
DPALS: A Dynamic Programming-based Algorithm for

Two-level Approximate Logic Synthesis

Chen Zou1, Weikang Qian2, Jie Han3
1 The State Key Lab of ASIC & System, Fudan University, Shanghai 200433, China

2 UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
3 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G1H9, Canada

Email: 1czou12@fudan.edu.cn, 2qianwk@sjtu.edu.cn, 3jhan8@ualberta.ca

Abstract
Approximate circuit design is an emerging paradigm in

which a designer deliberately changes the specified
Boolean function to reduce area, delay, and/or power
consumption of a circuit. This paper focuses on the
synthesis of approximate logic circuits (or ALS) under a
given error constraint. In particular, we consider ALS for
a two-level design under an error rate constraint. A
dynamic programming-based algorithm is proposed to
find a nearly optimal approximate function by identifying
the most promising set of cubes to be added to the on-set
of the original function. Then, an off-the-shelf two-level
logic synthesis tool is applied to further optimize the sum-
of-product (SOP) expression. The experimental results
show that the literal reduction is close to the optimal
solution when the error rate constraint is tight and that
more than 50% literal reduction is achieved for error rate
below 0.8% for an 8-bit adder and a square root circuit.

1. Introduction
With the continued scaling of CMOS devices, the

reduction of power consumption becomes one of the key
issues for integrated circuit design. Recently, a new
paradigm of approximate circuit design was proposed for
applications that can tolerate error, including image
processing, machine learning, and pattern recognition [1].
An approximate circuit requires a smaller area, shorter
delay, and/or lower power consumption than the circuit
that implements the correct function.

Most prior work has focused on ad-hoc approximate
circuit designs. This includes arithmetic circuits of adders
[2] and multipliers [3]. Recently, several efforts have been
made on automatically synthesizing approximate circuits,
known as the approximate logic synthesis (ALS). In [4], a
method was proposed by expanding the existing prime
implicant (PI) in a 2-level circuit. It uses maximal
allowable error rate (ER) as the error constraint. The work
in [5] also focused on 2-level ALS, but it considered a
more general error constraint that includes both the error
rate and the error magnitude (EM). The EM constraint
was handled by reducing the problem to minimizing the
Boolean relation (BR), which was further solved using an
efficient BR-solver. The authors in [6] proposed an ALS
algorithm for multi-level circuits. It injects stuck-at faults
into the original circuit, followed by redundancy removal.
In [7], another ALS algorithm for a multi-level design was
proposed. It introduced a quality constraint circuit, which

helps convert the ALS problem into a conventional logic
synthesis problem.

In this paper, we focus on the two-level ALS problem
constrained by ER. A dynamic programming-based ALS
algorithm, DPALS, is proposed to find a nearly optimal
approximate function by identifying the most promising
set of cubes to be added to the on-set of the original
function. Albeit introducing errors, the added cubes make
many cubes in the original sum-of-product (SOP)
expression redundant and enable the expansion of many
cubes. As a result, the added cubes will lead to a large
reduction in the number of literals for the SOP expression,
which is a good indicator of the area and power
consumption of a two-level circuit. The approximate
function can be further minimized by an off-the-shelf two-
level logic synthesis tool such as Espresso [8].

The contributions of this work are listed as follows:
(1) To efficiently search for cubes to be added into the

original function, we propose to handle the problem on
the Hasse diagram of all cubes in a Boolean space.

(2) A dynamic programming-based efficient algorithm
is proposed to work on the Hasse diagram for ALS.

(3) A partitioning technique is proposed to handle large
circuits. This technique enables a parallel execution on
multi-core CPUs.

2. Preliminaries on Logic Synthesis
An m-variable Boolean space is denoted as Bm, where

B = {0,1}, and there are m variables in Bm as x1, x2, … , xm.

For a variable x, x and 𝑥̅ are called literals. A cube is a

conjunction of literals such that x and 𝑥̅ do not appear
simultaneously. A minterm is a cube in which each of the
m variables appears once, in either its original or
complemented form.

The on-set (off-set) of a single-output Boolean function
is the set of minterms that let the function evaluate to 1
(0). A cube belongs to a Boolean function if and only if all
the minterms contained in the cube belong to the on-set of
the function. If a cube belongs to a Boolean function, the
Boolean function covers the cube.

3. Proposed Algorithm
In this section, the main algorithm, DPALS, is

presented. For convenience, we illustrate the algorithm on
single-output functions. For a multi-output function, we
can divide it into multiple single-output functions, then
apply the proposed DPALS algorithm on each individual
function, and finally combine the results.

