effectively performing a row-wise
max-pooling operation. After row-wise pooling, the data is
managed by a FIFO system, which handles the synchronization
and temporary storage of data for column-wise pooling.

For row-wise pooling, the data processed by the OR gate
is directed into the FIFO. Here, a counter which follows the
AND gate, becomes responsive when valid in is active and
the least significant bit (LSB) of addr in is set. The bit-width
of the counter matches the row size of the feature map, and the
MSB of the output controls the FIFO’s write and read enable
signals (we, re). The processing or storage of data from the
upper or lower half of the feature map filter is triggered by
the value of the MSB. The MSB of the counter output (driven
by valid in and addr in) plays a crucial role in determining
when to switch between processing the upper half and the
lower half of the input data. When the MSB is ‘0’, the system
processes or stores data from the upper half of the pooling
filter; when it is ‘1’, it switches to the lower half of the pooling
filter. This differentiation is crucial for managing how data is
pooled from different regions of the feature map.

The output of the FIFO is combined with the previous out-
put through an OR gate, along with a one-clock cycle delay, to
implement column-wise max-pooling. The pooling operation
is synchronized with the activation of the FIFO’s re signal,
from which the valid out signal also originates, ensuring that
the generated output addresses (addr out) correspond to the
newly pooled feature values. The design ensures that the entire
feature map is processed effectively in two stages: first row-
wise and then column-wise, utilizing the FIFO to temporally
separate and then combine the data for maximum pooling
operations.

3) Other Miscellaneous Designs — Using A Convolutional
Layer As A Large FC Layer: The FC layer can be made



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

1

0 1 0 0

0 00 0

0

0

01 1

1 1 1

z-1

we

FIFO

re

Din
Dout

addr_in

feature_in

MSB
LSB

valid_in
Counter

AND

AND

AND
NOT

valid_out

OR

z-1

z-1 Counter

addr_out

feature_out
OR

01

1 1

2×2 Max-Pooling

z-1 - one clock delay

Fig. 7. Hardware design of a 2×2 max-pooling layer.

arbitrarily large in theory as a large PE can be constructed
using smaller PEs in a cascaded way. However, it is not
recommended to build a very large PE (with several thousands
of inputs, for example) because it not only requires large
hardware but also significantly increases the length of its
critical path. On the other hand, the convolutional layer is
organized in such a way that it uses one channel as an
input unit. To be able to calculate one value in the output
feature map, several channels of input data in the feature
map are processed sequentially. If the multi-channel data are
considered as a part of a single FC layer, a convolutional
layer can be configured to perform the same functions as the
FC layer. All we need to do is to partition data in the FC
layer into several channels and reuse the control signals in the
convolutional layer to perform computation between different
channels.

VI. HARDWARE IMPLEMENTATION AND PERFORMANCE
EVALUATION

To verify these two designs, we implemented them on
FPGAs as configurable units. Two widely used NN models,
the MLP and CNN, were tested and its performance on
inference accuracy and hardware utilization were evaluated
on the MNIST [30] and CIFAR-10 [31] datasets, respectively.
The training and inference processes with two datasets have
been conducted using Pytorch for the two datasets. The FPGA
platform adopted in the experiments is the Xilinx Virtex7
XC7VX485T board. The results were compared with the state-
of-the-art designs from the literature.

A. The MLP Model

The MLP is one type of classical feedforward ANNs. It
usually consists of several fully connected layers and is widely
benchmarked for small image classification datasets such
as the MNIST. For hardware implementation, MLP models
are considered for both the stochastic SNN and WB-SNN
to demonstrate their capabilities in recognizing the MNIST
dataset. In our experiments, these models were first trained on
a GPU platform and then implemented on the FPGA. Different
from the preliminary results in [19], hardware implementations
of the stochastic SNNs with the new output layer design were
conducted for several MLP networks, with sizes of 784-N -
N -10, i.e., one input layer with 784 nodes, two hidden layers
with N nodes each and one output layer with 10 nodes. Four

different networks with a hidden layer of 63, 127, 255 and 511
nodes, were evaluated. Note that the size of hidden layers we
chose is always equal to 2M−1 with a chosen integer M . That
is to reserve an empty space in the PE for the all-zero input.
This is one significant feature in both the stochastic SNN and
the WB-SNN.

t/ms

t/ms

-0.5

0.0

0.5

1.0

1.5

-0.5

0.0

0.5

1.0

1.5

(a)

(b)

(c)

1.120 1.121 1.122 1.123 1.124 1.125

1.120 1.121 1.122 1.123 1.124 1.125

Fig. 8. Simulation process for the recognition of an image of digit 3. (a)
A snapshot of the inference process (neuron/pixel intensity as shown in the
grey stripes). (b) The membrane potential of a neuron, and (c) the generated
spike stream. (All the values in this figure were captured during the real-time
inference simulation. However, due to space limitations, only a portion of
them is presented here for illustration.)

