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Abstract—An Ising model-based solver has shown efficiency
in obtaining suboptimal solutions for combinatorial optimization
problems. As an NP-hard problem, the traveling salesman problem
(TSP) plays an important role in various routing and scheduling
applications. However, the execution speed and solution quality
significantly deteriorate using a solver with simulated annealing
(SA) due to the quadratically increasing number of spins and
strong constraints placed on the spins. The ballistic simulated
bifurcation (bSB) algorithm utilizes the signs of Kerr-nonlinear
parametric oscillators’ positions as the spins’ states. It can update
the states in parallel to alleviate the time explosion problem. In this
paper, we propose an efficient method for solving TSPs by using
the Ising model with bSB. Firstly, the TSP is mapped to an Ising
model without external magnetic fields by introducing a redundant
spin. Secondly, various evolution strategies for the introduced
position and different dynamic configurations of the time step
are considered to improve the efficiency in solving TSPs. The
effectiveness is specifically discussed and evaluated by comparing
the solution quality to SA. Experiments on benchmark datasets
show that the proposed bSB-based TSP solvers offer superior
performance in solution quality and achieve a significant speed
up in runtime than recent SA-based ones.

Index Terms—Traveling salesman problem, ballistic simulated
bifurcation, parallel update, Ising model, simulated annealing

I. INTRODUCTION

Combinatorial optimization is widely used in various social
and industrial applications. As the problem size increases,
the search space becomes very large when looking for the
optimal solution, due to the large number of combinations of
decision variable values. However, a globally optimal solution
is generally unnecessary for many applications.

For these computationally complex problems, Ising model-
based solvers can obtain a nearly optimal solution at a high
speed and efficiency [1]. The Ising model mathematically
describes the properties of ferromagnetism. It is constructed
for a set of spins, each taking one of the two states {+1,−1}.
By decreasing the energy of the Ising model, the combination
of the spin states eventually provides a suboptimal solution of
the problem.

Given the distances between cities, a traveling salesman
problem (TSP) is a combinatorial optimization problem to find
the shortest route that passes through all cites once and then
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returns to the origin city [2]. To solve an n-city TSP using
an Ising model-based solver, n2 spins in a lattice are required,
with the column and the row representing the city index and
the visiting order, respectively. Double constraints are placed
on the spins that require only one spin with the state ”+1” in
the same column and the same row to avoid (1) (mistakenly)
visiting multiple cities in a single step and (2) visiting a city in
multiple steps. Thus, a large TSP is notoriously difficult to solve
due to the increased spin counts and the strong constraints.

As a heuristic algorithm, simulated annealing (SA) emulates
the thermal annealing in physics [3]. However, the states of
neighbor spins cannot be simultaneously updated, thus increas-
ing the search time for solutions [4]. A clustering approach
works with SA to improve the efficiency by dividing the
original TSP into several sub-problems [2]. However, it only
achieves partially parallel spin-update and the use of the K-
means clustering itself introduces overhead in time.

A quantum mechanics-inspired algorithm referred to as sim-
ulated bifurcation (SB) can realize massive parallelism in com-
putation [5]. By simulating the quantum adiabatic optimization
of Kerr-nonlinear parametric oscillator networks, SB searches
for an approximate solution by solving a pair of differential
equations [6]. Two branches of the bifurcation (indicated by
the sign of an oscillator’s position) are considered as the two
states of a spin. To restrain the errors introduced due to the
use of continuous variables (for the positions), the ballistic SB
(bSB) introduces hard thresholds to limit the evolution of the
oscillators’ positions to quickly find suboptimal solutions [7].
However, bSB has not been considered for solving TSPs.

This paper presents a first study on an efficient bSB-based
TSP solver with several improvement strategies by taking
advantage of the adiabatic evolution in bSB. Initially, the TSP
is converted to an Ising problem without external magnetic
fields and adapted for bSB. A redundant spin is introduced
as an oscillator position in bSB. Then, rather than using a
fixed time step, dynamically configurable time steps are applied
for solving the differential equations in bSB to accelerate
the convergence of energy. Moreover, the redundant position
evolves during the search process using different approaches to
gradually increase the relative significance of an external field
placed on a spin over the interactions between spins.