3.1 Problem Formulation
The problem we consider here is the ALS constrained

by an upper bound on error rate. It is formally defined as
follows:

Given an original function f and an error rate ER, we
want to find an SOP expression with the least number of
literals such that the number of input patterns of the SOP
that produces a different output than f is no more than
𝐸𝑅 ∙ 2𝑚, where m is the number of inputs of f.

The problem is solved in two steps in our proposed
algorithm. The first step is to apply DPALS to find an

approximate function 𝑓𝐴𝑝𝑥, and the second step is to call

a two-level logic synthesis tool (such as Espresso) to

minimize the SOP expression of 𝑓𝐴𝑝𝑥.

3.2 Basic Ideas of DPALS
We illustrate the basic idea behind DPALS through an

example. Consider a function ℎ = 𝑥1̅̅̅𝑥̅2𝑥4 + 𝑥1̅̅̅𝑥2𝑥3̅̅ ̅ +
𝑥1̅̅̅𝑥3𝑥4̅̅ ̅ + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 , the k-map of which is
shown in the left of Fig. 1. As we can see, the minimized
SOP expression of the original function contains five

small cubes. However, if we add a big cube 𝑥1̅̅̅
(corresponding to the green circle in the k-map) to the on-
set of the function, then, despite introducing errors, this
new cube could make three original cubes

𝑥1̅̅̅𝑥̅2𝑥4, 𝑥1̅̅̅𝑥2𝑥3̅̅ ̅, 𝑥1̅̅̅𝑥3𝑥4̅̅ ̅ redundant and remove the

literal 𝑥1 in an original cube 𝑥1𝑥2𝑥4, because the cube

can be expanded to the cube 𝑥2𝑥4.

Figure 1. Left: the k-map of a function h; Right: the Hasse
diagram of all the cubes in the Boolean space B2.

Thus, the basic idea of DPALS is to add cubes that do
not belong to the onset of original function to achieve
literal reduction, just as the example shown above. The
difficulty lies in how to evaluate different sets of cubes
and find the most promising set. To address this challenge,
we introduce two metrics for a set of cubes, the number of
errors (NE) and the performance vector (PV). The first
metric measures the number of input patterns that will
have error when the set of cubes is added and the second
metric estimates the impact on literal reduction. They are
discussed in detail in Sections 3.4 and 3.5, respectively.
The calculation of NE and the selection of cubes are
performed on a Hasse diagram of all cubes, which is
discussed in the next subsection.

3.3 Hasse Diagram of All Cubes in a Boolean Space
The Boolean space Bm contains 3m cubes. We organize

the cubes as a Hasse diagram to facilitate the calculation
of NE and execution of the dynamic programming

algorithm. Hasse diagram is a directed acyclic graph and
is used to represent a set that has a partial ordering. For
the complete set of cubes in a Boolean space, we can
define a partial ordering on the cubes as follows: a cube
𝑐1 precedes another cube 𝑐2 if and only if cube 𝑐1
covers cube 𝑐2. An example of the Hasse diagram of all
the 9 cubes in B2 is shown in the right of Fig. 1. Each edge
connects a parent cube to one of its child cubes. For a
parent cube with l variables absent, it has l pairs of child
cubes. The ith pair of child cubes can be obtained by
multiplying the parent cube with the ith absent variable in
both its complemented and original forms. Note that two
child cubes in a pair do not share any minterm, and the
combination of them results in their parent cube.

3.4 Number of Errors in a Set of Cubes
The number of errors (NE) in a set of cubes is defined

as the number of input patterns that have output error
when the set of cubes is added into the original function.
It’s equal to the number of minterms in the set of cubes
that belong to the off-set of the original function.

In order to calculate the NEs for an arbitrary set of
cubes, we first obtain the NEs for all individual cubes.
They are calculated level by level in the Hasse diagram
from its bottom level to its top level. We first compute the
NEs of all cubes at the bottom level of the Hasse diagram,
i.e., the minterms. If a minterm belongs to the off-set of
the original function, then its NE is 1. Otherwise, if the
minterm belongs to the on-set or the don’t care set, its NE
is 0. The NE of a cube 𝑐 in a higher level is obtained as
the sum of NEs of a pair of child cubes of c. For example,

𝑁𝐸[𝑥2𝑥4̅̅ ̅] = 𝑁𝐸[𝑥1̅̅̅𝑥2𝑥4̅̅ ̅] + 𝑁𝐸[𝑥1𝑥2𝑥4̅̅ ̅].

