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Approximate Coordinate Rotation Digital 
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Abstract— This paper proposes a new approximate scheme for coordinate rotation digital computer (CORDIC) design; this 
scheme is based on modifying the existing Para-CORDIC architecture with an approximation that is inserted in multiple parts 
and made possible by relaxing the CORDIC algorithm itself. A fully parallel approximate CORDIC (FPAX-CORDIC) scheme is 
proposed; this scheme avoids the memory register of Para-CORDIC and makes the generation of the rotation direction fully 
parallel. A comprehensive analysis and the evaluation of the error introduced by the approximation together with different circuit-
related metrics are pursued using HSPICE as the simulation tool. This error analysis also combines existing figures of merit for 
approximate computing (such as the Mean Error Distance (MED) and MED Power Product (MPP)) with CORDIC specific 
parameters; it is shown that a good agreement between expected and simulated error values is found. The Discrete Cosine 
Transformation (DCT) and the Inverse DCT (IDCT) transformations as case study of approximate computing to image 
processing are investigated by utilizing the proposed approximate FPAX-CORDIC architecture with different accuracy 
requirements. The results confirm the viability of the proposed scheme. 

Index Terms— Inexact computing, CORDIC, Error distance, Power dissipation 

——————————      —————————— 

1 INTRODUCTION
odern computers rely heavily on fast arithmetic 
computation to solve complex problems with a high 

degree of accuracy in the results generated. However, 
accurate hardware implementations for arithmetic pro-
cessing often incur in large overheads as related to circuit 
complexity, delay and power consumption. These over-
heads are more evident at the nanometric scales in which 
computation encounters physical limitations due to the 
reduced feature size. 

The paradigm of inexact computing relies on relaxing 
fully precise and completely deterministic computation to 
balance often contradicting figures of merit such as power 
consumption and performance [1].  

The tradeoffs that are available for inexact computing 
are very complex once arithmetic processing is consid-
ered at a higher level than just a single operation (such as 
addition or multiplication). Many inexact or approximate 
adders, multipliers and dividers have been proposed in 
the technical literature [2-4]; however, these designs are 
considered and compared often with respect to the impli-
cations of an approximation to the operation and its abil-

ity to deliver an output of acceptable accuracy (such as 
image processing or filtering) [5]. This paper addresses 
the different scenario in which approximation is still im-
plemented in hardware, but it is considered as part of an 
algorithm, namely for CORDIC  implementation [6, 7].  

CORDIC is an iterative algorithm for the calculation of 
the rotation of a 2-dimensional vector in different coordi-
nate systems; the benefits of the CORDIC algorithms are 
that only additions and shift operations are employed. A 
hardware implementation of the CORDIC algorithm usu-
ally employs a finite number of iterations and a finite lev-
el of precision. Therefore, the objective of this paper is to 
design, evaluate and assess an approximate CORDIC de-
sign; the approximation is inserted in multiple parts and 
is made possible by relaxing the CORDIC algorithm itself. 
So, power dissipation and accuracy can be reduced when 
properly selecting the parameters (such as the so-called 
error control parameter p) of the proposed scheme. This 
paper extends the initial findings of [8]; a comprehensive 
evaluation of p and different circuit metrics including 
complexity and power dissipation are presented. An error 
analysis that combines traditional figures of merit (such 
as the MED [3]) with CORDIC specific parameters is ana-
lytically pursued. Simulation shows that when either 
DCT, or IDCT, or both are inexact, the accuracy and pow-
er dissipation are affected. The case in which a single in-
exact DCT or IDCT is present, shows the most sensitivity 
to p; when both DCT and IDCT are inexact, the error vari-
ation and dependency with respect to p are reduced. 

This paper is organized as follows. Section 2 presents a 
brief review of the basic and the advanced parallel 
CORDIC algorithms; this latter algorithm  partially elimi-
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nates the iterative nature of the basic CORDIC algorithm; 
Section 3 proposes a new fully parallel approximate 
CORDIC algorithm, as the main contribution of this 
manuscript. In section 4, The error analysis of the pro-
posed approximate algorithm is derived and compared to 
simulated data. A detailed evaluation of the proposed 
hardware scheme is pursued in Section 5; the Synopsys 
Design Compiler is used as simulation tool. Section 6 
deals with a case study of image processing, namely the 
Discrete Cosine Transformation (DCT) and the Inverse 
DCT (IDCT). Conclusion is dealt in Section 7. 

2 REVIEW 
2.1 Radix-2 Circular System CORDIC Algorithm 
The focus of this paper is on computing trigonometric 
functions using the radix-2 CORDIC algorithm in the cir-
cular coordinate system. As shown in Fig. 1, a two-
dimensional vector (𝑥𝑥0, 𝑦𝑦0) is rotated through an angle 𝜃𝜃 
to calculate a rotated vector(𝑥𝑥𝑛𝑛

′ , 𝑦𝑦𝑛𝑛
′ ). This computation can 

be performed by the matrix product, (𝑥𝑥𝑛𝑛
′ , 𝑦𝑦𝑛𝑛

′ ). = 𝑅𝑅 ⋅
(𝑥𝑥0, 𝑦𝑦0), in which 𝑅𝑅 is the rotation matrix: 

 𝑅𝑅 = � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� (1) 

By factoring out 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the roatation matrix 𝑅𝑅 becomes 

 𝑅𝑅 = 𝐾𝐾 � 1 −𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 1 � (2) 

where 𝐾𝐾 = (1 + tan2 𝜃𝜃)−1 2⁄ .  

 
Fig. 1 Two-dimensional vector rotation. 

To compute the rotation in hardware, CORDIC de-
composes the rotations into a sequence of elementary ro-
tations through predefined angles. In Fig. 1, the rotation 
through angle 𝜃𝜃 is decomposed by a sequence of microro-
tations through the elementary angle 𝛼𝛼𝑖𝑖 . The values of 𝛼𝛼𝑖𝑖  
are chosen such that tan(𝛼𝛼𝑖𝑖) = 2−𝑖𝑖 and the multiplication 
of the tangent term in Eq. (2) is reduced to a simple shift 
operation through 𝑖𝑖 bit positions. Instead of performing 
the rotation directly through an angle 𝜃𝜃, CORDIC utilizes 
a certain number of microrotations through angle 𝛼𝛼𝑖𝑖 , as 

 𝜃𝜃 = ∑ 𝜎𝜎𝑖𝑖𝛼𝛼𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0 , and 𝜎𝜎𝑖𝑖 =  ±1 (3) 

where n indicates the number of microrotations, 𝛼𝛼𝑖𝑖  is the 

elementary angle for the 𝑖𝑖th iteration and 𝜎𝜎𝑖𝑖  is the direc-
tion of the 𝑖𝑖th microrotation. The rotation matrix for the i-
th iteration is given by  

 𝑅𝑅𝑖𝑖 = 𝐾𝐾𝑖𝑖 � 1 −𝜎𝜎𝑖𝑖2−𝑖𝑖

𝜎𝜎𝑖𝑖2−𝑖𝑖 1
� (4) 

where 𝐾𝐾𝑖𝑖 = 1 �(1 + 2−2𝑖𝑖)⁄  being the scale factor. 𝐾𝐾𝑖𝑖  for a 
microrotations does not depend on the direction of micro-
rotations and decreases monotonically; so rather than 
scaling during each microrotation, the magnitude of 
final output could be scaled by 𝐾𝐾 as, 

 𝐾𝐾 =  ∏ 𝐾𝐾𝑖𝑖
𝑛𝑛
𝑖𝑖=0 .  

