

Solving Traveling Salesman Problems via a Parallel Fully Connected Ising Machine

Qichao Tao and Jie Han

Department of Electrical and Computer Engineering University of Alberta, Edmonton, Canada

- Motivation
- Preliminaries of Ising Machines
- Improved Parallel Annealing Algorithm for Solving Traveling Salesman Problems
 - An Exponential Temperature Function
 - A Dynamic Offset
 - A Clustering Approach
- Experimental Results and Evaluation
- Conclusion

- Motivation
- Preliminaries of Ising Machines
- Improved Parallel Annealing Algorithm for Solving Traveling Salesman Problems
 - An Exponential Temperature Function
 - A Dynamic Offset
 - A Clustering Approach
- Experimental Results and Evaluation
- Conclusion

Motivation

• Combinatorial optimization (CO) problems

Drug discovery

Non-deterministic polynomial time (NP)-hard

The Ising machine

- Motivation
- Preliminaries of Ising Machines
- Improved Parallel Annealing Algorithm for Solving Traveling Salesman Problems
 - An Exponential Temperature Function
 - A Dynamic Offset
 - A Clustering Approach
- Experimental Results and Evaluation
- Conclusion

The Ising Model

A fully connected Ising model with 6 spins

The Hamiltonian of an *N*-spin Ising model [1]:

$$H(\sigma_1, \dots, \sigma_N) = -\sum_{i,j} J_{ij}\sigma_i\sigma_j - \sum_i h_i\sigma_i$$

 σ_i (σ_j): the state of the *i*th (*j*th) spin (upward +1 and downward -1)

 J_{ij} : the interaction value between the *i*th spin and *j*th spin

 h_i : the external field of the *i*th spin

Solving CO Problems via an Ising Machine

How to achieve parallel spin update?

Parallel Annealing

The two-layer spin structure [1]

- Each spin is connected with all the other spins in the other layer but has no interaction with the spins in the same layer.
- The interactions between σ_i^R and σ_i^L are called selfinteractions (ω_i).
- All spins in the right and left layers are updated simultaneously per iteration.
- The Hamiltonian (H_P) [1]:

$$H_P = -\sum_{i,j} J_{ij} \sigma_i^L \sigma_j^R - \frac{1}{2} \sum_i h_i (\sigma_i^L + \sigma_i^R) + \omega_i \sum_i (1 - \sigma_i^L \sigma_i^R)$$

Is it efficient for solving constrained combinatorial optimization problems?

[1] T. Okuyama, T. Sonobe, K. Kawarabayashi, M. Yamaoka, "Binary optimization by momentum annealing," Physical Review E, vol. 100, no. 1, p. 012111, 2019.

Max-cut Problems & Traveling Salesman Problems

8

- Motivation
- Preliminaries of Ising Machines
- Improved Parallel Annealing Algorithm for Solving Traveling Salesman Problems
 - An Exponential Temperature Function
 - A Dynamic Offset
 - A Clustering Approach
- Experimental Results and Evaluation
- Conclusion

Temperature Function

• For conventional parallel annealing algorithm [1]:

$$T_s = \frac{1}{\beta_0 ln(1+s)}$$

 T_s approaches a value that makes P_i to be low but not zero. Spins can flip at the end of annealing.

• For the improved parallel annealing algorithm:

$$T_s = T_{init} r^{s-1}$$

 T_s approaches a value that makes P_i to be zero. Spins can not flip at the end of annealing.

[1] T. Okuyama, T. Sonobe, K. Kawarabayashi, M. Yamaoka, "Binary optimization by momentum annealing," Physical Review E, vol. 100, no. 1, p. 012111, 2019.

Dynamic Offset

- The Ising model is stuck in a local minimum and hard to escape when T_s is low.
- A dynamic offset ΔT is introduced.

 T_s increases by ΔT when there is no flip among the spins.

 ΔT resets to zero when the configuration of spins changes.

 The Ising model can escape from a local minimum quickly and have a higher probability to find a better solution.

Improved Parallel Annealing for TSPs

- 1. Initialize spin configuration, temperature, and dynamic offset
- 2. **For** *s* = *1* to *iteration* do
 - (update left layer if s is odd, right layer if s is even)
- 3. Update temperature value using an exponential temperature function
- 4. Calculate energy variation and spin-flip probability of each spin
- 5. Determine new state of each spin
- 6. Update dynamic offset
- 7. End for

The solution quality decreases when the number of cities in the TSP is large.

