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Abstract 
Approximate circuit design is an emerging paradigm in 

which a designer deliberately changes the specified 
Boolean function to reduce area, delay, and/or power 
consumption of a circuit. This paper focuses on the 
synthesis of approximate logic circuits (or ALS) under a 
given error constraint. In particular, we consider ALS for 
a two-level design under an error rate constraint. A 
dynamic programming-based algorithm is proposed to 
find a nearly optimal approximate function by identifying 
the most promising set of cubes to be added to the on-set 
of the original function. Then, an off-the-shelf two-level 
logic synthesis tool is applied to further optimize the sum-
of-product (SOP) expression. The experimental results 
show that the literal reduction is close to the optimal 
solution when the error rate constraint is tight and that 
more than 50% literal reduction is achieved for error rate 
below 0.8% for an 8-bit adder and a square root circuit. 

1. Introduction 
With the continued scaling of CMOS devices, the 

reduction of power consumption becomes one of the key 
issues for integrated circuit design. Recently, a new 
paradigm of approximate circuit design was proposed for 
applications that can tolerate error, including image 
processing, machine learning, and pattern recognition [1].  
An approximate circuit requires a smaller area, shorter 
delay, and/or lower power consumption than the circuit 
that implements the correct function. 

Most prior work has focused on ad-hoc approximate 
circuit designs. This includes arithmetic circuits of adders 
[2] and multipliers [3]. Recently, several efforts have been 
made on automatically synthesizing approximate circuits, 
known as the approximate logic synthesis (ALS). In [4], a 
method was proposed by expanding the existing prime 
implicant (PI) in a 2-level circuit. It uses maximal 
allowable error rate (ER) as the error constraint. The work 
in [5] also focused on 2-level ALS, but it considered a 
more general error constraint that includes both the error 
rate and the error magnitude (EM). The EM constraint 
was handled by reducing the problem to minimizing the 
Boolean relation (BR), which was further solved using an 
efficient BR-solver. The authors in [6] proposed an ALS 
algorithm for multi-level circuits. It injects stuck-at faults 
into the original circuit, followed by redundancy removal. 
In [7], another ALS algorithm for a multi-level design was 
proposed. It introduced a quality constraint circuit, which 

helps convert the ALS problem into a conventional logic 
synthesis problem. 

In this paper, we focus on the two-level ALS problem 
constrained by ER. A dynamic programming-based ALS 
algorithm, DPALS, is proposed to find a nearly optimal 
approximate function by identifying the most promising 
set of cubes to be added to the on-set of the original 
function. Albeit introducing errors, the added cubes make 
many cubes in the original sum-of-product (SOP) 
expression redundant and enable the expansion of many 
cubes. As a result, the added cubes will lead to a large 
reduction in the number of literals for the SOP expression, 
which is a good indicator of the area and power 
consumption of a two-level circuit. The approximate 
function can be further minimized by an off-the-shelf two-
level logic synthesis tool such as Espresso [8]. 

The contributions of this work are listed as follows: 
(1) To efficiently search for cubes to be added into the 

original function, we propose to handle the problem on 
the Hasse diagram of all cubes in a Boolean space. 

(2) A dynamic programming-based efficient algorithm 
is proposed to work on the Hasse diagram for ALS. 

(3) A partitioning technique is proposed to handle large 
circuits. This technique enables a parallel execution on 
multi-core CPUs. 

2. Preliminaries on Logic Synthesis 
An m-variable Boolean space is denoted as Bm, where 

B = {0,1}, and there are m variables in Bm as x1, x2, … , xm. 

For a variable x, x and 𝑥̅ are called literals. A cube is a 

conjunction of literals such that x and 𝑥̅ do not appear 
simultaneously. A minterm is a cube in which each of the 
m variables appears once, in either its original or 
complemented form. 

The on-set (off-set) of a single-output Boolean function 
is the set of minterms that let the function evaluate to 1 
(0). A cube belongs to a Boolean function if and only if all 
the minterms contained in the cube belong to the on-set of 
the function. If a cube belongs to a Boolean function, the 
Boolean function covers the cube. 

3. Proposed Algorithm 
In this section, the main algorithm, DPALS, is 

presented. For convenience, we illustrate the algorithm on 
single-output functions. For a multi-output function, we 
can divide it into multiple single-output functions, then 
apply the proposed DPALS algorithm on each individual 
function, and finally combine the results. 