The inference on 10,000 images in the MNIST dataset was
performed to record the accuracy and testing process. Fig. 8(a)
shows a snapshot of the inference process for the recognition
of the digit 3. The grey value represents the intensity of a
neuron or a pixel, with a brighter level standing for a stronger
signal intensity. The membrane potential in a neuron and the
generated spike stream in time are presented in Fig. 8(b)
and (c), respectively. They also showcase the IF process in
a neuron. However, a neuron is not always active during
inference. It remains silent for a certain amount of time and
does not elicit spikes. That is why we employ PEs to obtain
the indexes of ‘1’s and get rid of all the ‘0’s. It can be seen
in Fig. 8(a) that the number in the input image has been
correctly identified, i.e., the 3rd neuron in the output layer
is the brightest.

The hardware costs of the MLP models with selected sizes
and their inference accuracy are summarized in Table III.
Compared to the previous design in [19], as indicated in Table
III, the required number of look-up-tables (LUTs) decreases
from 16,555 to 14,692, 24,089 to 22,226, and 39,015 to
37,148 when the hidden layer has 63, 127, and 255 nodes,
respectively. This reduction in the required number of LUTs
translates to an improvement in hardware efficiency: about
11.25% for a hidden layer of 63 nodes, approximately 7.73%
for a size of 127, and around 4.79% for a size of 255. At the
same time, the usage of Flip-Flops (FFs) and BRAMs remains



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

the same. Most importantly, the inference accuracy stays high.
It is worth mentioning that the recognition rate in terms of
processing time per each processed image of the stochastic
SNN and the WB-SNN on FPGAs, are 100 µs and 5 µs,
respectively. We have previously conducted a comparison with
prior art in stochastic SNNs in our prior work, as documented
in [19]. It shows that the design achieves a higher accuracy
than the state-of-the-art implemented on FPGAs with a faster
recognition rate. In this paper, with the implementation of the
binary tree method in the output layer, the overall hardware
cost of the design has been reduced. Moreover, a comparison
of this design with some previous ones in stochastic SNNs is
presented in Table IV. The results indicate that the stochastic
SNN with the BT method achieves a higher accuracy and,
mostly, a faster recognition rate in terms of processing time per
image. While the processing time per image for this stochastic
SNN design does not surpass that reported in [34] or the
WB-SNN design on MLP [20], it achieves higher accuracy.
Additionally, the precision of the weights is typically greater
than 8 bits in a fixed-point format as can be seen in Table IV,
resulting in substantial memory usage. The weight precision of
the stochastic SNN using the BT method is the highest in this
comparison because we aim for a higher recognition accuracy.
Although the hardware utilization of stochastic SNNs does not
show a clear advantage over the other designs, this design
achieves a higher recognition accuracy and a fast processing
rate in terms of time per image, hence a good design trade-off.

TABLE III
HARDWARE UTILIZATION AND INFERENCE ACCURACY OF DIFFERENTLY

SIZED MLP MODELS

Structure
Size LUTs FFs BRAMs Inference

Accuracy

784-63-
63-10

16555
(5.45%) 20347

(3.36%)
101.5

(9.85%) 97.37%

[19]

14692
(4.84%)

With BT
method

784-127-
127-10

24089
(7.93%) 24982

(4.11%)
199.5

(19.37%) 97.88%

[19]

22226
(7.31%)

With BT
method

784-255-
255-10

39015
(12.85%) 34217

(5.64%)
395.5

(38.4%) 98.24%

[19]

37148
(12.22%)

With BT
method

784-1023-
1023-10

24784
(8.16%)

14603
(0.81%)

56.5
(5.49%)

97.97%
WB-
SNN
[20]

LUT: look-up-table; FF: flip-flop;
BRAMs: block-random-access-memories (18 Kbits each)