Therefore, the iterative equations of the CORDIC algo-
rithm for radix-2 in circular coordinate systems are as 
follows: 

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑦𝑦𝑖𝑖2−𝑖𝑖 , 

𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 +  𝜎𝜎𝑖𝑖𝑥𝑥𝑖𝑖2−𝑖𝑖 , 

 𝜃𝜃𝑖𝑖+1 =  𝜃𝜃𝑖𝑖  –  𝜎𝜎𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡−1(2−𝑖𝑖),  (5) 

𝜎𝜎𝑖𝑖 ∈ {−1, 1}; 𝑖𝑖 = 0,2, … , 𝑛𝑛 − 1. 

Finally, the vector (𝑥𝑥𝑛𝑛
′ , 𝑦𝑦𝑛𝑛

′ ) is obtained as, 

(𝑥𝑥𝑛𝑛
′ , 𝑦𝑦𝑛𝑛

′ ) = 𝐾𝐾 ⋅ (𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛)  

𝐾𝐾 = ∏ (1/�1 + 2−2𝑖𝑖 )𝑛𝑛
𝑖𝑖=0 . 

Eq. (5) is often referred to as the CORDIC equation and 
can be used in either rotation mode and vectoring mode. 
The direction of the iterative rotation is determined using 
𝜃𝜃𝑖𝑖  or 𝑦𝑦𝑖𝑖 depending on the rotation mode or the vectoring 
mode respectively. The rotation mode is used when cal-
culating trigonometric functions. The direction of rotation 
in any iteration is determined using the sign of the residual 
angle 𝜃𝜃𝑖𝑖  found in the previous iteration. Let 𝑥𝑥0 = 𝐾𝐾, 𝑦𝑦0 = 0 , 
after 𝑛𝑛  iterations, the final outputs are the sine and cosine 
functions, 𝑥𝑥𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑦𝑦𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

2.2 Advanced Partially Parallel CORDIC Algorithm  
Eq. (5) shows that the performance bottleneck is the se-
quential calculation of 𝜎𝜎𝑖𝑖. The operations in each stage can 
be executed only after the corresponding stage has select-
ed the correct rotation direction. If the direction is found 
in all stages and can be parallelized or pre-computed, the 
corresponding CORDIC rotations in the microrotation 
stage can also be executed concurrently. 

Different solutions have been proposed in the technical 
literature [9-13] for the parallel execution of 𝜎𝜎𝑖𝑖  through 
the θ-path. In [14], a so-called Para-CORDIC parallelizes the 
generation of the rotations direction i.e., 𝜎𝜎𝑖𝑖  from the binary 
value of the input angle 𝜃𝜃  by employing a binary to bipolar 
representation (BBR) and a microrotation angle recoding 
(MAR) techniques.  

The two’s complement N+1 bits binary representation 
of the input angle θ is assumed to be in the range |𝜃𝜃| ≤
𝜋𝜋/4 and is given by (−𝑏𝑏0) + Σ𝑗𝑗=1

N 𝑏𝑏𝑗𝑗2−𝑗𝑗,  where 𝑏𝑏𝑗𝑗 ∈ {0,1}. 
The input angle 𝜃𝜃 is divided into the higher part 𝜃𝜃𝐻𝐻  and 
the lower part 𝜃𝜃𝐿𝐿: 
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𝜃𝜃 = 𝜃𝜃𝐿𝐿 + 𝜃𝜃𝐻𝐻 
= (−𝑏𝑏0) + 𝛴𝛴𝑗𝑗=1

𝑙𝑙−1𝑏𝑏𝑗𝑗2−𝑗𝑗 + 𝛴𝛴𝑗𝑗=𝑙𝑙
𝑁𝑁 𝑏𝑏𝑗𝑗2−𝑗𝑗  

(6) 

In Eq. (6), 𝑙𝑙 is the smallest index value such that 2−𝑙𝑙 −
tan−1 2−𝑙𝑙 < 2−𝑁𝑁 . It has been shown in [15] that 𝑙𝑙 =
⌈(𝑁𝑁 − log2 3)/3⌉. Next, a brief treatment of the BBR and 
MAR method to predict the 𝜎𝜎𝑖𝑖 for 𝜃𝜃𝐿𝐿 and 𝜃𝜃𝐻𝐻, respectively, 
is provided. 
1) Binary to Bipolar Representation (BBR) 
 The BBR method converts the first l-1 bits of the input 
angle (i.e., 𝜃𝜃𝐿𝐿) and obtains the corresponding rotation di-
rections (𝜎𝜎1 𝑡𝑡𝑡𝑡 𝜎𝜎𝑙𝑙). The binary value 𝑏𝑏𝑗𝑗 ∈ {0,1} is converted 
to the corresponding bipolar representation 𝑟𝑟𝑘𝑘 ∈ {−1,1} as 
follows: 

𝜃𝜃𝐿𝐿 = (−𝑏𝑏0) + 𝛴𝛴𝑗𝑗=1
𝑙𝑙−1𝑏𝑏𝑗𝑗2−𝑗𝑗 

= (−𝑏𝑏0) + 𝛴𝛴𝑗𝑗=1
𝑙𝑙−1[2−𝑗𝑗−1 + �2𝑏𝑏𝑗𝑗 − 1�2−𝑗𝑗−1] 

= 𝛴𝛴𝑖𝑖=1
𝑙𝑙 𝑟𝑟𝑖𝑖2−𝑖𝑖 − 2−𝑙𝑙 , 

where, 
𝑟𝑟1 = 1 − 2𝑏𝑏0 
𝑟𝑟i = 2𝑏𝑏𝑖𝑖−1 − 1 , 𝑖𝑖 = 2,3, … , 𝑙𝑙 

(7) 

The first 𝑙𝑙 rotation directions (𝜎𝜎1 𝑡𝑡𝑡𝑡 𝜎𝜎𝑙𝑙) are directly de-
rived from Eq. (7) and the bipolar values of 𝑟𝑟1 to 𝑟𝑟𝑙𝑙. Then, 
𝜃𝜃𝐿𝐿 is written as 

𝜃𝜃𝐿𝐿 = 𝛴𝛴𝑖𝑖=1
𝑙𝑙 𝑟𝑟𝑖𝑖2−𝑖𝑖 − 2−𝑙𝑙 

= 𝛴𝛴(𝑖𝑖=1)
𝑙𝑙 𝜎𝜎𝑖𝑖 �𝛴𝛴𝑗𝑗=1

𝑛𝑛(𝑖𝑖) 𝑡𝑡𝑡𝑡𝑡𝑡−1 �2−𝑠𝑠𝑖𝑖
𝑗𝑗
� + 𝑒𝑒𝑖𝑖� − 2−𝑙𝑙 , 

 where, 𝜎𝜎𝑖𝑖 = 𝑟𝑟𝑖𝑖; 𝑖𝑖 = 1,2, … , 𝑙𝑙. (8) 

In Eq. (8), 2𝑖𝑖 is expressed as the sum of arctangent val-
ues and an error term, i.e., Σ𝑗𝑗=1

𝑛𝑛(𝑖𝑖) tan−1 �2−𝑠𝑠𝑖𝑖
𝑗𝑗
� + 𝑒𝑒𝑖𝑖  (dis-

cussed next in the MAR algorithm). 
2) Microrotation Angle Recoding (MAR) 
The decomposing of each positional binary weighting 
2−𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝑙𝑙 − 1  into a combination of arctangent 
terms and a nonnegative error term 𝑒𝑒𝑖𝑖, yields the follow-
ing expression: 

2−𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡−1(2−𝑖𝑖) + 𝛴𝛴𝑗𝑗=2
𝑛𝑛(𝑖𝑖) 𝑡𝑡𝑡𝑡𝑡𝑡−1(2−𝑠𝑠𝑖𝑖

𝑗𝑗
)  

= 𝛴𝛴𝑗𝑗=1
𝑛𝑛(𝑖𝑖) 𝑡𝑡𝑡𝑡𝑡𝑡−1(2−𝑠𝑠𝑖𝑖

𝑗𝑗
) + 𝑒𝑒𝑖𝑖, 

   𝑠𝑠𝑖𝑖
1 = 𝑖𝑖, 𝑖𝑖 = 1,2, … , 𝑙𝑙 − 1.  (9) 