3.5 Performance Vector of a Set of Cubes
The metric performance vector (PV) of a set of cubes

estimates the impact on literal reduction when the set is
added into the original function. Let us use the function h
with its k-map shown in Fig. 1 as an example again to
investigate how to define this metric. Assume that the
upper bound on error rate is 1/8. This means that the
approximate Boolean function could have at most two
input patterns producing wrong outputs. We could have
the following three choices to add a set of cubes which
causes two input patterns to produce wrong outputs: (1)
adding the blue cube only, (2) adding the green cube only,
and (3) adding both the red cube and the purple cube. As
we can see, choice (1) only makes one cube redundant for
the original function, while the other two choices make 3
original cubes redundant and expand the other 2 original
cubes. Notice that the set of cubes of choice (1) contains
4 minterms while the sets of cubes of the other two
choices both contain 8 minterms. Thus, the more
minterms contained by a set of added cubes, the bigger the
literal reduction could be. Furthermore, by comparing
choice (2) and choice (3), we find that the choice (2) is
better, since it just adds one big cube instead of two small
cubes.

Based on the above observation and the tests on some

𝑥1𝑥2

𝑥3𝑥4

x1x2 x1x2 x1x2 x1x2

x1 x1

1

x2 x2

randomly generated functions, we propose to use a vector
(𝑝, 𝑞) as PV, where p is the total number of minterms
contained in the set of cubes that estimates the likelihood
to cover or expand original cubes, and q is the total
number of literals in the added cubes that measures the
overhead of adding this set to the original function. For
example, the PVs of the sets of cubes in choices (1), (2),
and (3) are (4, 2), (8, 1), and (8, 4), respectively. From the
above example, we can see that a set of cubes can reduce
more literals when added into the original SOP if it
contains more minterms or has smaller literal overhead.
Thus, given two PVs (𝑝1 , 𝑞1) and (𝑝2, 𝑞2), we define
(𝑝1, 𝑞1) > (𝑝2, 𝑞2) if and only if either 𝑝1 > 𝑝2 , or
𝑝1 = 𝑝2 and 𝑞1 < 𝑞2.

3.6 Dynamic Programming for Finding the Best Set of
Cubes

With the definition of NE and PV, the way we propose
to find a nearly optimal approximate function is to find
the set of cubes with the highest PV among all the sets
with NE no more than 𝐿 = 𝐸𝑅 ∙ 2𝑚 , where m is the
number of inputs. This set is then added to the original
function to construct an approximate function. A dynamic
programming algorithm carried out on the Hasse diagram
of all cubes is used to find the best set of cubes.

For each cube 𝑐𝑖 in the Hasse diagram and each 0 ≤
𝑗 ≤ 𝐿, we first define a candidate set of cubes for 𝑐𝑖 and
𝑗 as a set of descendent cubes of 𝑐𝑖 in the Hasse diagram
satisfying that none of the cubes belong to the original
function and the NE of the set of cubes equals to 𝑗. We
then define a general problem 𝑄[𝑐𝑖][𝑗] to find a set with
the highest PV among all candidate sets of cubes for 𝑐𝑖
and j. The highest PV is denoted as 𝑔[𝑐𝑖][𝑗]. Note that the
original problem of finding the best set of cubes to be
added to the original function is equivalent to finding the
best solution among solutions to 𝑄[1][0], ... , 𝑄[1][𝐿],
where 1 in the first pair of brackets refers to the root cube
in the Hasse diagram.

First, we show 𝑔 for two base cases:
(1) The case where 𝑗 = 0, which means that the NE of

a candidate set of cubes is 0. However, this contradicts the
requirement that the cubes in the candidate set do not
belong to the original function. Thus, no candidate sets of
cubes exist for this case, i.e. 𝑔[𝑐𝑖][0]=(0, 0).

(2) The case where 𝑐𝑖 is a minterm. 𝑐𝑖 only has one
descendent, which is itself. Thus, we only need to
consider the cube set {𝑐𝑖}. {𝑐𝑖} is a candidate set for 𝑐𝑖
and 𝑗 only when 𝑁𝐸[𝑐𝑖] = 1 and 𝑗 = 1, because only
in this situation does 𝑐𝑖 not belong to the original
function and 𝑁𝐸[𝑐𝑖] = 𝑗. In this case, the best set for the
problem 𝑄[𝑐𝑖][𝑗] is {𝑐𝑖 } and 𝑔[𝑐𝑖][𝑗] = (1, 𝑚). When
𝑗 ≠ 1 or 𝑁𝐸[𝑐𝑖] ≠ 1, there are no candidate set of cubes
for 𝑐𝑖 and 𝑗. Thus, 𝑔[𝑐𝑖][1] = (0, 0).