The remainder of this paper is organized as follows. Section



II presents the basics. Section III discusses the TSP solvers
using the bSB. Experiment results are presented in Section V.
Section VI concludes the paper.

II. PRELIMINARIES

A. Ising Model-based Solvers
The total energy (Hamiltonian, H) of an Ising model with

the external magnetic fields is expressed as [1]:

H = −
∑
i,j

Jijσiσj −
∑
i

hiσi, (1)

where σi (or σj) denotes the state of the ith (or jth) spin, Jij
is the coupling coefficient between the ith and jth spins, and
hi is the external magnetic field for the ith spin.

B. Traveling Salesman Problems (TSPs)
An n-city TSP can be formulated as an Ising problem with

external magnetic fields using n2 spins in a lattice [2], as

Htsp = −
n∑

i=1

n∑
k=1

n∑
j=1

n∑
l=1

Jikjlσikσjl −
n∑

i=1

n∑
k=1

hikσik, (2)

where

Jikjl =



−A
8 Wkl j = i+ 1 or i = j + 1 or

i = 1, j = n or i = n, j = 1
−B

4 i = j, k ̸= l
−C

4 k = l, i ̸= j
−B

4 − C
4 k = l, i = j
0 otherwise

,

(3)

hik = −A

2

∑
l ̸=k

Wkl −
(n− 2)B

2
− (n− 2)C

2
. (4)

In these equations, σik (or σjl) indicates whether the kth (or
lth) city is visited (“+1”) or not (“−1”) at the ith (or jth) step,
and Wkl (= Wlk) denotes the distance between the kth and lth
cities. A, B and C are the parameters to balance the relative
strength of the objective function (by A) and constraints (by B
and C).

C. Ballistic Simulated Bifurcation (bSB)
To solve an Ising problem in (1) but without the external

field (hi), the classical Hamiltonian for the Ising model with
bSB and the Hamiltonian equations of motion are given by [7]

HbSB =
∑
i

a0
2
yi

2+
a0 − a(t)

2

∑
i

xi
2− c0

∑
i,k

Jikxixj , (5)

ẋi =
∂HbSB

∂yi
= a0yi, (6)

ẏi = −∂HbSB

∂xi
= −{a0 − a(t)}xi + 2c0

N∑
j=1

Jijxj , (7)

where xi and yi are the position and the momentum of the
ith oscillator, ẋi and ẏi denote the derivatives with respect to
time, a0 and c0 are manually tuned constants. a(t) is a time-
dependent variable to guarantee the adiabatic evolution. In bSB,
xi is replaced by its sign and yi = 0 when |xi| > 1.

An Ising model-based solver with bSB utilizes the semi-
implicit Euler method as an integrator to solve the pair of
differential equations, (6) and (7). At the end of the search,
the sign of xi indicates the state of the ith spin.

III. SOLVING TSPS USING THE ISING MODEL WITH BSB

A. TSP Solvers using the Ising Model without External Fields

1) Reformulation of the TSP: To formulate the TSP for bSB,
a redundant spin with the state σ(n+1)(n+1) fixed to “+1” is
first introduced to (2) as

Htsp = −
n∑

i=1

n∑
k=1

n∑
j=1

n∑
l=1

Jikjlσikσjl−
n∑

i=1

n∑
k=1

hikσikσ(n+1)(n+1)

(8)
Then, each hik is divided by 2 to convert the external

magnetic fields to the coupling coefficients between n2 spins
and the redundant one. Different from the mapping in (2),
therefore, an n-city TSP is reformulated as an Ising problem
without external magnetic fields by expanding n2 spins to
(n+ 1)2 spins in a lattice, as

Htsp = −
n∑

i=1

n∑
k=1

n∑
j=1

n∑
l=1

Jikjlσikσjl −
n∑

i=1

n∑
k=1

hik

2
σikσ(n+1)(n+1)

−
n∑

j=1

n∑
l=1

hjl

2
σ(n+1)(n+1)σjl

= −
n+1∑
i=1

n+1∑
k=1

n+1∑
j=1

n+1∑
l=1

J
′

ikjlσikσjl, (9)

where

J
′

ikjl =


Jikjl i, k, j, l ∈ {1, 2, ..., n}
hik

2 i, k ∈ {1, 2, ..., n} and j = l = n+ 1
hjl

2 j, l ∈ {1, 2, ..., n} and i = k = n+ 1
0 otherwise

.