The above equation is generally known as MAR. 𝑛𝑛(𝑖𝑖) 
is the number of microrotations required in the MAR re-
cording of 2−𝑖𝑖 , and 𝑠𝑠𝑖𝑖

𝑗𝑗  is the shift sequences for 𝑗𝑗 =
1, 2, … , 𝑛𝑛(𝑖𝑖) with the first shift 𝑠𝑠𝑖𝑖

1 = 𝑠𝑠𝑖𝑖 = 𝑖𝑖, 𝑖𝑖 = 1, 2, … , 𝑙𝑙 − 1. 
The detailed algorithm of MAR recording can be found in 
[14]. By combining Eq (6) and Eq. (8-9), the corrected rota-
tion angle 𝜃𝜃�𝐻𝐻 is given by 

 𝜃𝜃�𝐻𝐻 = 𝜃𝜃𝐻𝐻 + 𝛴𝛴𝑖𝑖=1
𝑙𝑙−1𝜎𝜎𝑖𝑖𝑒𝑒𝑖𝑖 − 2−𝑙𝑙 . (10) 

Following the BBR for 𝜃𝜃𝐿𝐿and the MAR for the first bi-
nary positional weightings, another BBR is applied to the 
binary representation of the corrected 𝜃𝜃�𝐻𝐻 as follows: 

𝜃𝜃�𝐻𝐻 = �−𝑏𝑏�𝑙𝑙−1�2−𝑙𝑙+1 + Σ𝑘𝑘=𝑙𝑙
𝑁𝑁 𝑏𝑏�𝑘𝑘2−𝑘𝑘 

= �−𝑏𝑏�𝑙𝑙−1� + 𝛴𝛴𝑘𝑘=𝑙𝑙+1
𝑁𝑁+1 [�2𝑏𝑏�𝑘𝑘−1 − 1�2𝑘𝑘+2−𝑙𝑙+2−𝑁𝑁−1] 

= Σ𝑖𝑖=𝑙𝑙
𝑁𝑁+1𝑟𝑟𝚤𝚤�2−𝑖𝑖 − 2−𝑁𝑁−1, 

where, 

𝑟𝑟𝚤𝚤� = 1 − 2𝑏𝑏�𝑖𝑖−1,             𝑖𝑖 = 𝑙𝑙 
𝑟𝑟𝚤𝚤� = �2𝑏𝑏�𝑖𝑖−1 − 1�,         𝑖𝑖 = 𝑙𝑙 + 1, … , 𝑁𝑁 + 1 

(11) 

From Eq. (11) the last N-l+2 rotation direction 
(𝜎𝜎�𝑙𝑙 𝑡𝑡𝑡𝑡 𝜎𝜎�𝑁𝑁+1) is found directly from the bipolar value of 𝑟̂𝑟𝑙𝑙 
to 𝑟̂𝑟𝑁𝑁+1. 
3) Para-CORDIC architecture 
The Para-CORDIC rotation architecture is shown in Fig. 
2. There are two BBRs in the para-CORDIC rotation. In 
Fig. 2, the notation BBRL and BBRH are used to represent 
the operations in Eq. (7) and Eq. (11) to determine the 
rotation direction 𝜎𝜎1 to 𝜎𝜎𝑙𝑙 for phase 1 rotation stages and 
𝜎𝜎�𝑙𝑙  to 𝜎𝜎�𝑁𝑁+1  in phase 2 rotation stages, respectively. The 
operations in Eq. (10) are denoted as Addprediction block. The 
errors given by the  𝑒𝑒𝑖𝑖 terms, are precomputed and stored 
in the memory register. 

 
Fig. 2 The Para CORDIC Architecture [14]. 

3 PROPOSED FULLY PARALLEL APPROXIMATE 
CORDIC (FPAX-CORDIC) 

3.1 FPAX-CORDIC 
Although Para-CORDIC parallelizes the computation of 
𝜎𝜎𝑖𝑖  in two phases, this cannot eliminate the dependency 
between Phase 1 and Phase 2; the generation of the rota-
tion direction 𝜎𝜎𝑖𝑖 is still not fully parallel. To achieve the 
goal of fully parallel generation of 𝜎𝜎𝑖𝑖, the relation between 
Phase 1 and Phase 2 must be further analyzed. The paral-
lel generation of  𝜎𝜎𝑖𝑖 is restricted by the error compensa-
tion mechanism in Para-CORDIC, i.e. the error must be 
assessed following the BBR in Phase 1 and added back by 
using Addprediction block. So, for a fully parallel execution 
either error compensation must be performed differently, 
or the error should be tolerated. A fully parallel approach 
allows Addprediction to be completely eliminated and have a 
fully parallel execution of BBRL and BBRH. In this latter 
case, there is no need of additional memory to store the 
error compensation terms 𝑒𝑒𝑖𝑖 ; this condition makes the 
operation of the circuit fully combinational, so also im-
proving its performance. Therefore, a fully parallel ap-
proximate CORDIC (FPAX-CORDIC) design is proposed 
to meet this requirement. By slightly modifying MAR 
algorithm, the error produced by generation of 𝜎𝜎𝑖𝑖 can be 
controlled and recovered in the rotation blocks instead. 
This makes the whole circuit be a pure multi-operand 
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additions or subtractions structure, and enable flexible 
control over error and performance of FPAX-CORDIC. 

Consider Fig. 2, the block Addprediction is eliminated (de-
noted now as a dashed rectangle) as per the following 
analysis. The main function of the Addprediction block is to 
compensate the error introduced by the first BBR opera-
tion in Eq. (10). In MAR for 2−𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝑙𝑙 − 1, the value 
of 𝜃𝜃�𝐻𝐻 must satisfy the following constraint: 

 �𝜃𝜃�𝐻𝐻� < 2−(𝑙𝑙−1) (12) 

If this condition is met, then each binary weighting of 
2−𝑖𝑖  in the remaining angle can be approximated by 
tan−1(2−𝑖𝑖) within the accuracy allowed by the N fraction-
al bits. As outlined in [14], if Σ𝑖𝑖=1

𝑙𝑙−1𝑒𝑒𝑖𝑖 < 2−𝑙𝑙 , then the value 
of �𝜃𝜃�𝐻𝐻� will satisfy the inequality of Eq. (12). 2−𝑙𝑙 is the up-
per bound for Σ𝑖𝑖=1

𝑙𝑙−1𝑒𝑒𝑖𝑖 ; the higher order terms 
tan−1(2𝑞𝑞), 𝑞𝑞 > 𝑖𝑖 in MAR of 2−𝑖𝑖 can be found to let Σ𝑖𝑖=1

𝑙𝑙−1𝑒𝑒𝑖𝑖 <
2−𝑙𝑙. So, the number of microrotations (with the shift se-
quences 𝑠𝑠𝑖𝑖

𝑗𝑗 , 𝑗𝑗 = 1,2, … , 𝑛𝑛(𝑖𝑖))  is directly controlled by 
Σ𝑖𝑖=1

𝑙𝑙−1𝑒𝑒𝑖𝑖, i.e., the smaller Σ𝑖𝑖=1
𝑙𝑙−1𝑒𝑒𝑖𝑖 is, the larger  𝑛𝑛(𝑖𝑖) is [14].  