A Clustering Approach [2]

[2] A. Dan, R. Shimizu, T. Nishikawa, S. Bian, and T. Sato, "Clustering approach for solving traveling salesman problems via Ising model based solver," the 57th ACM/IEEE Design Automation Conference (DAC), pp. 1-6, 2020.

The K-medoids Clustering

Step 1

- 1. **For** *i* = 1 to *M*
- $2. \qquad D_i = \sum_{j=1}^M W_{ij}$

3. End for

4. Choose k cities with the first k smallest D as the central points

M: the number of cities for clustering

W: the distance matrix

k: the number of groups

Find the 3 central points

The K-medoids Clustering

Step 2

- 1. **For** *i* = 1 to *M*
- 2. Assign the *i*th city to the closest central point
- 3. End for

Assign all points into groups

The K-medoids Clustering

Step 3

- 1. For each group
- 2. For each cities in the group
- 3. $d_i = \sum_j W_{ij}$
- 4. End for

6. End for

5. Choose the city with the smallest *d* as the new central points of the current group

Update new central points

- Motivation
- Preliminaries of Ising Machines
- Improved Parallel Annealing Algorithm for Solving Traveling Salesman Problems
 - An Exponential Temperature Function
 - A Dynamic Offset
 - A Clustering Approach
- Experimental Results and Evaluation
- Conclusion

Penalty Parameter Setting

The effect of the penalty parameters *B* and *C* (*B*=*C*) on the quality of solutions: (a) for 12 cities from *gr431*, (b) for 14 cities from *burma14*, and (c) for 16 cities from *ulysses16*. The blue shadow area indicates the results do not meet constraints.

- The found distance is shorter when the penalty parameter is smaller.
- Too small penalty parameter values produce results that do not meet constraints.

Dynamic offset setting

The effect of T_{inc} on the quality of solutions: (a) for the benchmark *burma14*, (b) for the benchmark *ulysses16*, and (c) for the benchmark *ulysses22*.

- The solution quality tends to be stable when $\frac{\max\{abs(J)\}}{90} \le T_{inc} \le \frac{\max\{abs(J)\}}{10}$.
- The traveling distance increases when $T_{inc} < \frac{\max\{abs(J)\}}{90}$ for *burma14*.

$$T_{inc} = \frac{\max\{abs(\mathbf{J})\}}{90}$$

Evaluation

Comparison of Average Travel Distances

■ IPA ■ MA ■ DA ■ IPA with clustering

- Parallel annealing algorithms, including the improved parallel annealing (IPA) and momentum annealing (MA) [1], have better performance than the conventional annealing algorithm, i. e., digital annealing (DA) [3].
- The IPA can find a shorter travel distance than MA.
- The found distance is shorter after using the clustering approach.

[1] T. Okuyama, T. Sonobe, K. Kawarabayashi, M. Yamaoka, "Binary optimization by momentum annealing," Physical Review E, vol. 100, no. 1, p. 012111, 2019.
[3] S. Tsukamoto, M. Takatsu, S. Matsubara, and H. Tamura, "An accelerator architecture for combinatorial optimization problems," Fujitsu Sci. Tech. J, vol. 53, no. 5, pp. 8-13, 2017

- Motivation
- Preliminaries of Ising Machines
- Improved Parallel Annealing Algorithm for Solving Traveling Salesman Problems
 - An Exponential Temperature Function
 - A Dynamic Offset
 - A Clustering Approach
- Experimental Results and Evaluation
- Conclusion

Conclusion

- Parallel spin update improves the speed of annealing as all spins can be updated in every iteration.
- The improved parallel annealing algorithm achieves higher solution quality after applying an exponential temperature function, a dynamic offset, and a clustering approach.
- The runtime of IPA is $44.4 \times$ faster than the DA and $19.9 \times$ faster than the MA.
- Parallel annealing algorithms show potential in the development of energyefficient systems.

Acknowledgement

This work was supported by a research project via the University of Alberta.

Thank you!

Questions?

Jie Han:<u>jhan8@ualberta.ca</u> Qichao Tao: <u>qichao@ualberta.ca</u>

