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ABSTRACT
Annealing-based Ising machines have shown promising results in
solving combinatorial optimization problems. As a typical class of
these problems, however, traveling salesman problems (TSPs) are
very challenging to solve due to the constraints imposed on the
solution. This article proposes a parallel annealing algorithm for
a fully connected Ising machine that significantly improves the
accuracy and performance in solving constrained combinatorial
optimization problems such as the TSP. Unlike previous parallel
annealing algorithms, this improved parallel annealing (IPA) al-
gorithm efficiently solves TSPs using an exponential temperature
function with a dynamic offset. Compared with digital annealing
(DA) and momentum annealing (MA), the IPA reduces the run time
by 44.4 times and 19.9 times for a 14-city TSP, respectively. Large
scale TSPs can be more efficiently solved by taking a 𝑘-medoids
clustering approach that decreases the average travel distance of a
22-city TSP by 51.8% compared with DA and by 42.0% compared
with MA. This approach groups neighboring cities into clusters to
form a reduced TSP, which is then solved in a hierarchical manner
by using the IPA algorithm.
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1 INTRODUCTION
Combinatorial optimization problems exist in many applications,
such as drug discovery, Internet of Things technology, and ma-
chine learning [1]. However, such a problem is non-deterministic
polynomial time (NP)-hard and time-consuming to solve using the
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enumeration method on a conventional computer [2]. For exam-
ple, (𝑀 − 1)! possibilities need to be traversed to solve a traveling
salesman problem (TSP) with𝑀 cities. The traversal time will sub-
stantially increase as𝑀 becomes large, making solving TSPs very
difficult. In fact, an approximation method is often used to obtain
a suboptimal or good enough solution in many industrial appli-
cations. Recently, an efficient approximate system called an Ising
machine has been considered for solving combinatorial optimiza-
tion problems [3].

An Ising model mathematically describes the ferromagnetic in-
teractions of magnetic spins. In the classical 2D Ising model, a spin
is considered to only interact with the closest neighbor spins on a
square lattice, as shown in Fig. 1(a). An Ising machine solves a com-
binatorial optimization problem by mapping it to the Ising model
and then searching for the ground state via annealing with random
flips [4], as shown in Fig. 2. The energy of the Ising model tends
to converge to a minimum value during the annealing process; the
random flip is applied to avoid being stuck in a local minimum. An
Ising machine does not traverse all possibilities and thus is more
efficient than conventional computers for solving large-scale com-
binatorial optimization problems. Various annealing-based Ising
machines have been studied, including the quantum Ising machine
[5] and the coherent Ising machine [6] based on quantum mechan-
ics and optical parametric oscillators, respectively. In this paper,
we focus on CMOS Ising machines as CMOS circuits are easy to
manufacture and scale [4].

Simulated annealing (SA) [7] serves as the basis of various anneal-
ing algorithms, such as CMOS annealing [4, 8], digital annealing
(DA) [9, 10], momentum annealing (MA) [11], and stochastic cellu-
lar automata annealing (SCA) [1]. SA mimics the thermal annealing
in metallurgy, whereas CMOS annealing implements SA on CMOS
circuits and the random flip is realized by utilizing the variability of
static random access memory (SRAM) cells under a low supply volt-
age [4, 8]. However, CMOS annealing is implemented on a sparse
spin-to-spin structure, which is inefficient in solving complex com-
binatorial optimization problems. Hence, DA has been developed
to implement a fully connected Ising model, as shown in Fig. 1(b).
DA further speeds up the annealing process by a parallel search
and using an escape mechanism referred to as a dynamic offset
[9, 10]. Nevertheless, only one spin can be flipped per iteration in
the DA because connected spins cannot be simultaneously updated
in the Ising model. This increases the average time required for
the Ising machine to find a solution. In order to perform a parallel
spin-update in the fully connected Ising model and accelerate the
annealing process, a two-layer spin structure with self-interactions
has been proposed in [1, 11], as shown in Fig. 1(c), and referred to
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as SCA and MA. They belong to the class of parallel annealing (PA)
algorithms, and the Ising machines that use PA are called parallel
fully connected Ising machines.

Constrained combinatorial optimization problems, including
TSPs, are more challenging than unconstrained combinatorial opti-
mization problems (such as the max-cut problem). Although DA can
solve TSPs, only sequential spin-update is possible, which makes
the annealing speed a performance bottleneck. Both SCA and MA
can perform parallel spin-update; however, they have only been
considered to solve the max-cut problem.