3.1 Problem Formulation 
The problem we consider here is the ALS constrained 

by an upper bound on error rate. It is formally defined as 
follows: 

Given an original function f and an error rate ER, we 
want to find an SOP expression with the least number of 
literals such that the number of input patterns of the SOP 
that produces a different output than f is no more than 
𝐸𝑅 ∙ 2𝑚, where m is the number of inputs of f. 

The problem is solved in two steps in our proposed 
algorithm. The first step is to apply DPALS to find an 

approximate function 𝑓𝐴𝑝𝑥, and the second step is to call 

a two-level logic synthesis tool (such as Espresso) to 

minimize the SOP expression of 𝑓𝐴𝑝𝑥. 

3.2 Basic Ideas of DPALS 
We illustrate the basic idea behind DPALS through an 

example. Consider a function ℎ = 𝑥1̅̅̅𝑥̅2𝑥4 + 𝑥1̅̅̅𝑥2𝑥3̅̅ ̅ +
𝑥1̅̅̅𝑥3𝑥4̅̅ ̅ + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 , the k-map of which is 
shown in the left of Fig. 1. As we can see, the minimized 
SOP expression of the original function contains five 

small cubes. However, if we add a big cube 𝑥1̅̅̅ 
(corresponding to the green circle in the k-map) to the on-
set of the function, then, despite introducing errors, this 
new cube could make three original cubes 

𝑥1̅̅̅𝑥̅2𝑥4, 𝑥1̅̅̅𝑥2𝑥3̅̅ ̅, 𝑥1̅̅̅𝑥3𝑥4̅̅ ̅  redundant and remove the 

literal 𝑥1 in an original cube 𝑥1𝑥2𝑥4, because the cube 

can be expanded to the cube 𝑥2𝑥4.  

 
 
 
 
 
 
 
 

Figure 1. Left: the k-map of a function h; Right: the Hasse 
diagram of all the cubes in the Boolean space B2. 

Thus, the basic idea of DPALS is to add cubes that do 
not belong to the onset of original function to achieve 
literal reduction, just as the example shown above. The 
difficulty lies in how to evaluate different sets of cubes 
and find the most promising set. To address this challenge, 
we introduce two metrics for a set of cubes, the number of 
errors (NE) and the performance vector (PV). The first 
metric measures the number of input patterns that will 
have error when the set of cubes is added and the second 
metric estimates the impact on literal reduction. They are 
discussed in detail in Sections 3.4 and 3.5, respectively. 
The calculation of NE and the selection of cubes are 
performed on a Hasse diagram of all cubes, which is 
discussed in the next subsection. 

3.3 Hasse Diagram of All Cubes in a Boolean Space 
The Boolean space Bm contains 3m cubes. We organize 

the cubes as a Hasse diagram to facilitate the calculation 
of NE and execution of the dynamic programming 

algorithm. Hasse diagram is a directed acyclic graph and 
is used to represent a set that has a partial ordering. For 
the complete set of cubes in a Boolean space, we can 
define a partial ordering on the cubes as follows: a cube 
𝑐1  precedes another cube 𝑐2  if and only if cube 𝑐1 
covers cube 𝑐2. An example of the Hasse diagram of all 
the 9 cubes in B2 is shown in the right of Fig. 1. Each edge 
connects a parent cube to one of its child cubes. For a 
parent cube with l variables absent, it has l pairs of child 
cubes. The ith pair of child cubes can be obtained by 
multiplying the parent cube with the ith absent variable in 
both its complemented and original forms. Note that two 
child cubes in a pair do not share any minterm, and the 
combination of them results in their parent cube. 

3.4 Number of Errors in a Set of Cubes 
The number of errors (NE) in a set of cubes is defined 

as the number of input patterns that have output error 
when the set of cubes is added into the original function. 
It’s equal to the number of minterms in the set of cubes 
that belong to the off-set of the original function. 

In order to calculate the NEs for an arbitrary set of 
cubes, we first obtain the NEs for all individual cubes. 
They are calculated level by level in the Hasse diagram 
from its bottom level to its top level. We first compute the 
NEs of all cubes at the bottom level of the Hasse diagram, 
i.e., the minterms. If a minterm belongs to the off-set of 
the original function, then its NE is 1. Otherwise, if the 
minterm belongs to the on-set or the don’t care set, its NE 
is 0. The NE of a cube 𝑐 in a higher level is obtained as 
the sum of NEs of a pair of child cubes of c. For example,  

𝑁𝐸[𝑥2𝑥4̅̅ ̅] = 𝑁𝐸[𝑥1̅̅̅𝑥2𝑥4̅̅ ̅] + 𝑁𝐸[𝑥1𝑥2𝑥4̅̅ ̅]. 