We have included one of the WB-SNN results alongside the
MLP model in the stochastic SNNs using the BT method in
Table III to facilitate a comparison between stochastic SNNs
and WB-SNNs. It is worth noting that the hardware utilization
is higher than the WB-SNN design for the MLP model, as

indicated in Table III, because 32-bit long fixed-point data
format was used for the weights in the stochastic SNNs. In
the meantime, the inference accuracy of the WB-SNN is lower
than its full-precision counterpart. As shown in the last row
of Table III, the accuracy of WB-SNN with 1023-node hidden
layers is higher than the 127-node full-precision model while
requiring less hardware. Therefore, there is a trade-off between
the hardware utilization and inference accuracy.

TABLE IV
HARDWARE UTILIZATION AND RECOGNITION ACCURACY COMPARED TO

THREE OTHER SNN DESIGNS

Han et al.,
[32]

Gupta et al.,
[33]

Liang et al.,
[34]

Stochastic
SNN with
BT method

Platform Xilinx
ZC706

Xilinx
XC6VLX240T

Xilinx Virtex7
VC7VX485T

Xilinx Virtex7
XC7VX485T

Structure 784×1024
×1024×10

784 × 16 784 × 512
× 10

784×255
×255×10

Weight
Precision

16-bit
fixed-point

24-bit
fixed-point

8-bit
fixed-point

32-bit
fixed-point

LUT 5381 56230 16324 37148
FF 7309 23238 11612 34217

BRAMs 40.5+
external DDR

16 - 395.5

Accuracy 97.06% - 96% 98.24%
Time/Image 6210 µs 500 µs 2.8 µs 100 µs

B. Training the WB-SNN

In order to attain a high accuracy while keeping the weights
binarized, some common training tactics in BNNs are applied
in the training of the WB-SNN CNN models. For example,
an L-2 norm regularization R2(w) = (1 − |w|)2 is added
to the total loss function so that the weight value, w, that
diverges from 1 or −1 will be penalized [35]. The augmented
loss function, J(W,b), is constructed from the original loss
function, L(W,b), as

J(W,b) = L(W,b) + λ
∑
i

R2(Wi), (11)

where W and b represent weights and bias terms, respectively,
Wi contains the weights at the ith layer, and λ is a parameter
that is used to adjust the ratio of regularization applied to
the total loss. It is selected to be 0.001 in our experiments.
Other training settings are summarized in Table V. We used
a spike-based learning approach that incorporated the tem-
poral and binary characteristics of spiking neural activities
into the training pipeline. Moreover, the Adam optimizer is
implemented as it is commonly employed for model training
and widely favored for deep training in PyTorch, especially
when dealing with complex models. Furthermore, it tends to
outperform other optimization methods and the algorithm is
available as a built-in package [21]. Lastly, the activations
and the weights of neurons are trained to be 0, 1 and −1,
1, respectively. The hard sigmoid function in (4) (Section
II.B) is used to provide a smooth transition during training,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

before another binarization method (e.g. the sign function) is
applied. The sign function is used to binarize weights during
the forward propagation, while activations are thresholded to
0 or 1 when they are smaller or larger than 0. In the backward
propagation, gradients are allowed to pass only for inputs in
the range [0, 1] to circumvent the non-differentiable nature
when the derivative does not exist. For SNNs, the derivative
does not exist at the spikes, and it is zero everywhere else.

TABLE V
TRAINING SETTINGS OF THE WB-SNN MODEL

Number of epochs 50
Batch size 100

Batch normalization momentum 0.1
Learning rate 0.001
Loss function CrossEntropyLoss

Optimizer Adam

C. The Convolutional Neural Network (CNN) Model

For the MLP model, it has been shown that the WB-SNN
design does not only achieve higher hardware efficiency but
also maintains good inference accuracy [20]. To expand the
applicability of WB-SNNs, we consider CNNs, another type
of ANN instantiations that is able to harvest good accuracy
on large datasets with a reduced parameter size. Using the
proposed CNN design on the same FPGA, a performance
comparison with prior art was carried out for the CIFAR-
10 dataset with three channels of 8-bit RGB data for 32×32
pixels in an input image. This CNN model is trained by using
PyTorch.