This paper proposes an improved parallel annealing (IPA) algo-
rithm to solve constrained combinatorial optimization problems
such as the TSP using parallel fully connected Ising machines. To
the best of the authors’ knowledge, this work is the first attempt
to do so. The contributions lie in the following novelties aimed at
improving the performance of fully connected Ising machines in
solving TSPs: (1) using an exponential temperature function with a
dynamic offset and (2) using 𝑘-medoids in Ising model-based TSP
solvers to preprocess data for improving the quality of solutions.

The remainder of this paper is organized as follows. Section 2
reviews the background of parallel annealing algorithms and TSP
mapping. The IPA algorithm and the 𝑘-medoids are discussed in
Section 3 for solving the TSPs. Section 4 reports the experimental
results on TSP benchmarks. Section 5 concludes the paper.

2 PRELIMINARIES
2.1 The Ising model
In the Ising model, each spin can be in either an upward (+1)
or downward (−1) state. The interactions among the spins and
external magnetic fields affect the states of spins. In an 𝑁 -spin
system, the Hamiltonian in an Ising model is defined as [12]:

𝐻 (𝜎1, ..., 𝜎𝑁 ) = −
∑︁
𝑖, 𝑗

𝐽𝑖 𝑗𝜎𝑖𝜎 𝑗 −
∑︁
𝑖

ℎ𝑖𝜎𝑖 , (1)

where 𝜎𝑖 (∈ {−1, +1}, 𝑖 ∈ {1, 2, ..., 𝑁 }) denotes the state of the 𝑖th
spin, 𝐽𝑖 𝑗 indicates the interaction between the 𝑖th spin and the 𝑗th
spin, and ℎ𝑖 is the external magnetic field for the 𝑖th spin.

2.2 Mapping the Traveling Salesman Problem
An 𝑛-city TSP can be expressed in Hamiltonian as [3]:

𝐻𝑇𝑆𝑃 = 𝐴
∑︁
𝑘≠𝑙

∑︁
𝑖

𝑊𝑘𝑙𝑎𝑖𝑘𝑎 (𝑖+1)𝑙 + 𝐵
∑︁
𝑖

(
∑︁
𝑘

𝑎𝑖𝑘 − 1)
2

+𝐶
∑︁
𝑘

(
∑︁
𝑖

𝑎𝑖𝑘 − 1)
2
, (2)

where 𝑎𝑖𝑘 (∈ {0, +1}) indicates whether the 𝑘th city is visited (+1)
or not (0) at the 𝑖th step, and𝑊𝑘𝑙 denotes the distance between
the 𝑘th city and the 𝑙th city. The first term in (2) is the objective
function of the TSP, which computes the total distance of the route.
The second and the third terms in (2) are constraints that prevent
visiting multiple cities in one step and visiting a city more than
once, respectively. These two terms take the minimum value 0 when∑
𝑘 𝑎𝑖𝑘 =

∑
𝑖 𝑎𝑖𝑘 = 1. 𝐴, 𝐵 and 𝐶 are the parameters (with positive

values) that balance the weights between the objective function
and the constraints.
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Figure 1: (a) A classical 2D Ising model, (b) a fully connected
Ising model (illustrated using the spin in the top left corner),
and (c) a two-layer spin structure for the Ising model [1, 11].
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Figure 2: The energy profile of the Ising model during an-
nealing with random flips.

Then the TSP can be mapped to the Ising model by converting
𝑎𝑖𝑘 (∈ {0, +1}) to 𝜎𝑖𝑘 (∈ {−1, +1}) as follows [3]:

𝐻𝑇𝑆𝑃 =
𝐴

4
∑︁
𝑘≠𝑙

∑︁
𝑖

𝑊𝑘𝑙𝜎𝑖𝑘𝜎 (𝑖+1)𝑙 +
𝐴

2
∑︁
𝑘≠𝑙

∑︁
𝑖

𝑊𝑘𝑙𝜎𝑖𝑘

+𝐵4
∑︁
𝑖

∑︁
𝑘

∑︁
𝑙

𝜎𝑖𝑘𝜎𝑖𝑙 +
(𝑛 − 2)𝐵

2
∑︁
𝑖

∑︁
𝑘

𝜎𝑖𝑘

+𝐶4
∑︁
𝑖

∑︁
𝑘

∑︁
𝑗

𝜎𝑖𝑘𝜎 𝑗𝑘 + (𝑛 − 2)𝐶
2

∑︁
𝑖

∑︁
𝑘

𝜎𝑖𝑘

+𝐴4
∑︁
𝑘≠𝑙

∑︁
𝑖

𝑊𝑘𝑙 + (𝑛
3

4 − 𝑛2 + 𝑛) (𝐵 +𝐶) . (3)

The last two constant terms in (3) unrelated to the states of spins
are ignored when minimizing 𝐻𝑇𝑆𝑃 . The first, third, and fifth terms
correspond to the interaction term in (1), and the other terms cor-
respond to the external field term in (1).