3.5 Performance Vector of a Set of Cubes 
The metric performance vector (PV) of a set of cubes 

estimates the impact on literal reduction when the set is 
added into the original function. Let us use the function h 
with its k-map shown in Fig. 1 as an example again to 
investigate how to define this metric. Assume that the 
upper bound on error rate is 1/8. This means that the 
approximate Boolean function could have at most two 
input patterns producing wrong outputs. We could have 
the following three choices to add a set of cubes which 
causes two input patterns to produce wrong outputs: (1) 
adding the blue cube only, (2) adding the green cube only, 
and (3) adding both the red cube and the purple cube. As 
we can see, choice (1) only makes one cube redundant for 
the original function, while the other two choices make 3 
original cubes redundant and expand the other 2 original 
cubes. Notice that the set of cubes of choice (1) contains 
4 minterms while the sets of cubes of the other two 
choices both contain 8 minterms. Thus, the more 
minterms contained by a set of added cubes, the bigger the 
literal reduction could be. Furthermore, by comparing 
choice (2) and choice (3), we find that the choice (2) is 
better, since it just adds one big cube instead of two small 
cubes. 

Based on the above observation and the tests on some 

𝑥1𝑥2 

𝑥3𝑥4 

x1x2 x1x2 x1x2 x1x2

x1 x1

1

x2 x2



randomly generated functions, we propose to use a vector 
(𝑝, 𝑞) as PV, where p is the total number of minterms 
contained in the set of cubes that estimates the likelihood 
to cover or expand original cubes, and q is the total 
number of literals in the added cubes that measures the 
overhead of adding this set to the original function. For 
example, the PVs of the sets of cubes in choices (1), (2), 
and (3) are (4, 2), (8, 1), and (8, 4), respectively. From the 
above example, we can see that a set of cubes can reduce 
more literals when added into the original SOP if it 
contains more minterms or has smaller literal overhead. 
Thus, given two PVs (𝑝1 , 𝑞1) and (𝑝2, 𝑞2), we define 
(𝑝1, 𝑞1) > (𝑝2, 𝑞2)  if and only if either 𝑝1 > 𝑝2 , or 
𝑝1 = 𝑝2 and 𝑞1 < 𝑞2. 

3.6 Dynamic Programming for Finding the Best Set of 
Cubes 

With the definition of NE and PV, the way we propose 
to find a nearly optimal approximate function is to find 
the set of cubes with the highest PV among all the sets 
with NE no more than 𝐿 = 𝐸𝑅 ∙ 2𝑚 , where m is the 
number of inputs. This set is then added to the original 
function to construct an approximate function. A dynamic 
programming algorithm carried out on the Hasse diagram 
of all cubes is used to find the best set of cubes.  

For each cube 𝑐𝑖 in the Hasse diagram and each 0 ≤
𝑗 ≤ 𝐿, we first define a candidate set of cubes for 𝑐𝑖 and 
𝑗 as a set of descendent cubes of 𝑐𝑖 in the Hasse diagram 
satisfying that none of the cubes belong to the original 
function and the NE of the set of cubes equals to 𝑗. We 
then define a general problem 𝑄[𝑐𝑖][𝑗] to find a set with 
the highest PV among all candidate sets of cubes for 𝑐𝑖 
and j. The highest PV is denoted as 𝑔[𝑐𝑖][𝑗]. Note that the 
original problem of finding the best set of cubes to be 
added to the original function is equivalent to finding the 
best solution among solutions to 𝑄[1][0], ... , 𝑄[1][𝐿], 
where 1 in the first pair of brackets refers to the root cube 
in the Hasse diagram. 

First, we show 𝑔 for two base cases: 
(1) The case where 𝑗 = 0, which means that the NE of 

a candidate set of cubes is 0. However, this contradicts the 
requirement that the cubes in the candidate set do not 
belong to the original function. Thus, no candidate sets of 
cubes exist for this case, i.e. 𝑔[𝑐𝑖][0]=(0, 0). 