Next we characterize the optimal structure of the
problem 𝑄[𝑐𝑖][𝑗] for general cubes 𝑐𝑖 and 𝑗 > 0. We
assume that 𝑐𝑖 has 𝑙 ≥ 1 absent variables.

A candidate set S of cubes for 𝑐𝑖 and 𝑗 can be

constructed by the union of a candidate set 𝑆0 of cubes
for 𝑐𝑟,0(𝑐𝑖) and 𝑘 and a candidate set 𝑆1 of cubes for

𝑐𝑟,1(𝑐𝑖) and (𝑗 − 𝑘) , where 𝑐𝑟,0(𝑐𝑖) and 𝑐𝑟,1(𝑐𝑖)

denote the rth pair of child cubes of 𝑐𝑖 and 0 ≤ 𝑘 ≤ 𝑗.

Since the sets 𝑆0 and 𝑆1 are composed of descendent

cubes of 𝑐𝑟,0(𝑐𝑖) and 𝑐𝑟,1(𝑐𝑖) , respectively, they are

disjoint. Thus, we can calculate the PV of set 𝑆 as the
sum of the PVs of 𝑆0 and 𝑆1 , since the number of
minterms and the literal overhead are added up when
combining two disjoint sets of cubes. Therefore, the
optimal 𝑔[𝑐𝑖][𝑗] should be at least

𝑀1 = max
1≤𝑟≤𝑙
0≤𝑘≤𝑗

(𝑔[𝑐𝑟,0(𝑐𝑖)][𝑘] + 𝑔[𝑐𝑟,1(𝑐𝑖)][𝑗 − 𝑘]). (1)

For those pairs of 𝑐𝑖 and 𝑗 such that 𝑁𝐸[𝑐𝑖] = 𝑗 ,
there is an extra candidate set, {𝑐𝑖}, of which the PV is

𝑀2 = (2𝑙 , 𝑚 − 𝑙). (2)
Thus, the highest PV 𝑔[𝑐𝑖][𝑗] for more general cube

𝑐𝑖 and 𝑗 > 0 can be calculated as

𝑔[𝑐𝑖][𝑗] = {
max {𝑀1, 𝑀2} 𝑖𝑓 𝑁𝐸[𝑐𝑖] = 𝑗

𝑀1 𝑖𝑓 𝑁𝐸[𝑐𝑖] ≠ 𝑗
 (3)

As shown by (3), 𝑔 for a parent cube can be obtained
from 𝑔 for the child cubes. Thus, we can obtain 𝑔 for
the root cube of the Hasse diagram in a bottom up way
starting from the last level of cubes in the Hasse diagram.
With the best sets of cubes for the root cube and different
NEs obtained, the set of cubes with the highest PV among
those best sets will be chosen to be added to the on-set of
the original function to form the approximate function.
Then, Espresso is utilized to further obtain a minimal SOP
expression. The time and the space complexity of DPALS

are 𝑂(3𝑚 ∙ 𝐿2) and 𝑂(3𝑚 ∙ 𝐿), respectively, where m is
the number of inputs and L is the upper bound of number
of incorrect input patterns.

4. Partitions of Large Circuits
Since the size of the Hasse diagram increases

exponentially with the number of inputs, there will be a
memory overflow for functions with a large number of
inputs. To solve this problem, we propose to partition a
complex function into several simpler functions and apply
DPALS to each of them. A parameter M is introduced to
control the maximum memory usage. The function will be
divided according to the combination of the first (𝑚 − 𝑀)
variables. For example, if m=12 and M=10, we will split
the original function into 4 simpler functions which
produce the original output for the input combination 00-
---------, 01----------, 10----------, and 11----------,
respectively. Indeed, these four functions correspond to
the four cofactors of the original function with respect to
𝑥1 and 𝑥2 . Then DPALS is applied to these functions
under the same error rate constraint. By combining all
approximate functions for these functions, we obtain a
nearly optimal approximation for the original function.

With the partition, the space complexity becomes
independent of the number of inputs at the cost of some
quality degradation. The parameter M for controlling the
memory usage is determined empirically by sweeping M

from 7 to 12 on 12 randomly generated Boolean functions
and observing tradeoffs on literal reduction with runtime
and memory usage. The value of M we finally choose is
11. Note that this partition method can also enable a
parallel execution that further reduces the total runtime
significantly.

5. Experimental Results
All the experiments are carried out on a PC with a

quad core I7-3610QM CPU with 4GB RAM.

5.1 Optimality Study of DPALS
In this section, DPALS are tested on simple functions

in order to compare its results with the optimal results
produced by an exhaustive search (EXS). The comparison
results are shown in Table 1. The first column of the table
shows the circuit/function name, the number of inputs (i),
and the number of outputs (o). The two ER constraints for
different circuits shown in the second column correspond
to the number of incorrect input patterns of 1 and 2,
respectively. As shown, DPALS produces results very
close to the optimal ones for most of these circuits.