2.3 Parallel Annealing (PA)
In the two-layer spin structure for the Ising model, the couplings
between 𝜎𝐿

𝑖
and 𝜎𝑅

𝑗
are denoted as 𝐽𝑖 𝑗 (𝑖 ≠ 𝑗), whereas the couplings

between𝜎𝐿
𝑖
and𝜎𝑅

𝑖
are called self-interactions (denoted as𝜔𝑖 ). Thus,

the Hamiltonian based on PA, 𝐻𝑃 , is given by [1, 11]:

𝐻𝑃 = −
∑︁
𝑖, 𝑗

𝐽𝑖 𝑗𝜎
𝐿
𝑖 𝜎

𝑅
𝑗 − 1

2
∑︁
𝑖

ℎ𝑖 (𝜎𝐿𝑖 + 𝜎𝑅𝑖 ) + 𝜔𝑖

∑︁
𝑖

(1 − 𝜎𝐿𝑖 𝜎
𝑅
𝑖 ) . (4)

Only when the self-interactions 𝜔𝑖 are sufficiently large, are the
spin configurations in both layers the same, i.e., 𝜎𝑅

𝑖
= 𝜎𝐿

𝑖
. Thus, the

third term in (4) can be eliminated, so (4) becomes the same as (1)
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[1, 11]. 𝜔𝑖 is given by [11]:

𝜔𝑖 =


∑︁
𝑠 𝑗 ∈𝑆

|𝐽𝑖 𝑗 | −
1
2
∑︁
𝑠 𝑗 ∈𝐶

|𝐽𝑖 𝑗 | (𝑠𝑖 ∈ 𝐶)

𝜆

2 (𝑠𝑖 ∉ 𝐶)
, (5)

where 𝜆 is the largest eigenvalue of −𝑱 (𝑱 is a matrix of 𝐽𝑖 𝑗 ), 𝑠𝑖 is
the 𝑖th spin, 𝐶 is a subset of the set of all spins 𝑆 and 𝐶 satisfies
𝐶 = {𝑠𝑖 |𝜆 ≥ ∑

𝑠 𝑗 ∈𝑆 |𝐽𝑖 𝑗 |}.
The spin-flip probability is calculated using the Metropolis al-

gorithm [13]. If 𝜎𝐿
𝑖
is flipped, the total energy will be increased

by

Δ𝑖 = 2𝜎𝐿𝑖 (
ℎ𝑖

2 +
∑︁
𝑗

𝐽𝑖 𝑗𝜎
𝑅
𝑗 + 𝜔𝑖𝜎

𝑅
𝑖 ) . (6)

Then, the new spin-flip probability is min{1, 𝑒𝑥𝑝 (−Δ𝑖/𝑇 )}, where
𝑇 is the temperature.

To improve the efficiency of annealing, dropout and momentum
scaling are introduced in [11]. The dropout sets each 𝜔𝑖 as “0” with
a decreasing probability. The momentum scaling multiplies every
interaction 𝜔𝑖 by an increasing factor from 0 to 1. Thus, at the end
of momentum annealing, every interaction 𝜔𝑖 will return to the
value computed in (5) to ensure 𝜎𝑅

𝑖
= 𝜎𝐿

𝑖
in (4).