The complete elimination of the 𝐴𝐴𝐴𝐴𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  block in 
Fig. 2 (so making CORDIC fully parallel) requires that the 
equation Σ𝑖𝑖=1

𝑙𝑙−1𝑒𝑒𝑖𝑖 = 0 to be satisfied: As shown in Eq. (10), if 
Σ𝑖𝑖=1

𝑙𝑙−1𝜎𝜎𝑖𝑖𝑒𝑒𝑖𝑖 = 0 , then 𝜃𝜃�𝐻𝐻 = 𝜃𝜃𝐻𝐻 − 2−𝑙𝑙  and error compensation is 
not necessary, i.e., Addprediction can be eliminated. In general, 
Σ𝑖𝑖=1

𝑙𝑙−1𝜎𝜎𝑖𝑖𝑒𝑒𝑖𝑖 = 0 is not applicable, because it is only possible to 
make Σ𝑖𝑖=1

𝑙𝑙−1𝜎𝜎𝑖𝑖𝑒𝑒𝑖𝑖 approximately equal to 0. Let 𝜃𝜃𝐸𝐸 = Σ𝑖𝑖=1
𝑙𝑙−1𝜎𝜎𝑖𝑖𝑒𝑒𝑖𝑖; as 

each 𝑒𝑒𝑖𝑖  is not negative in MAR, then |𝜃𝜃𝐸𝐸| = �Σ𝑖𝑖=1
𝑙𝑙−1𝜎𝜎𝑖𝑖𝑒𝑒𝑖𝑖� ≤

Σ𝑖𝑖=1
𝑙𝑙−1𝑒𝑒𝑖𝑖 . So, let Σ𝑖𝑖=1

𝑙𝑙−1𝑒𝑒𝑖𝑖 → 0, hence  𝜃𝜃𝐸𝐸 → 0. For an input angle 
𝜃𝜃 with N-bit precision, let  Σ𝑖𝑖=1

𝑙𝑙−1𝑒𝑒𝑖𝑖 < 2−𝑁𝑁 so that the error 
𝜃𝜃𝐸𝐸  can be ignored for N-bit precision.  

An algorithm to find the high-order terms 
tan−1(2𝑞𝑞), 𝑞𝑞 > 𝑖𝑖 to make Σ𝑖𝑖=1

𝑙𝑙−1𝑒𝑒𝑖𝑖 < 2−𝑁𝑁 is rather intuitive as 
it is quite similar to MAR [14]. However, the condition 
2−𝑁𝑁(≪ 2−𝑙𝑙) for an error-free fully parallel CORDIC is sig-
nificantly more complex than in Para-CORDIC in terms of 
the number of microrotation stages, i.e., the number of 
microrotation 𝑛𝑛(𝑖𝑖)  in this case is larger than for Para-
CORDIC. When the 𝜃𝜃 error term |𝜃𝜃𝐸𝐸| < 2−𝑝𝑝is tolerated for a 
specific application, then   |𝜃𝜃𝐸𝐸| ≤ Σ𝑖𝑖=1

𝑙𝑙−1𝑒𝑒𝑖𝑖 < 2−𝑝𝑝 , where 𝑝𝑝 ∈
[𝑙𝑙, … , 𝑁𝑁] is the so-called error tolerant parameter. In the case 
of 16-bit CORDIC design to achieve accuracy similar to Para-
CORDIC, FPAX-CORDIC should designed with p=16; in gen-
eral, for an approximate design, the selection of p is between l 
and N. The proposed FPAX-CORDIC algorithm is pre-
sented in pseudo-code in Fig. 3. 
For a N-bit input angle θ, 
//Initial Values 

Find 𝑙𝑙 = ⌈(𝑁𝑁 − 𝑙𝑙𝑙𝑙𝑙𝑙2 3)/3⌉ 
Perform Eq.(10) and 𝜃𝜃𝐻𝐻 − 2−𝑙𝑙  
Use the modified MAR to find 𝑠𝑠𝑖𝑖

𝑗𝑗 and 𝑒𝑒𝑖𝑖  (𝛴𝛴𝑖𝑖=1
𝑙𝑙−1𝑒𝑒𝑖𝑖 < 2−𝑝𝑝). 

// Full Parallel Execution 
Perform BBR (for the full range of the N-bit input angle θ) 
From stage 1 to stage 𝑙𝑙 
Perform R(i) using 𝜎𝜎𝑖𝑖 = 𝑟𝑟𝑖𝑖 , 𝑖𝑖 = 1 … 𝑙𝑙. 
From stage (l+1) to stage (N+2) 
Perform S(i) using 𝜎𝜎𝑖𝑖 = 𝑟𝑟𝑙𝑙 , 𝑖𝑖 = 𝑙𝑙 … 𝑁𝑁 + 1 

Fig. 3  FPAX-CORDIC Algorithm. 

The architecture of the proposed FPAX-CORDIC is 

shown in Fig. 4. The two paths, namely θ-path and X/Y 
path, are discussed as follows. 

θ-path: Consider Fig. 2 and Fig. 4; the operations of the 
data path in the conventional CORDIC are replaced by 
the BBR in the proposed FPAX-CORDIC. The delay and 
the hardware overhead of the two BBRs are negligible 
because they perform a simple signal mapping (i.e., 0 (1) 
is considered as subtraction (addition) signal). 

 
Fig. 4 Architecture of the proposed fully parallel approximate 
CORDIC. 

X/Y-path: In the proposed architecture (Fig. 4), the 
number of total microrotations is denoted as 𝑅𝑅𝑅𝑅𝑅𝑅(𝑁𝑁) =
Σ𝑖𝑖=1

𝑙𝑙−1𝑛𝑛(𝑖𝑖) + 𝑁𝑁 − 𝑙𝑙 + 3. 𝑛𝑛(𝑖𝑖) is directly related to Σ𝑖𝑖=1
𝑙𝑙−1𝑒𝑒𝑖𝑖, and 

therefore it is also related to the error tolerant parameter 
𝑝𝑝 . So, the area and delay are �4𝑁𝑁 × 𝑅𝑅𝑅𝑅𝑅𝑅(𝑁𝑁)�𝐴𝐴𝐹𝐹𝐹𝐹 and 
�2 × 𝑅𝑅𝑅𝑅𝑅𝑅(𝑁𝑁)�𝑇𝑇𝐹𝐹𝐹𝐹, i.e. it is assumed that each microrotation 
stage is implemented using a Binary Signed Digit Adder 
(BSDA) and the area and delay with a word size of N bits are 
4𝑁𝑁 × 𝐴𝐴𝐹𝐹𝐹𝐹, where 2𝑇𝑇𝐹𝐹𝐹𝐹. 𝐴𝐴𝐹𝐹𝐹𝐹and 𝑇𝑇𝐹𝐹𝐹𝐹 are the area and delay 
of a full adder. The relation between the number of total 
microrotations and p is shown in Fig. 5; as the delay is 
proportional to the number of microrotation stages, the 
delay nearly follows the same trend as the area. 

 
Fig. 5 16-bit FPAX-CORDIC number of the total microrotations stag-
es. 

3.2 FPAX-CORDIC with Truncation 
By increasing p, the number of microrotation stages S(i) in 
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each R(i) can potentially increase depending on the modi-
fication of the MAR algorithm. At a specific value of p, the 
power and area due to the additional microrotation stages 
may exceed those saved by eliminating the Addprediction 
block, i.e. the power dissipation and area may be larger 
than for Para-CORDIC if p is larger than the critical value. 
Also, a higher p means a  lower error at the output; so a 
different approximate technique must be utilized to in-
crease the critical value of p [16].  As FPAX-CORDIC con-
sists of adders and subtractors, the truncation scheme of 
[16] can be used; a Vertical Truncation (VT) scheme with 
a depth of d (the truncation parameter d indicates the 
number of BSDA adder cells that are removed from the 
LSB) is applied to the last N-l+2 rotation stages 𝑆𝑆(𝑖𝑖) (i.e. 
the stages controlled by the second BBRH block) of FPAX-
CORDIC. While truncation saves area and power dissipa-
tion, it also introduces an error in the CORDIC computa-
tion; however, at a low depth d this error should not be 
significant compared to the error introduced by p. So, for 
FPAX-CORDIC, p is important for controlling the first l 
stages of the R(i) blocks, while truncation is utilized only 
in the last several S(i) stages.  As shown in later sections, 
the increase in power dissipation due to the additional 
stages for p, can be mitigated by truncation (as controlled 
through d), while still maintaining the error nearly con-
stant. In some application like DCT-IDCT, truncation is 
an additional scheme to control the error and perfor-
mance together with p. 