The structure of the CNN model is inspired from the VGG
model in [41]. We use three convolution modules, each has two
sequential convolution layers with a kernel size 3×3 and stride
1, followed by one 2×2 max-pooling layer. Zero padding is
employed to keep the image size the same in one module.
The channels we choose for the convolution layers in these
modules are 63, 127 and 255, respectively. Following the
convolution module, there are three fully connected layers
that contain 504, 504 and 10 nodes, respectively. 504 is
chosen to reuse the PE64 module in the fully connected
layer (504=8×(64−1)). Let xCy denote the convolution layer,
where x is the channel size and y is the stride. The kernel
size is omitted because a 3×3 kernel is used for convolution,
unless otherwise noted. The max-pooling layer is denoted by
MPx, where x is the kernel size. The fully connected layer is
denoted by FCx, where x is the node size. The input data has
three channels with the size of 32×32 pixels. Therefore, the
structure of this CNN is 3×32×32-63C1-63C1-MP2-127C1-
127C1-MP2-255C1-255C1-MP2-FC504-FC504-FC10.

The convolution process involves taking a filter (or ker-
nel) and passing it over the feature map of an image, and
transforming the feature map based on the filter’s parameters.
The following formula is used to calculate the values Y in a
subsequent layer’s feature map, with the input image denoted
as X and the kernel as Wb. The indexes of output channels,
rows and columns of the resulting matrices are marked as n,

i and j, respectively. The indexes of input channels, rows and
columns of the resulting matrices are marked as d, x and y,
respectively.

Y [n, i, j] =

D−1∑
d=0

K−1∑
y=0

K−1∑
x=0

Wb [n, d, 2− x, 2− y] ·

X [d, i+ x, j + y] ,

(12)

where Wb is the binarized weight, and D, K refer to the input
layer channel size and the kernel size, respectively. As per Eq.
(12), once the filter is positioned over the selected pixels in
one channel, each weight value from the kernel is multiplied
with the corresponding pixel value from the feature map. In the
end, all the products will be summed up for the channel, and
this summation will be placed in the corresponding position
within the output feature map.

This spiking CNN model is trained on the GPUs first
and then implemented on an FPGA platform. The CIFAR-10
dataset has been selected for the evaluation to verify that the
designed WB-SNN framework can work with a larger dataset
as well. By using the VGG model and the parameters spec-
ified in Table V, a training accuracy of 88.68% is achieved.
After applying the weights for each synapse obtained from
the training process into inference, the resulting accuracy is
79.85%. Fig. 9 shows the overall structure of this CNN model
and the general inference process. As can be seen in Fig. 9,
this network comprises six convolutional layers and three fully
connected layers, with pooling layers interspersed between
every two convolutional layers. The input of the inference
in each channel is a true grey-level image. Following the
convolution and comparison processes, the activations of the
neurons are binarized (to 0 or 1), as well as the trained weights
(to −1 and 1). In Fig. 9, how the feature map looks like during
the inference is illustrated for a test image, where a white pixel
denotes the neuron that elicits a spike while a black pixel
indicates that it does not. We can also see that considerable
numbers of neurons remain silent during the inference, which
helps to save energy and reduce inference time.

The BRAM utilization with this more complicated structure
is 134 units (with 18 Kbits in each unit), which is almost a
quarter of the usage in the stochastic SNNs of a MLP model
with 255 neurons in the hidden layer. As a requisite for more
comprehensive assessment, the performance of this design is
compared with some related work in the literature for a better
evaluation. We selected both SNN and BNN designs, as well as
one general CNN model. The results are shown in Table VI. It
can be seen that the proposed design is more efficient in terms
of hardware usage, that is, it uses the least amount of hardware
resources to reach a comparable accuracy on the CIFAR-10
dataset. For example, the WB-SNN design only uses 21% of
LUTs, 7% of FFs and 61% of BRAMs required by the model
in [39] with an accuracy drop of only 0.74%. It can be seen
that the hardware utilization of the WB-SNN is also better
than the other BNN counterparts. This design only requires
about 1/5 of the LUTs compared to other designs, while the
BRAM utilization averages at 85% of what is typically used in
others. Hardware efficiency improves even more significantly
compared to other SNN counterparts. The WB-SNN design



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

feature map size: 32×32
feature map size: 16×16

feature map size: 8×8

ch
an

ne
l s

iz
e:

 6
3

ch
an

ne
l s

iz
e:

 6
3

ch
an

ne
l s

iz
e:

 1
27

ch
an

ne
l s

iz
e:

 1
27

ch
an

ne
l s

iz
e:

 2
55

ch
an

ne
l s

iz
e:

 2
55

la
y
er

 s
iz

e:
 5

0
4

la
y
er

 s
iz

e:
 5

0
4

la
y
er

 s
iz

e:
 1

0

Fig. 9. Architecture of the WB-SNN for CNN implementation. (All the grey level values in this figure were captured during the real-time inference simulation.
However, due to space limitations, only a portion of them is presented here for illustration.)