(2) The case where 𝑐𝑖 is a minterm. 𝑐𝑖 only has one 
descendent, which is itself. Thus, we only need to 
consider the cube set {𝑐𝑖}. {𝑐𝑖} is a candidate set for 𝑐𝑖 
and 𝑗 only when 𝑁𝐸[𝑐𝑖] = 1 and 𝑗 = 1, because only 
in this situation does 𝑐𝑖  not belong to the original 
function and 𝑁𝐸[𝑐𝑖] = 𝑗. In this case, the best set for the 
problem 𝑄[𝑐𝑖][𝑗] is {𝑐𝑖 } and 𝑔[𝑐𝑖][𝑗] = (1, 𝑚). When 
𝑗 ≠ 1 or 𝑁𝐸[𝑐𝑖] ≠ 1, there are no candidate set of cubes 
for 𝑐𝑖 and 𝑗. Thus, 𝑔[𝑐𝑖][1] = (0, 0). 

Next we characterize the optimal structure of the 
problem 𝑄[𝑐𝑖][𝑗] for general cubes 𝑐𝑖  and 𝑗 > 0. We 
assume that 𝑐𝑖 has 𝑙 ≥ 1 absent variables. 

A candidate set S of cubes for 𝑐𝑖  and 𝑗  can be 

constructed by the union of a candidate set 𝑆0 of cubes 
for 𝑐𝑟,0(𝑐𝑖) and 𝑘 and a candidate set 𝑆1 of cubes for 

𝑐𝑟,1(𝑐𝑖)  and (𝑗 − 𝑘) , where 𝑐𝑟,0(𝑐𝑖)  and 𝑐𝑟,1(𝑐𝑖) 

denote the rth pair of child cubes of 𝑐𝑖 and 0 ≤ 𝑘 ≤ 𝑗. 

Since the sets 𝑆0  and 𝑆1  are composed of descendent 

cubes of 𝑐𝑟,0(𝑐𝑖)  and 𝑐𝑟,1(𝑐𝑖) , respectively, they are 

disjoint. Thus, we can calculate the PV of set 𝑆 as the 
sum of the PVs of 𝑆0  and 𝑆1 , since the number of 
minterms and the literal overhead are added up when 
combining two disjoint sets of cubes. Therefore, the 
optimal 𝑔[𝑐𝑖][𝑗] should be at least 

𝑀1 = max
1≤𝑟≤𝑙
0≤𝑘≤𝑗

(𝑔[𝑐𝑟,0(𝑐𝑖)][𝑘] + 𝑔[𝑐𝑟,1(𝑐𝑖)][𝑗 − 𝑘]).      (1) 

For those pairs of 𝑐𝑖  and 𝑗  such that 𝑁𝐸[𝑐𝑖] = 𝑗 , 
there is an extra candidate set, {𝑐𝑖}, of which the PV is 

𝑀2 = (2𝑙 , 𝑚 − 𝑙).    (2) 
Thus, the highest PV 𝑔[𝑐𝑖][𝑗] for more general cube 

𝑐𝑖 and 𝑗 > 0 can be calculated as 

𝑔[𝑐𝑖][𝑗] = {
max {𝑀1, 𝑀2} 𝑖𝑓 𝑁𝐸[𝑐𝑖] = 𝑗

𝑀1 𝑖𝑓 𝑁𝐸[𝑐𝑖] ≠ 𝑗
     (3) 

As shown by (3), 𝑔 for a parent cube can be obtained 
from 𝑔 for the child cubes. Thus, we can obtain 𝑔 for 
the root cube of the Hasse diagram in a bottom up way 
starting from the last level of cubes in the Hasse diagram. 
With the best sets of cubes for the root cube and different 
NEs obtained, the set of cubes with the highest PV among 
those best sets will be chosen to be added to the on-set of 
the original function to form the approximate function. 
Then, Espresso is utilized to further obtain a minimal SOP 
expression. The time and the space complexity of DPALS 

are 𝑂(3𝑚 ∙ 𝐿2) and 𝑂(3𝑚 ∙ 𝐿), respectively, where m is 
the number of inputs and L is the upper bound of number 
of incorrect input patterns. 

4. Partitions of Large Circuits 
Since the size of the Hasse diagram increases 

exponentially with the number of inputs, there will be a 
memory overflow for functions with a large number of 
inputs. To solve this problem, we propose to partition a 
complex function into several simpler functions and apply 
DPALS to each of them. A parameter M is introduced to 
control the maximum memory usage. The function will be 
divided according to the combination of the first (𝑚 − 𝑀) 
variables. For example, if m=12 and M=10, we will split 
the original function into 4 simpler functions which 
produce the original output for the input combination 00-
---------, 01----------, 10----------, and 11----------, 
respectively. Indeed, these four functions correspond to 
the four cofactors of the original function with respect to 
𝑥1  and 𝑥2 . Then DPALS is applied to these functions 
under the same error rate constraint. By combining all 
approximate functions for these functions, we obtain a 
nearly optimal approximation for the original function. 