4 ERROR ANALYSIS OF FPAX-CORDIC 
4.1  Errors 
The error of the FPAX-CORDIC with respect to a (real) 
trigonometric function consists of two parts: (1) the ap-
proximation error due to the inertial computation algo-
rithm itself; and (2) the rounding error. 

Approximation Error: Initially, assume the input 𝜃𝜃 and 
X/Y have an infinite number of bits, i.e., the rounding 
error is zero. The approximation error of the proposed 
FPAX-CORDIC algorithm is controlled by the error toler-
ant parameter p. As |𝜃𝜃𝐸𝐸| < 2−𝑝𝑝 is ignored in 𝜃𝜃, then  

 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃′ = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝜃𝜃𝐸𝐸) (13) 
Thus, 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝐴𝐴(𝜃𝜃, 𝑝𝑝) = sin 𝜃𝜃 − sin 𝜃𝜃′ 

= (1 − cos 𝜃𝜃𝐸𝐸) sin 𝜃𝜃 + sin 𝜃𝜃𝐸𝐸 cos 𝜃𝜃 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

𝐴𝐴𝐴𝐴 (𝜃𝜃, 𝑝𝑝) = cos 𝜃𝜃 − cos 𝜃𝜃′ 
= (1 − cos 𝜃𝜃𝐸𝐸) cos 𝜃𝜃 − sin 𝜃𝜃𝐸𝐸 sin 𝜃𝜃 

(14) 

Rounding Error: The error due to a finite input bit 
width (for example a 16-bit 𝜃𝜃  and X/Y) is generally 
known as the rounding error and denoted as  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝑅𝑅  and 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

𝑅𝑅𝑅𝑅 . The total error is then given by 
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠

𝐴𝐴𝐴𝐴 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐
𝐴𝐴𝐴𝐴 + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

𝑅𝑅𝑅𝑅  (15) 

MED Due to Approximation Error: If the rounding error 
is not considered, then the MED [3] can be derived by the 
integral of the approximation error for 𝜃𝜃 ∈ [0, 2𝜋𝜋) as, 

Eq. (16) has been plotted against the simulated results. 
Fig. 6(b), Fig. 7(b) and Fig. 8(b) show that the error equa-

tion provides a good estimate of the MED for FPAX-
CORDIC architecture. 

MED = � 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝐴𝐴(𝜃𝜃, 𝑝𝑝)𝑑𝑑𝑑𝑑

2𝜋𝜋

0
= � 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

𝐴𝐴𝐴𝐴 (𝜃𝜃, 𝑝𝑝)𝑑𝑑𝑑𝑑
2𝜋𝜋

0
 

= � |(1 − cos 𝜃𝜃𝐸𝐸) sin 𝜃𝜃 + sin 𝜃𝜃𝐸𝐸 cos 𝜃𝜃|𝑑𝑑𝑑𝑑
2𝜋𝜋

0
 

=

⎩
⎨

⎧sin 𝜃𝜃𝐸𝐸 − cos 𝜃𝜃𝐸𝐸 + 1
 𝜋𝜋

, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝐴𝐴(𝜃𝜃, 𝑝𝑝) ≥ 0

cos 𝜃𝜃𝐸𝐸 − sin 𝜃𝜃𝐸𝐸 − 1
𝜋𝜋

, 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝐴𝐴(𝜃𝜃, 𝑝𝑝) < 0

 

(16) 

  
(a) (b) 

Fig. 6 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃, 𝑝𝑝) (a) and MED (b) of 16-bit FPAX-CORDIC vs. p 

  
(a) (b) 

Fig. 7  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃, 𝑝𝑝) (a) and MED (b) of 24-bit FPAX-CORDIC vs. p 

  
(a) (b) 

Fig. 8  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃, 𝑝𝑝) (a) and MED (b) of 32-bit FPAX-CORDIC vs. p 

The simulated error 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃, 𝑝𝑝)  versus p for the pro-
posed 16-bit, 24-bit and 32-bit FPAX-CORDIC are plotted 
in Fig. 6(a), Fig. 7(a) and Fig. 8(a). As p increases, the out-
put error variation decrease to reach nearly zero; the 
black solid line shows the mean error over the range of p 
∈ [5, 16]; as the word width increases from 16 to 32, the 
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mean error of 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃, 𝑝𝑝) decreases by nearly 30 times in 
magnitude. Fig. 6(b) shows the simulated 16-bit FPAX-
CORDIC MED as function of p; the MED drops rather 
fast between 𝑝𝑝 = 8 and 10, and is nearly constant at 𝑝𝑝 >
10; however, the simulated MED value is deviates a little 
from the estimated value. The simulated and analytically 
estimated MEDs of the 24-bit and 32-bit FPAX-CORDIC 
(Fig. 7(b) and Fig. 8(b)) show a better agreement than for 
the 16-bit case; this is caused by the larger rounding error 
occurring at a smaller bit-width.  

4.2 Truncation Error 

 
Fig. 9 MED of 16-bit FPAX-CORDIC with Truncation Scheme: Y-Path 
Truncation 

 
Fig. 10 MED of 16-bit FPAX- CORDIC with Truncation Scheme: X-
Path Truncation 

The MED of a truncated FPAX-CORDIC either in X-Path 
or Y-Path is shown in Fig. 9 and Fig. 10. These plots show 
that when the value of p is lower than 8, the truncation 
depth d does not significantly affect the MED until d in-
creases beyond 4; when p is higher than 8 and d increases, 
the MED starts to be different from the analytically esti-
mated value; the impact of d is greater when p has a high 
value. This suggested that while high truncation depth 
would save lots of area and power consumption as shown 
in the following section, however, d has a critical value for 
impacting mostly the error of a truncated FPAX-CORDIC.  

5 HARDWARE IMPLEMENTATION AND EVALUATION 
A 16-bit FPAX-CORDIC is implemented using Verilog 
HDL and synthesized using NCSU FreePDK45[17] design 
kit; as an angle (in radian) 𝜃𝜃 is represented by 17 bit 2’s 
complementary binary values.  The angle information is 
in the format U(1,16), where bit 16 is the sign bit and the 
bits [15:0] are the fractional parts. X/Y use a 17-bit 2’s 
complementary binary number representation; its format 
is given by U(1,16) with an additional MSB guard bit. 
1) BBR Block 
The BBRL block is shown in Fig. 11; only a two transistor 
MUX and an inverter are required per digit positon. The 
output is given by  𝜎𝜎𝑖𝑖 for the first 𝑙𝑙  rotation directions. 
BBRH is implemented in a similar manner as BBRL. For 
the 16-bit input 𝜃𝜃, 𝑙𝑙 = ⌈(16 − log2 3)/3⌉ = 5. So, 5 MUXes 
and 5 inverters are need for BBRL; and 13 MUXes and 13 
inverters are needed for BBRH. 

 
Fig. 11 BBRL block for 16 bit FPAX-CORDIC. 

2) θ-Path 
The θ-Path for FPAX-CORDIC is reduced to one single 
subtraction of  𝜃𝜃�𝐻𝐻 = 𝜃𝜃𝐻𝐻 − 2−𝑙𝑙 . The input is given by 17-
bits for 𝜃𝜃𝐻𝐻, The definition of the θ-path is shown in Fig. 
12; a carry-look ahead adder (CLA) is used for this sub-
traction. 