3 IMPROVED PARALLEL ANNEALING FOR
TSPS

3.1 Improved Parallel Annealing (IPA)
The IPA for solving TSPs is shown in Algorithm 1. An exponential
temperature function is used in the IPA and a dynamic offset is
applied to the temperature function. Firstly, the state of a spin
is randomly initialized to “ − 1” or “ + 1”, and the temperature
increment (Δ𝑇 ) due to the dynamic offset is initialized to “0”. In Fig.
1(c), spins in the left layer are updatedwhen the current step 𝑠 is odd;
otherwise, the spins in the right layer are updated. In each iteration
(𝑠 ∈ [1, 𝑖𝑡𝑒𝑟𝑛𝑢𝑚]), the dropout rate (𝑝𝑠 ) and the momentum scaling
factor (𝑐𝑠 ) are updated, where the 𝑖𝑡𝑒𝑟𝑛𝑢𝑚 is the total number of
iterations. The temperature (𝑇𝑠 ) is then recalculated, where 𝑟 in
Algorithm 1 is the cooling coefficient. During the annealing, the self-
interaction (𝜔𝑖𝑘 ) is set to “0” with the probability 𝑝𝑠 or decreased
to 𝑐𝑠 · 𝜔𝑖𝑘 . Then, the energy variation (Δ𝑖𝑘 ) when 𝜎𝑖𝑘 is flipped is
evaluated using the spin interaction (𝐽𝑖𝑘 𝑗𝑙 ) and the updated 𝜔𝑖𝑘 .
Subsequently, the spin-flip probability (𝑃𝑖𝑘 ) is calculated using the
Metropolis algorithm. If 𝑃𝑖𝑘 is larger than a randomly generated
number within (0, 1), the spin will be flipped. Otherwise, the spin
will remain unchanged. After each iteration, if no spin is flipped,
Δ𝑇 will increase. Otherwise, Δ𝑇 will be reset to “0”. Finally, the spin
configuration (𝜎) at the end of iterations is output as the solution
to the combinatorial optimization problem found by the IPA.

3.2 A Temperature Function
The classical annealing with parallel spin-update uses a logarithmic
function in (7) as the temperature function to solve the max-cut
problem [11]:

𝑇𝑠 =
1

𝛽0 ln (1 + 𝑠) , (7)

Algorithm 1 Improved Parallel Annealing for TSPs
Input: spin interaction: 𝑱 ; external magnetic field: 𝒉;

the number of cities:𝑀 ; self-interaction: 𝝎;
hyperparameters: 𝑖𝑡𝑒𝑟𝑛𝑢𝑚, 𝑇𝑖𝑛𝑖𝑡 , 𝑇𝑖𝑛𝑐 , 𝑟

Output: spin configuration (𝜎)
1: Initialize spin configurations
2: 𝑇𝑠 ⇐ 𝑇𝑖𝑛𝑖𝑡
3: Δ𝑇 ⇐ 0
4: for 𝑠 = 1 to 𝑖𝑡𝑒𝑟𝑛𝑢𝑚 do
5: if 𝑠 is odd then
6: 𝐴 ⇐ 𝐿, 𝐵 ⇐ 𝑅

7: else
8: 𝐴 ⇐ 𝑅, 𝐵 ⇐ 𝐿

9: end if
10: Update 𝑝𝑠 and 𝑐𝑠
11: 𝑇𝑠 ⇐ (𝑇𝑠 + Δ𝑇 ) · 𝑟𝑠−1
12: for 𝑖 = 1 to𝑀 do
13: for 𝑘 = 1 to𝑀 do
14: Temporarily set 𝜔𝑖𝑘 ⇐ 0 with the probability 𝑝𝑠 , and

temporarily decrease 𝜔𝑖𝑘 ⇐ 𝑐𝑠 · 𝜔𝑖𝑘

15: Δ𝑖𝑘 ⇐ 2𝜎𝐴
𝑖𝑘
(ℎ𝑖𝑘2 +∑

𝑗,𝑙 𝐽𝑖𝑘 𝑗𝑙𝜎
𝐵
𝑗𝑙
+ 𝜔𝑖𝑘𝜎

𝐵
𝑖𝑘
)

16: 𝑃𝑖𝑘 ⇐ min{1, 𝑒𝑥𝑝 (−Δ𝑖𝑘/𝑇𝑠 )}
17: if 𝑃𝑖𝑘 > 𝑟𝑎𝑛𝑑 then
18: 𝜎𝐴

𝑖𝑘
⇐ −𝜎𝐴

𝑖𝑘
19: end if
20: end for
21: end for
22: if no spin is flipped then
23: Δ𝑇 ⇐ Δ𝑇 +𝑇𝑖𝑛𝑐
24: else
25: Δ𝑇 ⇐ 0
26: end if
27: end for

where 𝛽0 is a scaling factor for the inverted value of temperature
and𝑇𝑠 denotes the temperature in the 𝑠th iteration. When the Ising
model reaches a local minimum or ground state and𝑇𝑠 is sufficiently
small, the flip probability for each spin, 𝑃𝑖𝑘 , is considered to be close
to 0 (see lines 15 and 16 in Algorithm 1). With a proper 𝛽0, however,
the temperature only decreases to a value that results in low flip
probabilities for all spins. Hence, it is possible for the Ising model
to escape from local minima when solving max-cut problems.

