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• Combinatorial optimization (CO) problems

• Non-deterministic polynomial time (NP)-hard

Drug discovery Internet of Things Machine learning

Motivation

The Ising machine
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The Ising Model

𝐻 𝜎1, … , 𝜎𝑁 = −෍

𝑖,𝑗

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 −෍

𝑖

ℎ𝑖𝜎𝑖

𝜎𝑖 (𝜎𝑗): the state of the 𝑖th (𝑗th) spin (upward 

+1 and downward -1) 
𝐽𝑖𝑗: the interaction value between the 𝑖th spin 

and 𝑗th spin 
ℎ𝑖: the external field of the 𝑖th spin A fully connected Ising model with 6 spins

The Hamiltonian of an N-spin Ising model [1]:
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Solving CO Problems via an Ising Machine

Initial configuration Optimal solution

A CO problem Mapping to Ising model
Finding ground state of 

the Ising energy
Getting the optimal 

solution

The limitation of the conventional
annealing algorithms:

Annealing process

Only one spin can be updated per iteration 
for the fully connected Ising model.
It decreases the annealing speed.

How to achieve parallel spin update?
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Parallel Annealing
• Each spin is connected with all the other spins in the

other layer but has no interaction with the spins in
the same layer.

• The interactions between 𝜎𝑖
𝑅 and 𝜎𝑖

𝐿 are called self-
interactions (𝜔𝑖).

• All spins in the right and left layers are updated
simultaneously per iteration.

• The Hamiltonian (𝐻𝑃) [1]:

𝐻𝑃 = −෍

𝑖,𝑗

𝐽𝑖𝑗𝜎𝑖
𝐿𝜎𝑗

𝑅 −
1

2
෍

𝑖

ℎ𝑖 𝜎𝑖
𝐿 + 𝜎𝑖

𝑅 + 𝜔𝑖෍

𝑖

(1 − 𝜎𝑖
𝐿𝜎𝑖

𝑅)
The two-layer spin structure [1]

Is it efficient for solving constrained combinatorial optimization problems?

The conventional 
structure

[1] T. Okuyama, T. Sonobe, K. Kawarabayashi, M. Yamaoka, “Binary optimization by momentum annealing," Physical Review E, vol. 100, no. 1, p. 012111, 2019.
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Max-cut Problems & Traveling Salesman Problems
Max-cut Problems

Traveling Salesman Problems (TSPs)
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Constant

Interaction

External field

Energy landscape of solving CO problems 
via Ising machine
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Temperature Function
• For conventional parallel annealing algorithm [1]:

𝑇𝑠 =
1

𝛽0𝑙𝑛(1 + 𝑠)

𝑇𝑠 approaches a value that makes 𝑃𝑖 to be low but not zero.

Spins can flip at the end of annealing.

• For the improved parallel annealing algorithm:

𝑇𝑠= 𝑇𝑖𝑛𝑖𝑡𝑟
𝑠−1

𝑇𝑠 approaches a value that makes 𝑃𝑖 to be zero.

Spins can not flip at the end of annealing.

S1

S2

S3

S1

S2

S3

Max-cut Problems

TSPs

[1] T. Okuyama, T. Sonobe, K. Kawarabayashi, M. Yamaoka, “Binary optimization by momentum annealing," Physical Review E, vol. 100, no. 1, p. 012111, 2019.

10



Dynamic Offset

• The Ising model is stuck in a local minimum and hard 
to escape when 𝑇𝑠 is low.

• A dynamic offset ∆𝑇 is introduced.

𝑇𝑠 increases by ∆𝑇 when there is no flip 
among the spins.

∆𝑇 resets to zero when the configuration of spins 
changes.

• The Ising model can escape from a local minimum 
quickly and have a higher probability to find a better 
solution.

No spin 
flipped?