(10)
To satisfy the constraint that there is only one spin with an up
state (“+1”) in the same row and the same column, σ(n+1)(n+1)

is fixed to “+1” and the states of the other spins in the (n+1)th
dimension are fixed to “−1”.

2) Solving the TSP with bSB: Following (5)-(7), the classical
Hamiltonian for the Ising model in (9) using bSB to solve TSPs
(HtspbSB

) and the corresponding pair of differential equations
are given by

HtspbSB
=

∑
i,k

a0
2
yik

2+
a0 − a(t)

2

∑
i

xik
2−c0

∑
i,j,k,l

J
′

ikjlxikxjl,

(11)
˙xik = a0yik, (12)

˙yik = −{a0 − a(t)}xik + 2c0
∑n+1

j=1

∑n+1
l=1 J

′

ikjlxjl

= −{a0 − a(t)}xik + 2c0
∑n

j=1

∑n
l=1 Jikjlxjl

+c0
∑n

j=1

∑n
l=1 hikx(n+1)(n+1), (13)

where xik and yik (i, k ∈ {1, 2, ..., n}) are the position and the
momentum of the oscillator in the ith row and kth column in a
lattice. x(n+1)(n+1) is expected to be 1 at the end of the search
to ensure the spin state σ(n+1)(n+1) to be “+1”.

With (12) and (13), a TSP can efficiently be solved by using
bSB.



TABLE I
DIFFERENT DYNAMIC CONFIGURATIONS OF THE TIME STEP (DTS) IN THE

ISING MODEL-BASED SOLVER WITH BSB
Dynamic Configurations Formulation

Small-large

DTS1:
equally distributed △t =


0.5 r <

iter

2

1 r ≥
iter

2

DTS2:
large △t preferred △t =


0.5 r <

iter

3

1 r ≥
iter

3

DTS3:
small △t preferred △t =


0.5 r <

2× iter

3

1 r ≥
2× iter

3

Large-small-large DTS4 △t =

0.5
iter

3
< r <

2× iter

3
1 otherwise

B. Improvement Strategies

1) Dynamic Time Steps: To accelerate the convergence of
Hamiltonian, the dynamic configuration of the time step (DTS)
is considered to solve the pair of differential equations (12)
and (13). In hardware, the multiplication with 0.5 can be
implemented by using a shift operation and the multiplication
with 1 does not need any specific processing. Therefore, for an
efficient hardware implementation, the time step (denoted by
△t) is selected to be 0.5 or 1 by using a piecewise function
during a given iteration (denoted by iter) in the update of the
spin states. Four different dynamic configurations of the time
step are considered, as shown in Table I.

Since it is more challenging to skip the local minimum as
time increases, a small time step △t = 0.5 is used at the
beginning of a search to ensure the solution quality and a
large time step △t = 1 is used near the end of the search to
increase the probability of changing the state of a spin. Three
configurations are developed by using different proportions of
small and large time steps during the update of the spin states.
As a basic configuration, DTS1 employs equally distributed
time steps by taking the value of either 0.5 or 1. The large time
step is preferred in the last two-thirds of iterations by using the
configuration referred to as DTS2, whereas the configuration
referred to as DTS3 uses small time steps during the first two-
thirds of iterations.

The state of a spin (σik) is determined by the sign of
the related position (xik), which is difficult to change at the
beginning before the bifurcation occurs. Therefore, the large
time step is used at both the beginning and the end of search
in the configuration referred to as DTS4.