To solve a TSP, the temperature required for maintaining low
spin-flip probabilities is larger because Δ𝑖𝑘 is larger due to the
constraints. However, an Ising model cannot reach a local minimum
or ground state, or meet the constraints at such a temperature. Thus,
the temperature needs to be sufficiently low at the end of annealing
when solving TSPs. It will, therefore, be difficult for the Ising model
to escape from a local minimum. Moreover, the temperature using
a logarithmic function rapidly decreases, so it will prevent the Ising
model from traversing additional local minima, thereby reducing
the quality of solutions. Hence, an exponential function is used as
the temperature function to solve the TSP, as

𝑇𝑠 = 𝑇𝑖𝑛𝑖𝑡 · 𝑟𝑠−1, (8)
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where 𝑇𝑖𝑛𝑖𝑡 is the initial temperature and 𝑟 is the cooling rate. The
slower decreasing rate of the exponential function makes the Ising
model stay longer at a high temperature, therefore improving the
quality of solutions.

Considering that the number of local minima increases with the
TSP scale, the Ising model is prone to be stuck in a local minimum
during annealing. Reducing the time spent in a local minimum
can improve efficiency. Thus, we consider introducing a dynamic
offset, as in [9, 10, 14], into the temperature function. To increase
the probability of escaping from a local minimum, the temperature
𝑇𝑠 needs to be very large. Therefore, Δ𝑇 is added to 𝑇𝑠 , where Δ𝑇
is increased by 𝑇𝑖𝑛𝑐 if the spin configuration is unchanged. Lastly,
Δ𝑇 is reset to zero after a change of the spin state has occurred.

The improvement of the solution quality after using an expo-
nential function with a dynamic offset and the details for setting a
proper 𝑇𝑖𝑛𝑐 are discussed in Section 4.

3.3 A Clustering Approach
The solution quality drastically deteriorates when the number of
cities in the TSP is large. We further consider a clustering approach
[3] to improve the quality of the solution. The basic idea is to
group the nearby cities into one cluster and use the centric point
to represent each cluster. Then the TSP consisting of those central
points can be solved by using the IPA. After learning the visiting
order of each cluster, the original TSP can be more efficiently solved.
This Ising machine can avoid producing solutions that conform to
the constraints but with very long travel distances. For example, if
cluster A contains three cities and is first visited among the clusters,
then the visiting order of these three cities will be confined to the
first three steps.

The𝑘-medoids and𝑘-means are two typical clustering approaches.
To divide 𝑀 vertices into 𝑘 clusters, the first step of the 𝑘-means
is to randomly generate 𝑘 new vertices as the central points of the
𝑘 clusters, while the 𝑘-medoids method chooses 𝑘 vertices from
the original set as the central points. In the second step, after the
𝑘 central points are obtained, the other (𝑀 − 𝑘) vertices in the set
are assigned to the closest central point and form a cluster. In the
third step, the 𝑘-means method generates a new central point for
each cluster according to the mean value of the coordinates of the
vertices in the cluster, while the 𝑘-medoids method chooses the
vertex with the smallest sum of distances from the other vertices
in the same cluster as the new central point. Then, the second and
the third steps are repeated until there is no change in any cluster.

Compared with the 𝑘-means, the disadvantage of 𝑘-medoids
is the computation time for each cluster in the third step, 𝑂 (𝑚2),
where𝑚 is the number of vertices in one cluster. However, there
are𝑀 ×𝑀 accumulators in the circuit of an Ising model for𝑀 ×𝑀

spins that solves an 𝑀-city TSP, where 𝑀 =
∑𝑘
𝑖=1𝑚𝑖 and 𝑚𝑖 is

the number of vertices in the 𝑖th cluster. Thus, this computation
time can be reduced to 𝑂 (𝑚) as it can be calculated in parallel
with 𝑚 accumulators. Furthermore, calculation of the distances
between the vertices is not required in an Ising machine as the
distance values are included in the system’s input, i.e., in the spin
interaction matrix 𝑱 . In contrast, the 𝑘-means method needs extra
arithmetic units to compute the distances between the vertices and
the central points. Therefore, using 𝑘-medoids for clustering can

Algorithm 2 The 𝑘-medoids clustering
Input: distance matrix:𝑾 (𝑀 ×𝑀); the number of clusters: 𝑘
Output: vertex indexes (with cluster labels)

Step 1
1: for 𝑖 = 1 to𝑀 do
2: 𝐷𝑖 =

∑𝑀
𝑗=1𝑊𝑖 𝑗

3: end for
4: Choose 𝑘 vertices (𝑣) with the first 𝑘 smallest 𝐷 as the central

points
Step 2

5: for 𝑖 = 1 to𝑀 do
6: Assign 𝑣𝑖 to the closest central point and mark the label of

𝑣𝑖 with the index of the corresponding central point
7: end for

Step 3
8: for each cluster do
9: for each 𝑣𝑖 in the cluster do
10: 𝑑𝑖 =

∑
𝑗𝑊𝑖 𝑗

11: end for
12: Choose 𝑣 with the smallest 𝑑 to be the new central point of

the current cluster
13: end for
14: Repeat Step 2 and Step 3 until there is no change of elements

in each cluster

achieve a higher hardware efficiency than using 𝑘-means with no
performance trade-off in an Ising machine.