 
Fig. 12 The Diagram of θ PATH 

3) X/Y Path 
As 𝜎𝜎𝑖𝑖 is fixed a-priori, the X/Y path can be realized using 
a Binary Signed Digit Adder (BSDA), so addition without 
propagating a carry. The intermediate rotation results are 
represented using a Binary Signed-Digit (BSD) number-
ing system [18] with a digit set given by {-1,0,1}; posi-
tive/negative flag encoding (Table 1) is used for each BSD 
digit. 
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TABLE 1 ENCODING OF BSD DIGITS 
BSD Digits d d+ d- 

-1 0 1 
0 1 or 1 0 or 0 
1 1 0 

 
𝑅𝑅(𝑖𝑖) in Fig. 4 consists of 𝑆𝑆(𝑠𝑠𝑖𝑖

𝑗𝑗) with 𝑗𝑗 = 1,2, … , 𝑛𝑛(𝑖𝑖) (as 
shown in Fig. 13). The basic block of the X/Y path is the 
microrotation block 𝑆𝑆(𝑠𝑠𝑖𝑖

𝑗𝑗) ; it is implemented using a 
BSDA (Fig. 14). 

 
Fig. 13 Implementation of R(i). 

 
Fig. 14 Implementation of the X/Y path 𝑆𝑆(𝑠𝑠𝑖𝑖

𝑗𝑗) using BSDA. 

4) Power, Delay and area 
The power, delay and area of the proposed FPAX-
CORDIC are simulated and plotted in Fig. 15, Fig. 16 and 
Fig. 17. The power dissipation of FPAX-CORDIC is lower 
than Para-CORDIC when p is lower than the critical value 
of 8; so, the proposed FPAX-CORDIC performs well in 
term of power consumption (with p=5, FPAX-CORDIC 
has a reduction in power dissipation of 10%). When p 

increases beyond 8, the number of total microrotation 
stages also increases; so, the power dissipation of FPAX-
CORDIC increases beyond the power dissipation of Para-
CORDIC. The MED is also plotted as function of p in the 
same figures; the MED of FPAX-CORDIC is high when p 
is lower than 8, however an abrupt decrease of 80% oc-
curs when p = 8. The delay of FPAX-CORDIC is better 
than for Para-CORDIC when p is lower than 10 (13% low-
er at p=5) and area is smaller when p is lower than 8 (10% 
lower at p=5). However, the delay and area are higher 
than those of Para-CORDIC at a higher value of p (i.e. 
when a high accuracy is preferred).  For an error-free 
FPAX-CORDIC, the power, delay and area increase by 
60%, 6% and 66% respectively. However, by using trunca-
tion, the delay and area penalties can be mitigated. Fig. 
18, Fig. 19 and Fig. 20 show the results for FPAX- 
CORDIC with truncation (p fixed at 5). If the truncation 
depth d is below 5, the delay remains the same, the power 
dissipation and area drop by at most 16% and 12.5% re-
spectively, while maintaining the MED at nearly the same 
level of magnitude as for a scheme with no truncation. 

 
Fig. 15 Power and MED of 16-bit FPAX-CORDIC (d=0) 

 
Fig. 16 Critical path delay and MED of 16-bit FPAX-CORDIC (d=0) 
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Fig. 17 Area and MED of 16-bit FPAX-CORDIC (d=0) 

 
Fig. 18 Power of 16-bit Truncation FPAX-CORDIC (p=5, MED axis is 
in log scale) 

 
Fig. 19 Delay of 16-bit Truncation FPAX-CORDIC (p=5, MED axis is 

in log scale) 

 
Fig. 20 Area of 16-bit Truncation FPAX-CORDIC (p=5, MED axis is in 
log scale) 

5) Power and MED tradeoff 
An approximate design has to address the trade-off be-
tween accuracy and power. The MED Power Product 
(MPP) is introduced in [16] for assessing this trade-off for  
an approximate design. A lower MPP implies better accu-
racy and/or power consumption. As shown in Fig. 21, the 
MPP drops by increasing p; at a lower value of p, the MPP 
is stable for a truncation depth smaller than 5. At higher 
p, the MPP increases very rapidly by increasing d. Thus, 
by not considering the delay and area penalties, p=15 and 
d=0 are the best values for attaining low power and high 
accuracy for a 16-bit design. 

 
Fig. 21 MPP of 16bit-FPAX CORDIC as a function of parameter p 
and truncation depth d (z-axis is in log scale) 

6 CASE STUDY: DISCRETE COSINE 
TRANSFORMATION (DCT) AND INVERSE DCT 
(IDCT) 

A wide range of algorithms (such as image enhancement 
in the spatial domain, frequency transform, image rota-
tion, edge detection) can be implemented using a 
CORDIC architecture [19]; a discrete cosine transform 
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(DCT) [20] expresses a finite sequence of data points in 
terms of a sum of cosine functions oscillating at different 
frequencies. The focus of this section is on the 2-D 8×8 
DCT-IDCT, which is widely used in image compression 
applications. As shown in Fig. 22, the source image (Lena) 
is divided into 8×8 small blocks; the DCT and IDCT com-
putations are applied to each 8×8 block. 

 
Fig. 22 2D DCT-IDCT process for image compression application. 

Throughout this section, the FPAX-CORDIC architec-
ture uses a 17-bit U(1,16) for the θ-path, 32-bit U(16,16) for 
the X/Y-path (each input image pixel is in the range 
[0,255]). 

6.1 Inexact 2-D 8×8 DCT based on FPAX-CORDIC 
In this section, the DCT computation is implemented us-
ing the proposed FPAX-CORDIC. The 2-D DCT is de-
composed into a 1-D DCT (row-wise DCT) followed by 
another 1-D DCT (column-wise DCT). The process with 
the separable 1-D DCTs is shown as Fig. 23; the resulting 
DCT image is compared against the results of Para-
CORDIC. 

 
Fig. 23 Process for 2-D 8×8 DCT. 

The 8×1 1-D DCT transform is given by [21] 

  𝑋𝑋(𝑘𝑘) = 𝑐𝑐(𝑘𝑘)
2

∑ 𝑥𝑥(𝑖𝑖) 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝑖𝑖+1)𝑘𝑘𝑘𝑘
16

7
𝑖𝑖=0  (17) 

where 
𝑘𝑘 = 0,1,2, … 7 

𝑐𝑐(𝑘𝑘) = �
1

√2
, 𝑘𝑘 = 0

1, 𝑘𝑘 > 0
 

By Eq. (17) and using the DCT and trigonometric 
symmetric property, the 8×1 1-D DCT in matrix form is as 
follows: 

�𝑋𝑋(4)
𝑋𝑋(0)� =

1
2 �

𝑐𝑐4 −𝑠𝑠4
𝑠𝑠4 𝑐𝑐4

� �𝑥𝑥(0) + 𝑥𝑥(7) + 𝑥𝑥(3) + 𝑥𝑥(4)
𝑥𝑥(1) + 𝑥𝑥(6) + 𝑥𝑥(2) + 𝑥𝑥(5)� 

�
𝑋𝑋(6)
𝑋𝑋(2)� =

1
2

�
𝑐𝑐6 −𝑠𝑠6
𝑠𝑠6 𝑐𝑐6

� �𝑥𝑥(0) + 𝑥𝑥(7) − 𝑥𝑥(3) − 𝑥𝑥(4)
𝑥𝑥(1) + 𝑥𝑥(6) − 𝑥𝑥(2) − 𝑥𝑥(5)� 

�𝑋𝑋(1)
𝑋𝑋(7)� =

1
2

�
𝑐𝑐7 𝑠𝑠7

−𝑠𝑠7𝑐𝑐7
� �𝑥𝑥(3) − 𝑥𝑥(4)

𝑥𝑥(0) − 𝑥𝑥(7)�

+
1
2 �

𝑐𝑐3 𝑠𝑠3
−𝑠𝑠3𝑐𝑐3

� �𝑥𝑥(1) − 𝑥𝑥(6)
𝑥𝑥(2) − 𝑥𝑥(5)� 

(18) 

�𝑋𝑋(3)
𝑋𝑋(5)� =

1
2 �

𝑐𝑐3−𝑠𝑠3
𝑠𝑠3 𝑐𝑐3

� �𝑥𝑥(0) − 𝑥𝑥(7)
𝑥𝑥(3) − 𝑥𝑥(4)�

−
1
2 �

𝑐𝑐1 𝑠𝑠1
−𝑠𝑠1𝑐𝑐1

� �𝑥𝑥(2) − 𝑥𝑥(5)
𝑥𝑥(1) − 𝑥𝑥(6)� 

where 𝑐𝑐𝑘𝑘 =  𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘/16) = 𝑠𝑠𝑚𝑚 = sin(𝑚𝑚𝑚𝑚/16) , 𝑚𝑚 = 8 − 𝑘𝑘.  
The implementation of Eq. (18) for an 8×1 1D-CORDIC 

DCT is shown in Fig. 24; six fix-angle FPAX-CORDICs are 
used to complete the multiplication of the trigonometric 
terms in Eq. (18) because for an input 𝜃𝜃 ∈ [𝜋𝜋/4, −𝜋𝜋/4] to 
the FPAX-CORDIC design, all rotation angles are con-
verted to this restricted range. 