TABLE VI
COMPARISON OF THE WB-SNN WITH OTHER SNN AND BNN DESIGNS ON CIFAR-10 DATASET

Design
Source Framework Platform Structure Bit

Width LUTs FFs BRAMs Accuracy

[42] General
CNN Zynq 7Z020 AlexNet 16-bit 36,278 10,357 75 74.2%

[43] SNN
Virtex

UltraScale+
XCVU13P

AlexNet 6-bit 48,000 50,000 – 80.6%

[38] SNN
Virtex

UltraScale+
VCU118

28C1-96C1-256C2-384C1-384C2-
256C1-FC2048-FC2048-FC10 8-bit 386,000 – 969 81.8%

[39] BNN Spartan
XC7S50

64C1-64C1-MP2-128C1-128C1-MP2-
256C1-256C1-MP2-FC512-FC512-

FC10
1-bit 53,200 106,400 280 80.59%

[40] BNN Zynq 7000
SoC ZC706

64C1-64C1-MP2-128C1-128C1-MP2-
256C1-256C1-MP2-FC512-FC512-

FC10
1-bit 46,253 – 186 80.1%

this
work WB-SNN Virtex-7

XC7VX485T

63C1-63C1-MP2-127C1-127C1-MP2-
255C1-255C1-MP2-FC504-FC504-

FC10
1-bit 10,966 6,862 134 79.85%

merely uses 2.84% of LUTs and 13.83% of BRAMs required
by the model in [38]. The only drawback is that the classifi-
cation accuracy is slightly lower. However, this limitation is
not a result of the hardware design itself. It can be effectively
addressed and potentially improved through the application of
specific training techniques. Overall, the proposed WB-SNN
shows an encouraging advancement on hardware efficiency
that is beneficial and essential for implementations on resource
constrained devices.

VII. CONCLUSION

SNNs closely emulate a biological system and typically
operate with stochastic sequences and real-valued weights.
This approach can lead to increased latency and demand
extensive memory usage. To address these limitations, we
propose stochastic SNNs using PEs for hardware efficiency.
The stochastic SNNs achieve high recognition accuracy, al-
though the memory requirements remain high for the real-
valued weights. To mitigate this issue, we further incorporate
binarized weights into the design of SNNs, leading to the so-
called WB-SNNs. This article presents a design framework
for WB-SNNs that exploits features from both SNNs and
BNNs. The weights in a WB-SNN are binarized and the PE is

employed as a fundamental unit to build the constituent layers
in the neural network. The WB-SNNs are capable to achieve a
high hardware efficiency with minimal memory requirements.
Applications of the CNN models for the CIFAR-10 datasets
show that the WB-SNN substantially reduces the BRAM usage
by up to 86.17%, without significantly compromising the
recognition accuracy.

In conclusion, the stochastic SNN is best suited for appli-
cations requiring high accuracy, whereas the WB-SNN frame-
work presents a significant advancement in efficient hardware
design of neural networks. The latter is potentially useful in
various applications for which hardware efficiency and accu-
racy are of paramount importance. Future work will address
the scalability issue, common in neural network applications,
and focus on optimizing hardware designs for implementa-
tion on application-specific integrated circuits (ASICs) and
advanced neuromorphic hardware platforms.

REFERENCES

[1] M. Davies et al, “Loihi: a neuromorphic manycore processor with on-chip
learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. /Feb. 2018.

[2] Braspenning PJ, Thuijsman F, Weijters A., “Artificial neural networks: an
introduction to ANN theory and practice,” Springer Verlag, Heidelberg,
1995.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[3] Rasamoelina AD, Adjailia F, Sinčák P, “A review of activation function
for artificial neural network,” in 2020 IEEE 18th World Symposium on
Applied Machine Intelligence and Informatics (SAMI), pp. 281-286, 2020.