The 𝑘-medoids clustering was proposed in [15], but it is first
applied in an Isingmodel-based TSP solver in this work, as shown in
Algorithm 2. A strategy for choosing the 𝑘 vertices at the center of
the map as initial central points is applied to improve the efficiency
of 𝑘-medoids. The 𝑘 vertices with the 𝑘 smallest sums of distances
from all the other vertices are selected as initial central points.

To implement the visiting restrictions, an𝑀-by-𝑀 matrix 𝒉𝒑 is
added to the external magnetic field matrix, 𝒉. For example, if the
first three cities are confined to be visited at the first three steps,

𝒉𝒑 =

(
𝒂 𝒃
𝒄 𝒅

)
, where 𝒂 and 𝒅 are 3-by-3 and (𝑀 − 3)-by-(𝑀 − 3)

zero matrices, respectively; 𝒃 and 𝒄 are 3-by-(𝑀 − 3) and (𝑀 − 3)-
by-3 matrices of 𝑀 ·𝑚𝑎𝑥{𝑎𝑏𝑠 (𝑱 )} (as a large value), respectively.
The 𝑚𝑎𝑥{𝑎𝑏𝑠 (𝑱 )} returns the entry in matrix 𝑱 with the largest
absolute value.

4 EXPERIMENTAL RESULTS
Seven benchmark datasets are used in the experiments, including
𝑏𝑢𝑟𝑚𝑎14, 𝑢𝑙𝑦𝑠𝑠𝑒𝑠16, 𝑢𝑙𝑦𝑠𝑠𝑒𝑠22, and four other sub-datasets ran-
domly selected from the TSPLIB benchmark (𝑛 = 6 and 12 from
𝑔𝑟431 and 𝑛 = 7 and 10 from 𝑎𝑙𝑖535). The average (Ave), maximum
(Max), minimum (Min), and standard deviation (Std) of the travel
distances are obtained after performing annealing by 100 times with
an iteration number of 10𝑘 . The simulation was run in MATLAB
on an AMD processor Ryzen 5 3600𝑋 (3.8 𝐺𝐻𝑧).

We evaluate the effect of the penalty parameters 𝐵 and 𝐶 on
the performance of the IPA with six benchmark datasets, including
𝑏𝑢𝑟𝑚𝑎14,𝑢𝑙𝑦𝑠𝑠𝑒𝑠16, 𝑛 = 6 and 12 from 𝑔𝑟431 and 𝑛 = 7 and 10 from
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𝑎𝑙𝑖535. The results are obtained with𝑇𝑖𝑛𝑐 =𝑚𝑎𝑥{𝑎𝑏𝑠 (𝑱 )}, 𝑟 = 0.97,
and 𝑇𝑖𝑛𝑖𝑡 = 1 × 107. Here, 𝑇𝑖𝑛𝑖𝑡 is an arbitrarily large value and 𝑟 is
selected to ensure 𝑇𝑖𝑛𝑐 · 𝑟𝑠−1 close to 0 at the end of annealing. As
shown in Fig. 3, for all six TSPs, more stable solutions with smaller
Ave can be obtained when the penalty parameters decrease. It is due
to the fact that for lower penalty parameter values, the Ising model
escapes from the local minima with a higher probability. However,
the parameter values must be large enough to ensure all solutions
meet the constraints, which are violated when 𝐵 and 𝐶 are smaller
than 0.85 ×max{𝑾 }. The improvement in solution quality is less
significant when 𝐵 and 𝐶 are smaller than 1 ×max{𝑾 }. Therefore,
we choose 𝐵 = 𝐶 = 1 ×max{𝑾 } as the penalty parameter setting
in our further experiments.