With the partition, the space complexity becomes 
independent of the number of inputs at the cost of some 
quality degradation. The parameter M for controlling the 
memory usage is determined empirically by sweeping M 



from 7 to 12 on 12 randomly generated Boolean functions 
and observing tradeoffs on literal reduction with runtime 
and memory usage. The value of M we finally choose is 
11. Note that this partition method can also enable a 
parallel execution that further reduces the total runtime 
significantly. 

5. Experimental Results 
All the experiments are carried out on a PC with a 

quad core I7-3610QM CPU with 4GB RAM. 

5.1 Optimality Study of DPALS 
In this section, DPALS are tested on simple functions 

in order to compare its results with the optimal results 
produced by an exhaustive search (EXS). The comparison 
results are shown in Table 1. The first column of the table 
shows the circuit/function name, the number of inputs (i), 
and the number of outputs (o). The two ER constraints for 
different circuits shown in the second column correspond 
to the number of incorrect input patterns of 1 and 2, 
respectively. As shown, DPALS produces results very 
close to the optimal ones for most of these circuits. 

5.2 Results of DPALS on Large Circuits 
In this section, DPALS combining the partition 

method is applied to an 8-bit adder, a square root circuit, 
and a multiplier circuit under the ER constraints of 0.8%, 
1.6% and 2.4%. The number of literals in the final SOP 
expression and the runtime are shown in Table 2. The first 
column of the table shows the name of the original 
function, the number of inputs (i), the number of outputs 
(o), and the number of literals in the minimized SOP 
expression of the original function (L). We also provide 
the runtime of the parallel execution (P_Runtime) for 
which DPALS is applied to different partitions in parallel 
by fully utilizing the four cores in the CPU. As shown, 
DPALS achieves more than 50% literal reduction even for 
a tight ER constraint of 0.8% for the adder and the square 
root circuits. Parallel computing significantly reduces the 
runtime of DPALS. 

6.  Conclusion 
In this paper, a novel algorithm is proposed for 

approximate logic synthesis (ALS). It identifies the most 
promising set of cubes to be added to the original function 
to produce a nearly optimal approximate function. It 
utilizes dynamic programming on the Hasse diagram of 
all cubes. Experimental results have shown the 
effectiveness and efficiency of the proposed algorithm. 
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Table 1. Comparison between the results from DPALS and the 
optimal results found through exhaustive search (EXS). 

Table 2. Experimental results of DPALS on large circuits. 

ER  0.80% 1.60% 2.40% 

add8 

i:16; o:9 

L:11972 

Literal 5922 4225 3073 

Reduction % 50.53% 64.71% 74.33% 

Runtime (s)  245.32 383.53 398.77 

P_Runtime (s) 67.673 95.508 108.47 

mul8 

i:16; 

o:16 

L: 

360494 

Literal 303828 281321 262342 

Reduction % 15.72% 21.96% 27.23% 

Runtime (s) 465.12 742.11 778.37 

P_Runtime (s) 128.49 200.42 214.43 

root8 

i:16; o:8 

L:11301 

Literal 5507 5098 4654 

Reduction % 51.27% 54.89% 58.82% 

Runtime (s) 114.2 173.53 180.43 

P_Runtime (s) 32.74 48.662 51.45 
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Two-level 

Circuit 
ER 

Number of literals Time (s) 

Original EXS DPALS EXS DPALS 

z9sym 

i:9; o:1 

2‰ 516 497 497 4.743 0.071 

4‰ 516 474 474 160.760 0.096 

sym10 

i:10; o:1 

1‰ 1260 1134 1140 15.867 0.132 

2‰ 1260 1080 1107 872.001 0.142 

rd73 

i:7; o:3 

2.6‰ 756 735 743 5.328 0.040 

5.2‰ 756 720 734 402.723 0.040 

Clip 

i:9; o:5 

0.4‰ 631 601 620 62.759 0.132 

0.8‰ 631 592 611 208min 0.120 

sao2 

i:10; o:4 

0.25‰ 421 420 421 108.674 0.192 

0.5‰ 421 418 421 430min 0.202 