 
Fig. 24 Architecture of 8×1 1D-CORDIC DCT. 

In the architecture of the 8×8 DCT, the parameter p 
controls the accuracy of the FPAX-CORDIC modules, so 
accuracy of the inexact 2-D 8×8 DCT is affected in two 
respects. (1) for each 8×1 1D-CORDIC DCT (Fig. 23), six 
parallel FPAX-CORDIC modules can be configured by 
changing p; (2) the two 8×1 1D-CORDIC DCT are con-
nected in series (Fig. 24), but they can be configured using 
different values of p. For simplicity, the value of p is kept 
the same for all FPAX-CORDIC modules in the following 
analysis. 

6.2 Configurations of 8×8 DCT based on FPAX-
CORDIC 

To further reduce the complexity of the proposed archi-
tecture for an 8×8 DCT and attain a better DCT accuracy, 
two features are considered for the six FPAX-CORDIC 
modules. 
1) Non-equal precision path 
When considering the reconstruction of the original input 
image 𝑥𝑥(𝑖𝑖)  from the DCT compressed image 𝑋𝑋(𝑘𝑘) , the 
high frequency components of 𝑋𝑋(𝑘𝑘)  (for example 
𝑋𝑋(4)~𝑋𝑋(7)) have a small impact on the reconstructed im-
age x(i). So, the X/Y path of the six FPAX-CORDIC mod-
ules in the 1D-CORDIC architecture can have non-equal 
precision, i.e. truncation scheme is used at the X(4)~X(7) 
computation path; for example, the X-path of the FPAX-
CORDIC module (1) (3) and the Y-path of the FPAX-
CORDIC module (2) (4) (5) (6) can either have a small 
precision (i.e., a smaller number of bits), or simply be 
truncated. The high frequency or non-critical outputs are 
shown in Fig. 24 with dashed arrows. 
2) p sets 
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On the basis of an unequal precision path configuration to 
further control the error for the low-frequency or critical 
outputs, p of each individual FPAX-CORDIC module can 
be adjusted to meet the error specifications of an applica-
tion. In each FPAX-CORDIC module, the output usually 
consists of a low-high frequency component pair; for ex-
ample, for module (1), the output pair is (𝑋𝑋(4), 𝑋𝑋(0)); as 
the accuracy of 𝑋𝑋(4) is reduced, so p affects solely 𝑋𝑋(0). 
Similar conditions may also apply to the other five FPAX-
CORDIC modules. 
3) Image test 
Fig. 25 shows the error impact of different configurations 
of FPAX-CORDIC in an inexact DCT application; the 
original image 𝑥𝑥(𝑖𝑖, 𝑗𝑗)  is transformed using a FPAX-
CORDIC based 2-D DCT architecture to generate an inex-
act DCT 𝑋𝑋�(𝑖𝑖, 𝑗𝑗), then the original 𝑥𝑥�(𝑖𝑖, 𝑗𝑗) is recovered using 
an exact IDCT transformation. The PSNR of 𝑥𝑥�(𝑖𝑖, 𝑗𝑗) against 
𝑥𝑥(𝑖𝑖, 𝑗𝑗) is measured and the results are plotted in Fig. 26. 

 

8×8 
2D-DCT 
(Inexact) 

 

8×8 
2D-IDCT 

(exact) 

 
𝑥𝑥(𝑖𝑖, 𝑗𝑗)  𝑋𝑋�(𝑖𝑖, 𝑗𝑗)  𝑥𝑥�(𝑖𝑖, 𝑗𝑗) 

Fig. 25 Evaluation of the error of FPAX-CORDIC based inexact DCT 
scheme. 

The PSNR (Fig. 26) shows that higher are the values of 
p and lower the truncation depth d, the higher the PSNR 
is. At lower truncation depth (below 12), the PSNR is not 
impact by the truncation. The PSNR begins to decrease 
after truncation depth reaches 12. When p>8, the PSNR 
increases rapidly and reaches the largest value. 

 
Fig. 26 PSNR for inexact DCT application. 

6.3 Inexact 2-D 8×8 IDCT 
The IDCT computation is implemented using the pro-
posed FPAX-CORDIC; the original image as reconstruct-

ed by both FPAX-CORDIC and Para-CORDIC is com-
pared. The 8 points 1-D IDCT transform are given in [22] 
as follows: 

 𝑥𝑥(𝑖𝑖) = 1
2

∑ 𝑐𝑐(𝑘𝑘)𝑋𝑋(𝑘𝑘)7
𝑘𝑘=0 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝑖𝑖+1)𝑘𝑘𝑘𝑘

16
 (19) 

where 
𝑖𝑖 = 0,1,2, … 7 

𝑐𝑐(𝑘𝑘) = �
1

√2
, 𝑘𝑘 = 0

1, 𝑘𝑘 > 0
 

By decomposing the sum in Eq. (19), and using the 
DCT and trigonometric symmetric property, the 8×1 1-D 
DCT is expressed in matrix form as follows: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥(6)
𝑥𝑥(0)
𝑥𝑥(2)
𝑥𝑥(3)
𝑥𝑥(1)
𝑥𝑥(7)
𝑥𝑥(5)
𝑥𝑥(4)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=
1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑐𝑐4 −𝑠𝑠4 𝑐𝑐6 −𝑠𝑠6 𝑐𝑐5 −𝑠𝑠5 𝑠𝑠1 𝑐𝑐1
𝑠𝑠4 𝑐𝑐4 𝑠𝑠6 𝑐𝑐6 𝑠𝑠1 𝑐𝑐1 𝑠𝑠5 𝑐𝑐5
𝑐𝑐4 −𝑠𝑠4 −𝑐𝑐6 𝑠𝑠6 𝑠𝑠5 𝑐𝑐5 −𝑐𝑐1 𝑠𝑠1
𝑠𝑠4 𝑐𝑐4 −𝑠𝑠6 −𝑐𝑐6 −𝑐𝑐1 𝑠𝑠1 −𝑐𝑐5 𝑠𝑠5
𝑐𝑐4 −𝑠𝑠4 𝑐𝑐6 −𝑠𝑠6 −𝑐𝑐5 𝑠𝑠5 −𝑠𝑠1 −𝑐𝑐1
𝑠𝑠4 𝑐𝑐4 𝑠𝑠6 𝑐𝑐6 −𝑠𝑠1 −𝑐𝑐1 −𝑠𝑠5 −𝑐𝑐5
𝑐𝑐4 −𝑠𝑠4 −𝑐𝑐6 𝑠𝑠6 −𝑠𝑠5 −𝑐𝑐5 𝑐𝑐1 −𝑠𝑠1
𝑠𝑠4 𝑐𝑐4 −𝑠𝑠6 −𝑐𝑐6 𝑐𝑐1 −𝑠𝑠1 𝑐𝑐5 −𝑠𝑠5⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
X(0)
𝑋𝑋(4)
𝑋𝑋(2)
𝑋𝑋(6)
𝑋𝑋(7)
𝑋𝑋(1)
𝑋𝑋(3)
𝑋𝑋(5)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (20) 

where 𝑐𝑐𝑘𝑘 =  𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘𝑘𝑘
16

� = 𝑠𝑠𝑚𝑚 = sin �𝑚𝑚𝑚𝑚
16

� , 𝑚𝑚 = 8 − 𝑘𝑘.  
Similar to DCT, the architecture of 8×1 1D-CORDIC 

IDCT is shown as Fig. 27.  