2) Evolution of x(n+1)(n+1) : If x(n+1)(n+1) is fixed at 1
during the entire simulation, the effect of the external field
on the spin is more significant than the interaction between
spins. Moreover, σ(n+1)(n+1) is “+1” as long as the sign
of x(n+1)(n+1) is positive. Therefore, different evolution ap-
proaches (EAs) are considered for x(n+1)(n+1) to change
gradually from a positive value to 1, as presented in Table II.

In EA1 and EA5, x(n+1)(n+1) increases linearly and expo-
nentially, respectively, from 0.5 to 1 with time. Using EA2,
x(n+1)(n+1) remains at 0.5 in the first half of the iteration and

TABLE II
DIFFERENT EVOLUTION APPROACHES (EAS) FOR x(n+1)(n+1) IN THE

ISING MODEL-BASED SOLVER WITH BSB
Evolution Formulation

Linear EA1 x(n+1)(n+1) =
r

2iter
+ 0.5

Constant-linear EA2 x(n+1)(n+1) =


0.5 r <

iter

2
r

iter
r ≥

iter

2

Linear-constant EA3 x(n+1)(n+1) =


r

iter
r <

iter

2

1 r ≥
iter

2

Constant-constant EA4 x(n+1)(n+1) =

0.5 r <
iter

2
1 otherwise

Exponential EA5 x(n+1)(n+1) = 0.5 + r2

2iter2

then linearly increases to 1 in the second half, whereas in EA3,
x(n+1)(n+1) linearly increases in the first half of iterations and
stays unchanged as 1 in the second half. x(n+1)(n+1) takes 0.5
at first and then takes 1 using EA4.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

Consider (12) and (13), where we set a0 = 1 and a(t)
increases from 0 to 2 to ensure the adiabatic evolution. x and y
are initialized to a zero matrix and a random matrix with entries
within [−0.1,+0.1], respectively. The parameters A, B, and
C are, respectively, set to 1, max{W} and max{W}, where
max{W} represents the maximum value in W . Three datasets
from the TSPLIB benchmark [8] are considered. The solution
quality is evaluated by the average (Ave), the maximum
(Max), the minimum (Min), and the standard deviation (Std)
of the obtained route distances from 100 trials.

B. Using Different Dynamic Configurations of the Time Step

The quality of the TSP solvers based on the Ising model with
bSB using different dynamic configurations of the time step are
presented in Table III with the default value 1 for x(n+1)(n+1).
Using △t = 0.5 leads to a higher solution quality than using
△t = 1. An improvement of 9.4%, 10.9%, and 11.8% in Ave
has been achieved, respectively, when solving the problems in
burma14, ulysses16 and ulysses22.

Compared with using a constant time step, the use of dy-
namic configurations of the time step leads to a higher solution
quality (with smaller Ave, Max, Min). As seen from the
results obtained by using DTS1, DTS2 and DTS3 in Table III,
the solution quality is improved with the increased use of the
small time step (△t = 0.5). Compared with DTS1 and DTS2,
DTS3 prefers small △t in most iterations during the search, so
it shows a higher solution quality. Moreover, DTS4 improves
the efficiency and stability in the solutions by exploiting the
inherent characteristics of the bSB algorithm. Although DTS4
employs the small time step (△t = 0.5) in only one third of
all updates, it achieves a reduction up to 2.5% in Ave, 10.4%
in Max, but with a slight increase up to 2.9% in Min than
using the constant △t = 0.5; it also achieves a reduction up to
13.6% in Ave, 23.4% in Max, and 9.6% in Min than using
the constant time step △t = 1.



TABLE III
SOLUTION QUALITY (IN THE STATISTICS OF TRAVELLED DISTANCES) OF USING DIFFERENT DTS FOR THE BSB-BASED TSP SOLVERS

Metrics burma14 ulysses16 ulysses22
△t = 0.5 △t = 1 DTS1 DTS2 DTS3 DTS4 △t = 0.5 △t = 1 DTS1 DTS2 DTS3 DTS4 △t = 0.5 △t = 1 DTS1 DTS2 DTS3 DTS4