As a key to increasing the probability to escape from a local min-
imum, an appropriate setting of 𝑇𝑖𝑛𝑐 can optimize the efficiency of
an Ising model. Therefore, we investigate the effect of different𝑇𝑖𝑛𝑐
values on the Ave and Std of solutions found by the IPA. The results

for the three benchmarks, 𝑏𝑢𝑟𝑚𝑎14, 𝑢𝑙𝑦𝑠𝑠𝑒𝑠16, and 𝑢𝑙𝑦𝑠𝑠𝑒𝑠22, are
obtained with penalty parameters 𝐵 = 𝐶 = 1 ×max{𝑾 }, 𝑟 = 0.97,
and 𝑇𝑖𝑛𝑖𝑡 = 1 × 107. As shown in Fig. 4, the Ave, Max, and Std
of the travel distances found by the Ising models decrease when
𝑇𝑖𝑛𝑐 decreases from 10×𝑚𝑎𝑥{𝑎𝑏𝑠 (𝑱 )} to𝑚𝑎𝑥{𝑎𝑏𝑠 (𝑱 )}/10. Further-
more, the Ave, and Max tend to be stable when 𝑇𝑖𝑛𝑐 is between
𝑚𝑎𝑥{𝑎𝑏𝑠 (𝑱 )}/10 and 𝑚𝑎𝑥 {𝑎𝑏𝑠 (𝑱 ) }

90 . The further decrease of 𝑇𝑖𝑛𝑐 re-
sults in an increase of Ave, so it degrades the quality of solutions.
A small 𝑇𝑖𝑛𝑐 reduces the chance of the Ising models escaping from
local minima, and thus a larger iteration number is required for
finding a suboptimal solution.

To evaluate the performance of the proposed methods, MA [11]
and DA [14] are considered for comparison. The MA implements
parallel spin-update but using a logarithmic temperature function,
while the DA employs a dynamic offset but without parallel spin-
update. Three benchmarks, 𝑏𝑢𝑟𝑚𝑎14, 𝑢𝑙𝑦𝑠𝑠𝑒𝑠16, and 𝑢𝑙𝑦𝑠𝑠𝑒𝑠22, are
used. The results are obtained with 𝑟 = 0.97, 𝑇𝑖𝑛𝑐 =

𝑚𝑎𝑥 { |𝑱 | }
90 and

(a) (b) (c)

(d) (e) (f)

Figure 3: The effect of the penalty parameters 𝐵 and 𝐶 (𝐵 = 𝐶) on the quality of solutions: (a) for 𝑛 = 6 from 𝑔𝑟431, (b) for 𝑛 = 7
from 𝑎𝑙𝑖535, (c) for 𝑛 = 10 from 𝑎𝑙𝑖535, (d) for 𝑛 = 12 from 𝑔𝑟431, (e) for the benchmark 𝑏𝑢𝑟𝑚𝑎14, and (f) for the benchmark
𝑢𝑙𝑦𝑠𝑠𝑒𝑠16. The blue shadow area indicates the results that do not meet constraints.

(a) (b) (c)

Figure 4: The effect of 𝑇𝑖𝑛𝑐 on the quality of solutions: (a) for the benchmark 𝑏𝑢𝑟𝑚𝑎14, (b) for the benchmark 𝑢𝑙𝑦𝑠𝑠𝑒𝑠16, and (c)
for the benchmark 𝑢𝑙𝑦𝑠𝑠𝑒𝑠22.



DAC ’59, Jul 11, 2022– Jul 15, 2022, San Francisco, CA Qichao Tao and Jie Han

Table 1: (Unitless) Travel Distances by using the IPA, MA,
and DA for Solving the TSP

Metrics 𝑖𝑡𝑒𝑟𝑛𝑢𝑚 = 10𝑘 𝑖𝑡𝑒𝑟𝑛𝑢𝑚 = 50𝑘
IPA MA DA IPA MA DA

burma14
𝐴𝑣𝑒 4241.6 5322.4 8832.9 4018.5 5133.3 6451.8
𝑀𝑎𝑥 4703.0 7524.0 9655.0 4423.0 7443.0 8009.0
𝑀𝑖𝑛 3839.0 4178.0 7507.0 3580.0 4099.0 4945.0
𝑆𝑡𝑑 185.1 683.7 379.8 159.9 547.7 696.4

ulysses16
𝐴𝑣𝑒 8804.2 11513.0 12722.0 8387.6 11451.0 12040.0
𝑀𝑎𝑥 9869.0 13992.0 15454.0 9218.0 14366.0 14669.0
𝑀𝑖𝑛 7816.0 8859.0 9827.0 7554.0 9242.0 8815.0
𝑆𝑡𝑑 407.9 1113.6 1141.5 303.3 1057.4 1240.4

ulysses22
𝐴𝑣𝑒 11170.0 13811.0 16619.0 10389.0 13367.0 16435.0
𝑀𝑎𝑥 12301.0 18914.0 20316.0 11167.0 16799.0 18862.0
𝑀𝑖𝑛 9527.0 11154.0 13224.0 9163.0 9363.0 13000.0
𝑆𝑡𝑑 527.3 1622.3 1425.6 433.7 1284.8 1156.4