 
Fig. 27 Architecture of 8×8 1D-CORDIC IDCT. 

6.4 Configurations of 8×8 IDCT based on FPAX-
CORDIC 

Similar to DCT, the IDCT can be also configured accord-
ing to two features: 1) Non-equal precision path and 2) 
Different p sets. 

 

8×8 
2D-DCT 
(exact) 

 

8×8 
2D-IDCT 
(Inexact) 

 
𝑥𝑥(𝑖𝑖, 𝑗𝑗)  𝑋𝑋(𝑖𝑖, 𝑗𝑗)  𝑥𝑥�(𝑖𝑖, 𝑗𝑗) 

Fig. 28 Evaluation of the error of FPAX-CORDIC based inexact IDCT 
scheme. 

As shown in Fig. 28, to find the error impact of different 
configurations of FPAX-CORDIC in the IDCT application, 
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the original image 𝑥𝑥(𝑖𝑖, 𝑗𝑗)  is transformed using the exact 
DCT to obtain 𝑋𝑋(𝑖𝑖, 𝑗𝑗), and then the original 𝑥𝑥�(𝑖𝑖, 𝑗𝑗) is recov-
ered using FPAX-CORDIC IDCT to obtain the inexact 
IDCT result 𝑥𝑥�(𝑖𝑖, 𝑗𝑗) . The PSNR of 𝑥𝑥�(𝑖𝑖, 𝑗𝑗)  against 𝑥𝑥(𝑖𝑖, 𝑗𝑗)  is 
measured and the results are plotted in Fig. 29. Consider the 
measured PSNR; similar as the inexact DCT application the 
higher p and the lower the d are, the higher the PSNR is. At 
lower truncation depth (below 8), the PSNR is not impact by 
the truncation. The PSNR begins to decrease after truncation 
depth reaches 8. When p>8, the PSNR reaches the largest 
value. Compared to using an inexact DCT and exact IDCT, 
the use of an exact DCT and inexact IDCT is more sensitive 
to the truncation depth in X/Y-path. 

 
Fig. 29 PSNR for inexact IDCT application 

6.5 All Inexact DCT and IDCT Using FPAX-CORDIC 
To further decrease the circuit complexity and power dis-
sipation, both DCT and IDCT are computed approximate-
ly using the FPAX-CORDIC (Fig. 30). The PSNR of 𝑥𝑥�(𝑖𝑖, 𝑗𝑗) 
against 𝑥𝑥(𝑖𝑖, 𝑗𝑗) is measured; the results are plotted in Fig. 
31. 

The results show that compared to the former two cases of 
using only a single inexact processing, the use of both inex-
act DCT and IDCT makes the PSNR less sensitive to p. This 
occurs because DCT and IDCT are inverse transformations, 
the error introduced by the DCT stage could be properly 
compensated by IDCT. Thus, the proposed FPAX-CORDIC 
based architecture is quite suitable for low power DCT-
IDCT pair computation. 

 

8×8 
2D-DCT 
(Inexact) 

 

8×8 
2D-IDCT 
(Inexact) 

 
𝑥𝑥(𝑖𝑖, 𝑗𝑗)  𝑋𝑋�(𝑖𝑖, 𝑗𝑗)  𝑥𝑥�(𝑖𝑖, 𝑗𝑗) 

Fig. 30 Evaluation of the error of FPAX-CORDIC based inexact DCT-
IDCT scheme. 

 
Fig. 31 PSNR of Inexact DCT and IDCT application. 

6.6 Hardware implementation of DCT and IDCT 
For the DCT-IDCT application presented previously, 
FPAX-CORDIC at different values of p has been described 
in a previous section.  For the non-equal precision path 
introduced solely for the DCT-IDCT application, a simple 
gate [23] (shown in Fig. 32(a)) is used to turn off the data 
paths of the LSB of the Y-path. An example of the pro-
posed scheme is shown in Fig. 32(b); the bit-width of the 
data path is controlled by the dynamic bit-width control 
(DBC) circuit. In this scheme, the hardware overhead 
consists of the pull-up and pull-down turn-off gate tran-
sistors for each X/Y-path bit in the positional logic. 

 
 

(a) (b) 
Fig. 32 (a) Turnoff gate [20]. (b) Dynamic bit-width control using 
turnoff gate. 

The performance of a single 8×8 DCT-IDCT computation 
is measured and the results are plotted in Fig. 33. When con-
sidering the PSNR (shown in Fig. 31), a better accuracy is 
achieved at a higher power consumption, delay and area. 
However, as p does not significantly affect the PSNR, a 
lower value of p results in a lower power, delay and area. 
Performance is improved when d is chosen to be not higher 
than 8 for a high PSNR.  Therefore, to achieve both low 
power dissipation and high accuracy in DCT-IDCT a 
scheme with p=5 and d=8 offers the best combined perfor-
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mance.  

 
(a) 

 
(b) 

 
(c) 

Fig. 33 (a) Power (b) Delay (c) Area of single 8×8 DCT-IDCT pair. 

7 CONCLUSION 
This paper has proposed an approach for approximate 

CORDIC designs. By modifying the Para-CORDIC archi-
tecture, a full parallel approximate CORDIC (FPAX-
CORDIC) scheme has been proposed. The proposed ap-
proximate CORDIC avoids the memory register of Para-
CORDIC and makes the generation of the rotation direc-
tion fully parallel. Two parameters namely the error-
tolerant parameter p and the truncation depth d are pro-
posed and utilized for error control. Power consumption 
can be reduced when properly selecting the parameters in 
the proposed scheme, while not results in a great degra-
dation in accuracy. A comprehensive evaluation of the 
impact of design parameter p and d on circuit metrics in-
cluding power, delay and area has been presented. An 
error analysis that combines traditional figures of merit 
(such as MED) with CORDIC specific parameters is ana-
lytically pursued. Therefore, the following conclusive 
evidence is applicable: 
• The parameters p and d are used to control the error 

of FPAX-CORDIC. As p increases more accuracy is 

obtained till an error-free computation is reached at p 
equal to the bit-width N. The truncation depth d is 
less significant in the error control process; at a depth 
d less than 5, truncation can save power, delay and 
area while still keeping a nearly constant accuracy. 

• The circuit metrics of FPAX-CORDIC are also a func-
tion of p and d. The power dissipation and area in-
crease with p, with similar values as Para-CORDIC at 
p=8. The delay is smaller than for Para-CORDIC 
when p < 10. 

• The error parameters p and d are important when 
assessing the trade-off between power consumption 
and accuracy for the proposed FPAX-CORDIC; the 
values of p=15 and d=0 yield the best MPP.  

• For image compression and decompression process 
using DCT-IDCT, in addition p, more power saving 
can be gained by tolerating more errors for the high 
frequency components. The additional power saving 
can be realized by using the DBC circuit on the X/Y-
path of each FPAX-CORDIC module. 

• When either DCT, or IDCT, or both are inexact, the 
accuracy and power dissipation are affected. The case 
in which a single inexact DCT or IDCT is present, 
shows the most sensitivity to p and d; when both 
DCT and IDCT are inexact, then the error variation 
and dependency with p are reduced. p=5, d=8 are the 
best design parameter for DCT-IDCT pair computa-
tion. 
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