[4] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E.
Vianello, and E. Beigne, “Spiking neural networks hardware implemen-
tations and challenges: a survey,” ACM Journal on Emerging Technologies
in Computing Systems, vol. 15, no. 2, pp. 1-35, 2019.

[5] H. Tang, H. Kim, H. Kim and J. Park, “Spike counts based low complexity
SNN architecture with binary synapse,” IEEE Trans. Biomed. Circuits
Syst., vol. 13, no. 6, pp. 1664-1677, Dec. 2019.

[6] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Front. Comput. Neurosci., vol.
9, pp. 99, Aug. 2015.

[7] F. Akopyan et al., “TrueNorth: design and tool flow of a 65 mW 1 million
neuron programmable neurosynaptic chip,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 10, pp. 1537-1557, Oct. 2015.

[8] Y. Cao, Y. Chen and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, no. 1, pp. 54-66, 2015.

[9] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing,” in Proc. 2015 Int. Joint Conf. on Neural Networks
(IJCNN), Killarney, Ireland, pp. 1-8, 2015.

[10] Pham QT, Nguyen TQ, Hoang PC, Dang QH, Nguyen DM, Nguyen
HH, “A review of SNN implementation on FPGA,” in 2021 international
conference on multimedia analysis and pattern recognition (MAPR), pp.
1-6, 2021.

[11] Michael Pfeiffer and Thomas Pfeil “Deep Learning With Spiking
Neurons: Opportunities and Challenges,” Front. Neurosci., Vol. 12: 774,
2018

[12] Yidong Liu, Siting Liu, Yanzhi Wang, Fabrizio Lombardi and Jie
Han, “A Survey of Stochastic Computing Neural Networks for Machine
Learning Applications,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 7, pp. 2809 - 2824, 2021.

[13] Orchard G, Frady EP, Rubin DB, Sanborn S, Shrestha SB, Sommer FT,
Davies M., “Efficient neuromorphic signal processing with loihi 2,” in
2021 IEEE Workshop on Signal Processing Systems (SiPS), pp. 254-259,
Oct 19, 2021.

[14] T. Simons and D.-J. Lee, “A review of binarized neural networks,”
Electronics, vol. 8, no. 6: 661, 2019.

[15] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” 2016, [online] Available:
https://arxiv.org/abs/1602.02830.

[16] P. -Y. Chuang, P. -Y. Tan, C. -W. Wu and J. -M. Lu, “A 90nm 103.14
TOPS/W Binary-Weight Spiking Neural Network CMOS ASIC for Real-
Time Object Classification,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), pp. 1-6, 2020.

[17] Yixuan Wang, et al. “Deep spiking neural networks with binary weights
for object recognition,” IEEE Transactions on Cognitive and Develop-
mental Systems, 13.3, 514-523, 2020.

[18] Hyeryung Jang, Nicolas Skatchkovsky, and Osvaldo Simeone. “BiSNN:
training spiking neural networks with binary weights via bayesian learn-
ing,” in 2021 IEEE Data Science and Learning Workshop (DSLW), pp.
1-6, 2021.

[19] C. Tang and J. Han, “Design and Implementation of a Highly Accurate
Stochastic Spiking Neural Network,” in Proc. 2021 IEEE Workshop on
Signal Processing Systems (SiPS), Coimbra, Portugal, pp. 1-6, 2021.

[20] Chengcheng Tang and Jie Han, “Hardware Efficient Weight-Binarized
Spiking Neural Networks,” in Design, Automation and Test in Europe
Conference (DATE 2023), Antwerp, Belgium, April 17-19, 2023.

[21] Kingma DP., “Adam: A method for stochastic optimization,” arXiv
[preprint], arXiv:1412.6980, 2014.

[22] H. Qin et al., “Binary neural networks: A survey,” Pattern Recognition,
vol. 105, pp. 1-14, 2020.

[23] P. U. Diehl, M. Cook, M. Tatsuno, and S. Song, “Unsupervised learn-
ing of digit recognition using spike-timing-dependent plasticity,” Front.
Comput. Neurosci., vol. 9: 99, 2015.