Table 2: (Unitless) Travel Distances by Using the 𝒌-Medoids
Clustering in the IPA for Solving the TSP

Metrics burma14 ulysses16 ulysses22
(k1 = 7, 𝑘2 = 4) (k1 = 8, 𝑘2 = 4) (k1 = 10, 𝑘2 = 6)

𝑨𝒗𝒆 3813.8 7705.0 8011.4
𝑴𝒂𝒙 4334.0 8923.0 9371.0
𝑴𝒊𝒏 3345.0 6686.0 7219.0
𝑺𝒕𝒅 268.9 440.9 433.2

𝑇𝑖𝑛𝑖𝑡 = 1 × 107 for the IPA and DA. For the MA, 𝛽0 = 9 × 10−4
for 𝑏𝑢𝑟𝑚𝑎14, 𝛽0 = 8 × 10−4 for 𝑢𝑙𝑦𝑠𝑠𝑒𝑠16, and 𝛽0 = 5 × 10−4 for
𝑢𝑙𝑦𝑠𝑠𝑒𝑠22. These 𝛽0 values are chosen to produce the best solution
quality in the experiment. The penalty parameters in (3) are set
as 𝐴 = 1, 𝐵 = 𝐶 = 1 × max{𝑾 }. Table 1 shows the performance
of the IPA, MA, and DA for solving the TSP. The algorithms with
parallel spin-update (IPA and MA) obtain lower Ave than DA for all
three benchmarks. However, the Ave obtained by MA can hardly
be improved by increasing the number of iterations. This occurs
because the annealing algorithm using a logarithmic temperature
function is easily stuck in a local minimum when solving TSPs. On
the contrary, the algorithms that employ a dynamic offset, such
as the IPA and DA, can find shorter distances when the iteration
number increases. For solving 𝑏𝑢𝑟𝑚𝑎14, when the iteration number
is 10𝑘 , the IPA decreases the Ave by 52.0% compared with DA and
by 20.3% compared with MA. The required iterations for the DA,
MA, and IPA to produce an Ave around 4920 are 250𝑘 , 20𝑘 , and 1𝑘 ,
respectively, while the runtimes are 4.44 seconds, 1.99 seconds, and
0.10 seconds, respectively. The IPA achieves a 44.4× speed-up in
runtime compared with DA, and 19.9× compared with MA.

Further decrease in Ave is obtained by using the clustering ap-
proach. We applied 𝑘-medoids twice for each benchmark. The orig-
inal TSP is clustered into a second-level TSP with 𝑘1 centric points,
and the second-level TSP is clustered into a third-level TSP with 𝑘2
centric points. The iteration number for solving the third-level TSP

is 1000; it is 2500 for the second-level TSP and 3000 for the original
TSP, so the total iteration number is 6500. As shown in Table 2,
the reduction in Ave is 51.8% or 42.0% compared to DA or MA for
𝑢𝑙𝑦𝑠𝑠𝑒𝑠22 (𝑖𝑡𝑒𝑟𝑛𝑢𝑚 = 10𝑘), 39.4% or 33.1% for 𝑢𝑙𝑦𝑠𝑠𝑒𝑠16, and 56.8%
or 28.3% for 𝑏𝑢𝑟𝑚𝑎14, respectively.

5 CONCLUSION
This paper is the first to present an efficient solution for constrained
combinatorial optimization problems such as the TSP using parallel
fully connected Ising machines. Specifically, an improved parallel
annealing (IPA) algorithm is proposed to leverage an exponen-
tial temperature function with a dynamic offset and a 𝑘-medoids
clustering approach. The exponential temperature function with
a dynamic offset can alleviate the problem of being stuck in local
minima, while the𝑘-medoids clustering significantly reduces the av-
erage travel distance. The IPA is at least an order of magnitude faster
than DA and MA to find a similar average travel distance. A shorter
average travel distance can further be found by the IPA with a
smaller number of iterations due to the use of 𝑘-medoids clustering.
These results pave the way for the development of energy-efficient
circuit architectures for solving combinatorial optimization prob-
lems using the Ising model. The hardware design of a parallel fully
connected Ising machine will be carried out in future work.
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