5.2 Results of DPALS on Large Circuits
In this section, DPALS combining the partition

method is applied to an 8-bit adder, a square root circuit,
and a multiplier circuit under the ER constraints of 0.8%,
1.6% and 2.4%. The number of literals in the final SOP
expression and the runtime are shown in Table 2. The first
column of the table shows the name of the original
function, the number of inputs (i), the number of outputs
(o), and the number of literals in the minimized SOP
expression of the original function (L). We also provide
the runtime of the parallel execution (P_Runtime) for
which DPALS is applied to different partitions in parallel
by fully utilizing the four cores in the CPU. As shown,
DPALS achieves more than 50% literal reduction even for
a tight ER constraint of 0.8% for the adder and the square
root circuits. Parallel computing significantly reduces the
runtime of DPALS.

6. Conclusion
In this paper, a novel algorithm is proposed for

approximate logic synthesis (ALS). It identifies the most
promising set of cubes to be added to the original function
to produce a nearly optimal approximate function. It
utilizes dynamic programming on the Hasse diagram of
all cubes. Experimental results have shown the
effectiveness and efficiency of the proposed algorithm.

Acknowledgements
Chen Zou thanks China Scholarship Council (CSC)

for the funding provided for him to participate a summer
research intern program at the University of Alberta. This
work was supported in part by National Natural Science
Foundation of China (NSFC) under Grant No. 61472243
and 61574089, and the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

Table 1. Comparison between the results from DPALS and the
optimal results found through exhaustive search (EXS).

Table 2. Experimental results of DPALS on large circuits.

ER 0.80% 1.60% 2.40%

add8

i:16; o:9

L:11972

Literal 5922 4225 3073

Reduction % 50.53% 64.71% 74.33%

Runtime (s) 245.32 383.53 398.77

P_Runtime (s) 67.673 95.508 108.47

mul8

i:16;

o:16

L:

360494

Literal 303828 281321 262342

Reduction % 15.72% 21.96% 27.23%

Runtime (s) 465.12 742.11 778.37

P_Runtime (s) 128.49 200.42 214.43

root8

i:16; o:8

L:11301

Literal 5507 5098 4654

Reduction % 51.27% 54.89% 58.82%

Runtime (s) 114.2 173.53 180.43

P_Runtime (s) 32.74 48.662 51.45

References

[1] Han J., Orshansky M., Approximate computing: an emerging

paradigm for energy-efficient design, ETS 2013, pp.1 (2013)

[2] Miao J., He K., Gerstlauer A., and Orshansky M., Modeling

and synthesis of quality-energy optimal approximate adders,

ICCAD 2012, pp.728 (2012)

[3] Liu C., Han J. and F. Lombardi, A low-power, high-

performance approxiamte multiplier with configurable partial

error recovery, DATE 2014, pp. 95 (2014)

[4] Shin D., and Gupta S.K., Approximate logic synthesis for

error tolerant applications, DATE 2010, pp.957 (2010)

[5] Miao J., He K., Gerstlauer A., and Orshansky M.,

Approximate Logic Synthesis under General Error Magnitude

and Frequency Constraints, ICCAD 2013, pp.779 (2013)

[6] Shin D., and Gupta S.K., A new circuit simplification method

for error tolerant applications, DATE 2011, pp.1 (2011)

[7] S. Venkataramani, Sabne A., Kozhikkottu V., Roy K., and

Raghunathan A., SALSA: Systematic logic synthesis of

approximate circuits, DAC 2012, pp.796 (2012)

[8] Brayton R.K., Logic minimization algorithms for VLSI

synthesis, Springer Science & Business Media, 1984

Two-level

Circuit
ER

Number of literals Time (s)

Original EXS DPALS EXS DPALS

z9sym

i:9; o:1

2‰ 516 497 497 4.743 0.071

4‰ 516 474 474 160.760 0.096

sym10

i:10; o:1

1‰ 1260 1134 1140 15.867 0.132

2‰ 1260 1080 1107 872.001 0.142

rd73

i:7; o:3

2.6‰ 756 735 743 5.328 0.040

5.2‰ 756 720 734 402.723 0.040

Clip

i:9; o:5

0.4‰ 631 601 620 62.759 0.132

0.8‰ 631 592 611 208min 0.120

sao2

i:10; o:4

0.25‰ 421 420 421 108.674 0.192

0.5‰ 421 418 421 430min 0.202