[24] M. Alawad, H. Yoon and G. Tourassi, “Energy efficient stochastic-based
deep spiking neural networks for sparse datasets,” in Proc. 2017 IEEE
Int. Conf. on Big Data (Big Data), Boston, USA, pp. 311-318, 2017.

[25] X. Nguyen, H. Nguyen and C. Pham, “A Scalable High-Performance
Priority Encoder Using 1D-Array to 2D-Array Conversion,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 64, no. 9, pp. 1102–1106, Sep. 2017.

[26] M. -L. Wei, M. Yayla, S. -Y. Ho, J. -J. Chen, C. -L. Yang and
H. Amrouch, “Binarized SNNs: Efficient and Error-Resilient Spiking
Neural Networks through Binarization,” in 2021 IEEE/ACM International

Conference On Computer Aided Design (ICCAD), Munich, Germany, pp.
1-9, 2021, doi: 10.1109/ICCAD51958.2021.9643463.

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. 32nd
Intern. Conf. Int. Conf. on Machine Learning, vol. 37, pp. 448-456, 2015.

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proc. of the IEEE, vol.86, no. 11,
pp. 2278-2324, 1998.

[30] Y. LeCun, C. Cortes, and C. Burges, “MNIST Handwritten Digit
Database,” AT & T Labs, vol. 2, 2010, http://yann.lecun.com/exdb/mnist

[31] Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” Technical Report TR-2009, University of Toronto, Toronto,
2009.

[32] J. Han, Z. Li, W. Zheng, and Y. Zhang, “Hardware implementation of
spiking neural networks on FPGA,” Tsinghua Sci. Technol., vol. 25, no.
4, pp. 479–486, Aug. 2020.

[33] S. Gupta, A. Vyas and G. Trivedi, “FPGA implementation of simplified
spiking neural network,” in Proc. 2020 27th IEEE Int. Conf. on Electron.,
Circuits and Sys. (ICECS), Glasgow, UK, pp. 1-4, 2020.

[34] M. Liang, J. Zhang and H. Chen, “A 1.13µJ/classification spiking
neural network accelerator with a single-spike neuron model and sparse
weights,” in Proc. 2021 IEEE Int. Symp. on Circuits and Sys. (ISCAS),
Daegu, South Korea, pp. 1-5, 2021.

[35] W. Tang, G. Hua, L. Wang, “How to Train a Compact Binary Neural
Network with High Accuracy?” in Proc. the Thirty-First AAAI Conf.
on Artificial Intelligence, San Francisco, CA, USA, pp. 2625-2631, Feb.
2017.

[36] Y. Liu, Y. Chen, W. Ye and Y. Gui, “FPGA-NHAP: A general FPGA-
based neuromorphic hardware acceleration platform with high speed and
low power,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 6, pp.
2553-2566, June 2022.

[37] D. Ma et al., “Darwin: A neuromorphic hardware co-processor based
on spiking neural networks,” J. Syst. Archit., vol. 77, pp. 43-51, 2017.

[38] M. T. L. Aung, C. Qu, L. Yang, T. Luo, R. S. M. Goh and W. -F.
Wong, “DeepFire: acceleration of convolutional spiking neural network
on modern field programmable gate arrays,” in Proc. 2021 31st Int. Conf.
on Field-Programmable Logic & Appl. (FPL), pp. 28-32, 2021.

[39] M. Ghasemzadeh, M. Samragh and F. Koushanfar, “ReBNet: residual
binarized neural network,” in Proc. Annu. IEEE Symp. Field-Program.
Cust. Comput. Mach., pp. 57-64, 2018.

[40] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M.
Jahre, K. Vissers, “Finn: a framework for fast, scalable binarized neural
network inference,” in Proc. ACM/SIGDA Int. Symp. on Field-Programm.
Gate Arrays, pp. 1-10, 2017.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[42] T. -H. Tsai and Y. -C. Ho, “A CNN Accelerator on FPGA using Binary
Weight Networks,” in Proc.2020 IEEE Int. Conf. Consum. Electron.
Taiwan, pp. 1-2, 2020.

[43] D. Gerlinghoff, Z. Wang, X. Gu, R. S. M. Goh and T. Luo, “E3NE: An
End-to-End Framework for Accelerating Spiking Neural Networks With
Emerging Neural Encoding on FPGAs,” IEEE Trans Parallel Distrib.
Syst., vol. 33, no. 11, pp. 3207-3219, 1 Nov. 2022.