∆𝑇=∆𝑇+𝑇𝑖𝑛𝑐 ∆𝑇=0

yes no

𝑇𝑠= (𝑇𝑠+∆𝑇)𝑟
𝑠−1
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Improved Parallel Annealing for TSPs

1. Initialize spin configuration, temperature, and dynamic offset
2. For s = 1 to iteration do

(update left layer if s is odd, right layer if s is even)
3. Update temperature value using an exponential temperature function
4. Calculate energy variation and spin-flip probability of each spin
5. Determine new state of each spin
6. Update dynamic offset
7. End for

The solution quality decreases when the 
number of cities in the TSP is large.
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A Clustering Approach [2]

Original TSP After clustering Solving the TSP of central points Solving the original TSP

[2] A. Dan, R. Shimizu, T. Nishikawa, S. Bian, and T. Sato, “Clustering approach for solving traveling salesman problems via Ising model based solver," the 57th ACM/IEEE 
Design Automation Conference (DAC), pp. 1-6, 2020.
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The K-medoids Clustering

Find the 3 central points

Step 1

1. For i = 1 to M

2. 𝐷𝑖 = σ𝑗=1
𝑀 𝑊𝑖𝑗

3. End for

4. Choose k cities with the first k
smallest D as the central points

M: the number of cities for clustering 

W: the distance matrix

k: the number of groups
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The K-medoids Clustering

Assign all points into groups

Step 2

1. For i = 1 to M

2. Assign the ith city to the closest 
central point

3. End for
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The K-medoids Clustering

Update new central points

Step 3

1. For each group

2. For each cities in the group

3. 𝑑𝑖 = σ𝑗𝑊𝑖𝑗

4. End for

5. Choose the city with the smallest d
as the new central points of the 
current group

6. End for
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Penalty Parameter Setting

The effect of the penalty parameters B and C (B=C) on the quality of solutions: (a) for 12 cities from gr431, (b) for 14 cities from burma14, and (c) for 16
cities from ulysses16. The blue shadow area indicates the results do not meet constraints.

(a) (b) (c)

• The found distance is shorter when the penalty parameter is smaller.

• Too small penalty parameter values produce results that do not meet constraints.

𝐵 = 𝐶 = 1 ×max{𝑾}
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Dynamic offset setting

(a) (b) (c)

The effect of 𝑻𝒊𝒏𝒄 on the quality of solutions: (a) for the benchmark burma14, (b) for the benchmark ulysses16, and (c) for the benchmark ulysses22.

• The solution quality tends to be stable when 
max{abs(𝐉)}

90
≤ 𝑇𝑖𝑛𝑐 ≤

max{abs(𝐉)}

10
.

• The traveling distance increases when 𝑇𝑖𝑛𝑐 <
max{abs(𝐉)}

90
for burma14.

𝑇𝑖𝑛𝑐 =
max{abs(𝐉)}

90
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Evaluation

• Parallel annealing algorithms, including 
the improved parallel annealing (IPA) 
and momentum annealing (MA) [1], 
have better performance than the 
conventional annealing algorithm, i. e., 
digital annealing (DA) [3].

• The IPA can find a shorter travel 
distance than MA.

• The found distance is shorter after 
using the clustering approach.
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[1] T. Okuyama, T. Sonobe, K. Kawarabayashi, M. Yamaoka, “Binary optimization by momentum annealing," Physical Review E, vol. 100, no. 1, p. 012111, 2019.
[3] S. Tsukamoto, M. Takatsu, S. Matsubara, and H. Tamura, “An accelerator architecture for combinatorial optimization problems," Fujitsu Sci. Tech. J, vol. 53, no. 5, pp. 8-13, 2017.
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Conclusion

• Parallel spin update improves the speed of annealing as all spins can be updated 
in every iteration.

• The improved parallel annealing algorithm achieves higher solution quality after 
applying an exponential temperature function, a dynamic offset, and a clustering 
approach.

• The runtime of IPA is 44.4× faster than the DA and 19.9× faster than the MA.

• Parallel annealing algorithms show potential in the development of energy-
efficient systems.
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Thank you!

Questions?
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