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Motivation

Combinatorial optimization (CO) problems

Drug discovery Internet of Things Machine learning

Computational Time

Problem Size
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The Ising Model

Jaa

—(03)
/T RL
VN

A fully connected Ising model with 6 spins

The Hamiltonian of an N-spin Ising model [1]:

H(oy, ..., 0yn) = —z]ijUin - z h;o;
0] :

o; (0j): the state of the ith (jth) spin (upward
+1 and downward -1)

Jij: the interaction value between the ith spin
and jth spin

h;: the external field of the ith spin

a
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Solving CO Problems via an Ising Machine

Finding ground state of

Getting the optimal
solution

the Ising energy

A CO problem Mapping to Ising model

Annealing process

Initial configuration Optimal solution
t 7 Brnpligt t The Ilmltatlon of the conventional
| ‘, Dt | annealing algorithms:
@t g\ \at ° . @t
| = | Only one spin can be updated per iteration
l | for the fully connected Ising model.
b It decreases the annealing speed.
1 Spin configuration v t =k

How to achieve parallel spin update?
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Parallel Annealing

A

Cel XR%A

(5) AN '5)
S "‘ 7
o\
ofe
The conventional
structure

The two-layer spin structure [1]

Each spin is connected with all the other spins in the
other layer but has no interaction with the spins in
the same layer.

The interactions between ¢;* and ¢; are called self-

interactions (w;).
All spins in the right and left layers are updated

simultaneously per iteration.
The Hamiltonian (Hp) [1]:

1
Hp = —Z]ijaiLajR _Ez hi(of +of) + wiZ(l — ofof
L) i i

Is it efficient for solving constrained combinatorial optimization problems?

[1] T. Okuyama, T. Sonobe, K. Kawarabayashi, M. Yamaoka, “Binary optimization by momentum annealing," Physical Review E, vol. 100, no. 1, p. 012111, 2019. (.
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Max-cut Problems & Traveling Salesman Problems

Max-cut Problems

I\W\/\/\,\,

Spin configuration

Energy

Traveling Salesman Problems (TSPs)

Energy

External field

Spin configuration

Energy landscape of solving CO problems

via Ising machine
<°,
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Temperature Function

For conventional parallel annealing algorithm [1]:
1
=,Boln(1+s)

Max-cut Problems

Ts

Energy

I\/\j}% A
S1 \V \”\/\/\/
S3

Spin configuration

T, approaches a value that makes P; to be low but not zero.

Spins can flip at the end of annealing.

For the improved parallel annealing algorithm:

— s—1
Ts_ Tinitr

Energy
=
[—
<>
]

T, approaches a value that makes P; to be zero.

Spins can not flip at the end of annealing. Spin configuration

[1] T. Okuyama, T. Sonobe, K. Kawarabayashi, M. Yamaoka, “Binary optimization by momentum annealing," Physical Review E, vol. 100, no. 1, p. 012111, 2019. (.
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Dynamic Offset

*  The Ising model is stuck in a local minimum and hard
to escape when T is low.

* A dynamic offset AT is introduced.

T, increases by AT when there is no flip
among the spins.

AT=AT+T},

AT resets to zero when the configuration of spins
changes.

*  The Ising model can escape from a local minimum
quickly and have a higher probability to find a better T.= (T,+AT)rs~?

solution.
® &) pESIGN
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Improved Parallel Annealing for TSPs

Initialize spin configuration, temperature, and dynamic offset
For s = 1 to iteration do
(update left layer if s is odd, right layer if s is even)
Update temperature value using an exponential temperature function
Calculate energy variation and spin-flip probability of each spin
Determine new state of each spin
Update dynamic offset
End for

The solution quality decreases when the
number of cities in the TSP is large.

a
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A Clustering Approach [2]

Original TSP After clustering Solving the TSP of central points Solving the original TSP

O i) N

Ok & e’ ﬂ

[2] A. Dan, R. Shimizu, T. Nishikawa, S. Bian, and T. Sato, “Clustering approach for solving traveling salesman problems via Ising model based solver," the 57th ACM/IEEE ‘ .
Design Automation Conference (DAC), pp. 1-6, 2020. :
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The K-medoids Clustering

Step 1
For i=1toM
Di — ?/121 Wi ;
End for

Choose k cities with the first k
smallest D as the central points

M: the number of cities for clustering
W: the distance matrix

k: the number of groups

Find the 3 central points

a
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The K-medoids Clustering

Step 2
Fori=1toM

Assign the ith city to the closest
central point

End for

.0

Assign all points into groups

a
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The K-medoids Clustering

Step 3
For each group &S
For each cities in the group
di = 2 Wi
End for ) ®

Choose the city with the smallest d w °
as the new central points of the ©

current group Update new central points

End for
’a
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Penalty parameter = max{W} »xx

(a)

Penalty parameter = max{W}x x

(b)

Penalty parameter = max{W} x x

(c)

The effect of the penalty parameters B and C (B=C) on the quality of solutions: (a) for 12 cities from gr431, (b) for 14 cities from burma14, and (c) for 16
cities from ulysses16. The blue shadow area indicates the results do not meet constraints.

The found distance is shorter when the penalty parameter is smaller.

Too small penalty parameter values produce results that do not meet constraints.

B =C=1X max{W}
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amic offset
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Tinc = max{abs(J)}/x

(a)

Tinc = max{abs(J)}/x

(b)

Tmc = max{abs(J)}/x

(c)

The effect of T;,,. on the quality of solutions: (a) for the benchmark burma14, (b) for the benchmark ulysses16, and (c) for the benchmark ulysses22.

max{abs(J)}

max{abs(])}
10 '

The solution quality tends to be stable when < Tipe <

The traveling distance increases when Tj,,. < maX{;l:S(D} for burmalA4.
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Evaluation

Comparison of Average Travel Distances

18000
16000 * Parallel annealing algorithms, including
14000 the improved parallel annealing (IPA)
000 and momentum annealing (MA) [1],
have better performance than the
10000 conventional annealing algorithm, i. e.,
8000 digital annealing (DA) [3].
6000 * The IPA can find a shorter travel
a0 distance than MA.
* The found distance is shorter after
2000 I I using the clustering approach.
0

burmal4d ulyssesl16 ulysses22

=|PA mMA =DA = IPA with clustering

[1] T. Okuyama, T. Sonobe, K. Kawarabayashi, M. Yamaoka, “Binary optimization by momentum annealing," Physical Review E, vol. 100, no. 1, p. 012111, 2019.
[3] S. Tsukamoto, M. Takatsu, S. Matsubara, and H. Tamura, “An accelerator architecture for combinatorial optimization problems," Fujitsu Sci. Tech. J, vol. 53, no. 5, T
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Conclusion

Parallel spin update improves the speed of annealing as all spins can be updated
In every iteration.

The improved parallel annealing algorithm achieves higher solution quality after
applying an exponential temperature function, a dynamic offset, and a clustering
approach.

The runtime of IPA is 44.4 % faster than the DA and 19.9X faster than the MA.

Parallel annealing algorithms show potential in the development of energy-
efficient systems.

a
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