Ave 3707 4091 4005 4011 3775 3679 7678 8619 8393 8389 7865 7479 8441 9577 9292 9547 8258 8267
Max 4217 4647 4936 4776 4331 4150 8637 9853 9785 9853 9668 8496 10353 12109 11301 11701 9575 9273
Min 3371 3672 3536 3511 3413 3417 6803 7180 7172 7439 7079 6863 7203 8208 7779 8210 7249 7419
Std 211 207 263 297 255 230 433 643 633 559 572 459 584 945 830 803 597 489

TABLE IV
SOLUTION QUALITY (IN THE STATISTICS OF TRAVELLED DISTANCES) OF DIFFERENT EAS FOR x(n+1)(n+1) FOR THE BSB-BASED TSP SOLVERS

Metrics burma14 ulysses16 ulysses22
EA1 EA2 EA3 EA4 EA5 EA1 EA2 EA3 EA4 EA5 EA1 EA2 EA3 EA4 EA5

Ave 3780 3836 3939 3992 3792 7999 8015 8448 8529 7997 8646 8810 9410 9485 8499
Max 4525 4751 4757 4841 4903 9224 10027 9914 9763 10718 10012 10397 11029 11191 10296
Min 3323 3346 3511 3454 3323 7062 7027 7318 7332 6857 7330 7545 7993 8000 7451
Std 269 464 274 260 400 539 702 608 575 674 608 642 642 721 672

C. Using Different Evolution Approaches for x(n+1)(n+1)

Table IV presents the solution quality of using different evo-
lution approaches. △t is fixed to 1 to simply the hardware im-
plementation. No matter which evolution approach is employed,
the bSB-based TSP solver achieves an improvement in the so-
lution quality. The EA1 and EA5, where x(n+1)(n+1) increases
linearly and exponentially, respectively, lead to a significant
improvement, while a slight improvement is obtained by using
EA4. Using EA1 and EA5 obtains a similar improvement in
Ave, at least by 7.3%, 7.1% and 9.7% for solving burma14,
ulysses16, and ulysses22, respectively. Moreover, using the
bSB-based TSP solver with EA1 can find a solution with higher
stability (with a smaller Std).

D. Comparison

Fig. 1 shows a comparison of the performance of using the
improved SA [4] and the proposed bSB. The bSB-based TSP
solvers with the DTS4 and the EA1 are referred to as bSB-
DTS4 and bSB-EA1, respectively. The number of iterations is
50k in the improved SA and 2k in the bSB.

The Ising model-based solver with bSB-DTS4 offers solu-
tions of higher quality (with smaller Ave and Max) than that
with bSB-EA1. Compared with the recent SA [4], due to the
parallel spin update and faster convergence of Hamiltonian,
bSB-DTS4 can significantly improve the Ave and the Std by
42% and 66% respectively, with about 7.34× shorter runtime
in solving burma14. It further reduces the Ave and the Std by
37% and 62% respectively, with about 13.44× shorter runtime
in solving ulysses16. Finally, it reduces the Ave and the Std
by up to 47% and 67% respectively, with about 7.69× shorter
runtime in solving ulysses22. A similar solution quality can be
obtained by using the SA [4] if the iteration increases, but at
the cost of more than 100× runtime.

V. CONCLUSION

In this paper, an efficient Ising model-based TSP solver
using bSB with dynamic configurations of time steps and
evolutions of a redundant oscillator position is proposed to
realize the fully parallel update of the spin states. The external
magnetic fields are first considered as the coefficients between
spins by introducing a redundant spin as the position of an
oscillator in bSB. In this way, the TSP is mapped to an Ising
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Fig. 1. Comparison of the TSP solvers using the improved SA-based [4] and
the bSB-based Ising models.

problem without external magnetic fields. Moreover, several
improvement strategies are proposed for updating the spins’
states by leveraging the features of bSB, including dynamically
configuring the time step and evolving the redundant position.
Due to the massive parallel processing capacity, the proposed
method can solve the TSP with an improvement in the solution
quality by at least 37% with 13.44× shorter runtime than
using an SA method. These results provide an opportunity
for devising parallel processing circuits to efficiently solve
constrained combinatorial problems such as the TSP. This
hardware design will be addressed in future work.
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